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DISCRETIZATION AND MORSE–SMALE

DYNAMICAL SYSTEMS ON PLANAR DISCS

B. M. GARAY

Abstract. In a previous paper [12], we have shown that locally, in the vicinity of
hyperbolic equilibria of autonomous ordinary differential equations, the time-h-map
of the induced dynamical system is conjugate to the h-discretized system i.e. to the
discrete dynamical system obtained via one-step discretization with stepsize h. The
present paper is devoted to Morse-Smale dynamical systems defined on planar discs
and having no periodic orbits. Using elementary extension techniques, we point out
that local conjugacies about saddle points can be glued together: the time-h-map
is globally conjugate to the h-discretized system. This is a discretization analogue
of the famous Andronov-Pontryagin theorem [2], [18] on structural stability. For
methods of order p, the conjugacy is O(hp)-near to the identity. The paper ends
with some general remarks on similar problems.

0. Introduction and the Main Result

Let | · | denote the Euclidean norm on R2 and consider the unit disc D = {x ∈
R2

∣∣ |x| ≤ 1}. The boundary of D is denoted by ∂D. Assume that N is an open

neighbourhood of D and that, for some positive integer p, the function f : N → R2

is of class Cp+1 (with all derivatives bounded — the norm in Cp+1 is defined by

|f |p+1 = max{sup {f (j)(x) | x ∈ N} | j = 0, 1, . . . , p+ 1})

and satisfies

(i) x · f(x) < 0 whenever x ∈ ∂D;

(ii) ẋ = f(x) has a finite number of equilibrium points in D, all hyperbolic;

(iii) alpha- and omega- limit sets of trajectories in D are equilibria;

(iv) there are no saddle connections in D.

Actually, conditions (i)–(iv) concern the local dynamical system Φ induced by

the differential equation ẋ = f(x), x ∈ N , and not function f itself. Geometrically,

(i) means that D is positively invariant for Φ and ∂D is transversally cutted

by the trajectories. By (ii), the equilibria of ẋ = f(x) in D can be classified as
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sinks, saddles and sources according as the eigenvalues of the Jacobian satisfy

Reλ1 = Reλ2 < 0, λ2 < 0 < λ1 and 0 < Reλ1 = Reλ2, respectively. Outgoing

and ingoing trajectories at saddle points are called separatrices. Condition (iv)

means that the second endpoint of a separatrix in D is a nonsaddle equilibrium.

Separatrices as edges and equilibria as vertices form the so-called separatrix graph

and define a cell-decomposition of D. The detailed topological and dynamical

description of these cells was given in [6], [24].

Without going into the details here, we remark that differential equations satis-

fying (i)–(iv) are exactly those Morse-Smale dynamical systems on D which have

no periodic orbits — essentially, Morse-Smale gradient systems [18]. There study

is/was one of the starting points [2], [24], [26] for the theory of structural stability

[22], [25].

With the differential equation ẋ = f(x), x ∈ N , we consider also its h-discreti-

zed system i.e. the discrete local dynamical system induced by a Cp+1 mapping

ϕ : [0, h0]×N → R2 where h0 > 0 (and, as usual, the Cp+1 property of ϕ on

[0, h0]×N is understood as the existence of a Cp+1 extension ϕ̃ defined on an open

neighbourhood of [0, h0]×N in R×R2). Besides the differentiability assumption,

the only requirement on ϕ is the existence of a positive constant K and of an open

neighbourhoodM of D in N such that

(1) |Φ(h, x)− ϕ(h, x)| ≤ Khp+1 for all h ∈ [0, h0], x ∈ M.

The main result of the present paper is that Morse-Smale gradient systems

on planar discs — up to a conjugacy O(hp)- near to the identity — are cor-

rectly reproduced by numerical methods. In particular, the h-discretized system

ϕ(h, ·) : D→ R2 embeds in a continuous-time dynamical system.

Assume that p ≥ 2. (This is a technical assumption we are not able to get rid

of: see Remark 1.3. On the other hand, formula (15) in Section 2 is an indication

that the Theorem might be false with p = 1.)

Theorem. Let N , p, D, f , Φ and ϕ, M be as above. Then there is a pos-

itive constant K and, for all h sufficiently small, there exists a homeomorphism

Hh : D→ Hh(D) such that Hh(Φ(h, x)) = ϕ(h,Hh(x)) and |Hh(x)− x| ≤ Khp

whenever x ∈ D.

The proof of the Theorem is presented in the next Section. Section 2 contains

some general remarks on whether and how qualitative properties of ordinary dif-

ferential equations are inherited by one-step numerical methods — an approach

[16], [3], [4], [9], [12] (and the references therein) complementary to detecting

qualitative properties of ordinary differential equations by their numerical solu-

tions.
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1. The Proof of the Theorem

The proof is subdivided into several steps.

Step 1: a preliminary globalizing extension. Recall condition (i) and set

D = {x ∈ R2
∣∣ |x| ≤ 2}. Modifying f outside a closed neighbourhood of D,

we may assume that N =M = R2 and, in Cartesian coordinates, N = (0, 2) is

a source, S = (0,−2) is a saddle; ∂D consists of four trajectories (i.e. of the two

equilibria N , S plus of two connecting separatrices); the outgoing separatrices at

S tend to sinks (in D and in R2\D, respectively) and; last but not least, all points

in D\∂D are attracted by D.

As a slight generalization of the Theorem, we prove in the sequel that there is

a positive constant K and, for all h sufficiently small, there is a homeomorphism

Jh : D → Jh(D) such that Jh(Φ(h, x)) = ϕ(h,Jh(x)) and |Jh(x)− x| ≤ Khp

whenever x ∈ D.

The reason for passing toD fromD is to overcome the technical difficulty caused

by the fact that some trajectories of ẋ = f(x) leave D with finite negative escape

time. On the other hand, the domain of nonextendable solutions of ẋ = f(x) on

D is R: we have a Cp+1 dynamical system on D.

Step 2: some useful properties of the discretization. As an easy exercise

on Taylor expansion formula, inequality (1) plus the differentiability assumption

on ϕ imply (cf. [12, Formula (6)]) that, for all j = 0, 1, . . . , p+ 1, there holds

(2) |Φ(j)
x (h, x)− ϕ(j)

x (h, x)| ≤ Khp+1−j whenever h ∈ [0, h0], x ∈ R2.

By Gronwall lemma applied to the equation Φ′′xt = f ′x(Φ)Φ′x, we obtain that

(3) |Φ′x(t, x)− Id| ≤ exp(|f ′x|0 · t)− 1, for all t ≥ 0, x ∈ R2.

Using the j = 1 case of inequality (2) and Φ′x(0, x) = Id, it follows that ϕ′x(h, x)

is invertible and |(ϕ′x(h, x))
−1| ≤ K for all h ∈ [0, h0], x ∈ R2. (The constants K,

h0 etc. are not necessarily the same at different appearances.) In virtue of the

Hadamard-Levy global inverse function theorem [1, Thm. 2.5.17], ϕ(h, ·) is a diffeo-

morphism of R2 onto R2, h ∈ [0, h0]. Thus, we may write that ϕ(h, ψ(h, x)) = x,

ψ(h, ϕ(h, x)) = x where, by the classical implicite function theorem, ψ is Cp+1

on [0, h0]×R2. Setting Ψ(h, x) = Φ(−h, x) and comparing ψ(h, ϕ(h, x)) = x with

Ψ(h,Φ(h, x)) = x, inequalities (1) and (3) imply that

(4) |ψ(h, x)−Ψ(h, x)| ≤ Khp+1 for all h ∈ [0, h0], x ∈ R2.

For k ∈N, define recursively

ϕ(0, h, x) = x, ϕ(k + 1, h, x) = ϕ(h, ϕ(k, h, x)), h ∈ [0, h0], x ∈ R2.
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Via a standard application of the discrete Gronwall lemma, a further consequence

of (1) is that, given T > 0 arbitrarily, there exists a constant c(T ) such that (see

also formula (14) in Section 2)

(5) |Φ(kh, x)− ϕ(k, h, x)| ≤ c(T )hp whenever h ∈ [0, h0], kh ≤ T and x ∈ R2.

For later purposes, we note a trivial consequence of (3). Given T > 0 arbitrarily,

there exists a constant c(T ) such that

(6) |Φ(t, z)− Φ(t, w)| ≤ c(T )|z − w| whenever 0 ≤ t ≤ T and z, w ∈ R2.

It is clear from the previous considerations that, continuing the pairing (1) ↔
(4), the (ψ,Ψ) – counterparts of inequalities (2), (3), (5), (6) are also valid.

Step 3: recalling a Hartman-Grobman result [12] on discretizations.

The saddle points of ẋ = f(x), x ∈ D, are denoted by P0 = S, P1, . . . , Pn. The

remaining equilibria are denoted by Q0 = N , Q1, . . . , Qm. In virtue of the index

theorem, m− n = 1.

Consider a saddle point P in D and let U be a compact neighbourhood of P .

For brevity, we say that U is an isolating block of P — the terminology is bor-

rowed from Conley’s theory [8] on isolated invariant sets — if there are Cp+1

curves Γ1,Γ2, . . . ,Γ8 and pointsA1, A2, . . . , A8 such that ∂U = Γ1 ∪ Γ2 ∪ · · · ∪ Γ8;

Γs ∩ Γs+1 = As+1, s = 1, 2, . . . , 8, Γ9 = Γ1, A9 = A1; Γs ∩ Γt = ∅ whenever

|s− t| > 1; Γs, s = 1, 3, 5, 7 is a trajectory segment for Φ; Γs, s = 2, 4, 6, 8 is a

transversal section for Φ; Γ2 ∪ Γ6 and Γ4 ∪ Γ8 consist of entry and exit points,

respectively; and, last but not least, P is the maximal compact invariant set in

U . It is well-known that the collection of isolating blocks forms a neighbourhood

basis for P . For h ∈ (0, h0], define

Ds,h = {Φ(−t, x) ∈ R2 | 0 ≤ t ≤ h, x ∈ Γs}, s = 4, 8,

Es,h = {Φ(t, x) ∈ R2 | 0 ≤ t ≤ h, x ∈ Γs}, s = 2, 6.

Without loss of generality, we may assume that D4,h0 ∪ D8,h0 and E2,h0 ∪ E6,h0 are

disjoint subsets of U .

Lemma 1.1. For each i, i = 0, 1, . . . , n, there exists an isolating block Ui of

the saddle point Pi and, for each h, h ∈ (0, h0], there exists a homeomorphism

Hh,i : Ui →Hh,i(Ui) such that Hh,i(Φ(h, x)) = ϕ(h,Hh,i(x)) whenever x ∈ cl (Ui\
(D4,h,i ∪D8,h,i)) (i.e. whenever both sides are defined) and, with some constant K

(independent of h and i), |Hh,i(x) − x| ≤ Khp whenever x ∈ Ui, h ∈ (0, h0].

Proof. This is a special case of [12, Cor. 2.3]. �

There is no loss of generality in assuming that Ui ∩ Uj = ∅, i 6= j.
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Now we are in a position to start with the definition of Jh. By letting

Jh(x) = Hh,i(x) for x ∈ Ui, i = 0, 1, . . . , n,

Jh is defined on ∪{Ui | i = 0, 1, . . . , n}.

Step 4: extending Jh along the separatrix graph. In virtue of (ii)–(iv),

there is no loss of generality in assuming that

(7) {Φ(t, x) ∈ R2 | t ∈ R, x ∈ Ui} ∩ Uj = ∅ for all i, j, i 6= j.

Consider the saddle point P ∈ D again and let U be an isolating block of P .

Set

Vs = {Φ(t, x) ∈ R2 | t ≥ 0, x ∈ Γs}, s = 4, 8,

Ws = {Φ(−t, x) ∈ R2 | t ≥ 0, x ∈ Γs}, s = 2, 6.

Using (ii)–(iv) again, we may assume that

(8) cl (Vs)\Vs is a sink, say Rs, and Vs is attracted by Rs, s = 4, 8

(it may well happen that R4 = R8) and similarly,

(9) cl (Ws)\Ws is a source, say Ss, and Ws is repelled by Ss, s = 2, 6.

Recall that P = Pi, U = Ui for some i ∈ {0, 1, . . . , n} and set Hh = Hh,i. Now

we extend Hh to U ∪ V4 ∪ V8. This can be done by a simple recursive argument

sometimes (e.g. in [15, p. 93]) called the method of fundamental domains.

In fact, for s = 4, 8, k ∈N, define recursively

D0
s,h = Ds,h, D

k+1
s,h = {Φ(h, x) ∈ R2 | x ∈ Dks,h}, h ∈ (0, h0].

Observe that ∪{Dk+1
s,h | k ∈N} = Vs and Hh(x) = ϕ(h,Hh(Φ(−h, x))) whenever

x ∈ D0
s,h. Since Dks,h = {Φ(−h, x) ∈ R2 | x ∈ Dk+1

s,h }, the recursive formula

Hh(x) = ϕ(h,Hh(Φ(−h, x))), x ∈ Dk+1
s,h , k ∈ N

is well-defined and extends Hh to Vs. It is easy to check that Hh(Φ(h, x)) =

ϕ(h,Hh(x)) for all h ∈ (0, h0], x ∈ U ∪ V4 ∪ V8.

Next we point out that

(10) |Hh(x)− x| ≤ Kh
p whenever x ∈ V4 ∪ V8, h ∈ (0, h0].



30 B. M. GARAY

Lemma 1.2. For s = 4, 8, there exist a new norm || · || on R2 and a positive

constant η such that, for h ∈ (0, h0], the mappings ϕ(h, ·) and Φ(h, ·) are con-

tractions on N (Rs, η) = {x ∈ R2
∣∣ ||x−Rs|| ≤ η}. Further, with some positive

constants κ, K (independent of h), the contraction constant is 1− κh and the

unique fixed point Qs(h) of ϕ(h, ·) in N (Rs, η) satisfies ||Qs(h)−Rs|| ≤ Khp.

Proof. The contraction properties were proved in [12, Prop. 1.2, 1.3 and 2.2]

(case ε = ε0, sufficiently small). Estimate ||Qs(h)−Rs|| ≤ Khp is a reformulation

of (the z = 0 case of) the last assertion in [12, Cor. 2.3]. �

By a simple compactness/uniformity argument, there is a constant τ > 0 such

that {Φ(t, y) ∈ R2| t ≥ τ , y ∈ D0
s,h} ⊂ N (Rs, η/2).

Pick an x ∈ Vs. Then x = Φ(kh, y) for some k = k(x) ∈ N, y ∈ D0
s,h. In order

to prove (10), we distinguish two cases according as kh ≤ τ or not. If kh ≤ τ ,
then, applying inequalities (5) and (6), we have that

|Hh(x) − x| = |Hh(Φ(kh, y))− Φ(kh, y)| = |ϕ(k, h,Hh(y))− Φ(kh, y)|

≤ |ϕ(k, h,Hh(y))− Φ(kh,Hh(y))|+ |Φ(kh,Hh(y))− Φ(kh, y)|

≤ c(τ)hp + c(τ)|Hh(y)− y| ≤ c(τ)h
p + c(τ)Khp.

On the other hand, if kh > τ then, with j = j̇(x, h) = min{i ∈N | ih ≥ τ}, set

wi = ϕ(i, h,Hh(y)), zi = Φ(ih, y), i = j, j + 1, . . . , k. Since zj ∈ N (Rs, η/2) — as

a matter of fact, {zi}kj ⊂ N (Rs, η/2) — and

||wj − zj|| ≤ ||wj − Φ(jh,Hh(y))||+ ||Φ(jh,Hh(y))− zj||

≤ const
(
|ϕ(j, h,Hh(y))− Φ(jh,Hh(y))|+ |Φ(jh,Hh(y))− Φ(jh, y)|

)
which in turn, using (5) and (6), is less than

const (c(τ + h0)h
p + c(τ + h0)|Hh(y)− y|) ≤ Kh

p;

there is no loss of generality in assuming that wj ∈ N (Rs, η). Thus, in virtue of

the ϕ-part of Lemma 1.2, we may assume that {wi}kj ⊂ N (Rs, η). By a repeated

application of (1) and the Φ-part of Lemma 1.2, it follows that

||Hh(x)− x|| = ||Hh(Φ(kh, y))− zk|| = ||ϕ(k, h,Hh(y))− zk||

= ||wk − zk|| = ||ϕ(h,wk−1)− Φ(h, zk−1)||

≤ ||ϕ(h,wk−1)− Φ(h,wk−1)||+ ||Φ(h,wk−1)− Φ(h, zk−1)||

≤ Khp+1 + (1− κh)||wk−1 − zk−1|| ≤ . . .

≤ Khp+1(1 + (1− κh) + · · ·+ (1− κh)k−j−1) + (1− κh)k−j ||wj − zj||

≤ (K/κ)hp + ||wj − zj|| ≤ (K/κ)hp +Khp.

Thus, in both cases, |Hh(x) − x| ≤ Khp and this concludes the proof of (10).
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By letting Hh(Rs) = Qs(h), s = 4, 8, we extend Hh to cl (U ∪ V4 ∪ V8). By the

construction, the (extended) Hh is a homeomorphism.

Now we make use of what we obtained in Step 2. Replacing ϕ, Φ, Vs, Rs by ψ,

Ψ, Ws−2, Ss−2 respectively, and starting from Es−2,h instead of Ds,h, s = 4, 8, the

whole extension process can be repeated. By (8), (9), the two extensions can be

made simultaneously; the resulting map (denoted also by)Hh is a homeomorphism

and satisfies Hh(Φ(h, x)) = ϕ(h,Hh(x)), |Hh(x) − x| ≤ Khp whenever h ∈ (0, h0],

x ∈ cl (U ∪ V4 ∪ V8 ∪W2 ∪W6).

Returning to our mapping Jh defined on ∪{Ui | i = 0, 1, . . . , n}, the previous ex-

tension process can be repeated with P = Pi, U = Ui, Hh = Jh|Ui, i = 0, 1, . . . , n.

By (7), (8), (9), this can be done simultaneously.

From now on, let Jh, h ∈ (0, h0], denote the restriction of this simultaneous

extension to the set

A = ∪{cl(Ui ∪ V4,i ∪ V8,i ∪W2,i ∪W6,i) | i = 0, 1, . . . , n} ∩ D.

It remains to extend Jh to the entire D.

Step 5: the components of D\A. Consider now a component B of D\A. Since

∂D ⊂ A and A is closed, B is open. By the construction, ∂A consists of a finite

number of nonsaddle equilibria plus of a finite number of connecting orbits. The

same is true for ∂B. It follows that the number of components of D\A is finite.

Observe that G ∩ D ⊂ A, where G denotes the separatrix graph. Consequently, B
is contained in a single component of D\G. It is known [6] that each component

of D\G contains exactly one sink and one source on its boundary. Consequently,

∂B consists of two nonsaddle equilibria, a sink R and a source S, and of two

connecting trajectories (trajectories containing Γs,i for some s ∈ {1, 3, 5, 7} and

i ∈ {0, 1, . . . , n}). It follows that B is a collection of trajectories starting from S

and tending to R.

Consider now the set Jh(∂B) and apply the Jordan curve theorem. Since Jh
is a homeomorphism, also Jh(∂B) is a simple closed curve. Its interior is denoted

by Ch. The conjugacy property of Jh and the Φ-invariance of ∂B implies that

Jh(∂B) = ∂Ch is invariant under ϕ(h, ·). Since ϕ(h, ·) is a global homeomorphism

(Step 2), it follows from Brouwer’s invariance of domain theorem that Ch is invari-

ant under ϕ(h, ·).
By the previous considerations, in extending Jh from A to D, we can work on

each component of D\A, separately.

Step 6: a Schönfliess argument on B combined with the method of funda-

mental domains. What also left to prove is that, for h ∈ (0, h0], Jh|∂B extends

to a homeomorphism Kh of cl (B) onto cl (Ch) such that Kh(Φ(h, x)) = ϕ(h,Kh(x))
and |Kh(x) − x| ≤ Khp whenever x ∈ cl (B).

With R playing the role of Rs in Lemma 1.2, set Γ = cl (B) ∩ ∂N (R, η). Since

Φ is transversal to ∂N (R, η), Γ ∩ ∂B consists of exactly two points, say B1, B2.

Set γh = {Φ(h, x) ∈ R2 | x ∈ Γ} and αs,h = {Φ(t, Bs) ∈ R2 | 0 ≤ t ≤ h}, s = 1, 2.
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Let λh denote the simple closed curve formed by the four arcs α1,h, Γ, α2,h, γh.

The closure of the interior of λh is denoted by Fh. We extend Jh first to λh, then

to Fh and, finally, by the method of fundamental domains described in Step 4, to

the entire cl (B). (The fundamental domains are Ds,h, Es,h and Fh, respectively.)

By elementary considerations from plane topology, there is an arc ∆h con-

necting Jh(B1) with Jh(B2) and a homeomorphism Hh of Γ onto ∆h with the

properties that ∆h ⊂ cl (Ch), ∆h ∩ ∂Ch = {Jh(B1),Jh(B2)}, Hh(B1) = Jh(B1),

Hh(B2) = Jh(B2), and, last but not least, |Hh(x) − x| < 3Khp whenever x ∈ Γ.

(Here of course, K is the fixed constant for which |Jh(x) − x| ≤ Khp whenever

x ∈ ∂B). Set δh = {ϕ(h, x) ∈ R2 | x ∈ ∆h} and βs,h = Jh(αs,h), s = 1, 2. Given

x ∈ Γ arbitrarily, inequalities (6) and (1) imply that

|Φ(h, x) − ϕ(h,Hh(x))| ≤ |Φ(h, x)− Φ(h,Hh(x))|+ |Φ(h,Hh(x))− ϕ(h,Hh(x))|

≤ c(h0)|x−Hh(x)|+Khp+1 ≤ 3c(h0)Kh
p +Khp+1.

In virtue of the Φ-part of Lemma 1.2, γh ⊂ N (R, (1− κh)η). It follows im-

mediately that δh ⊂ N (R, (1− κh)η + (3c(h0) + h0)Kh
p). Since ∆h ∩ N (R, η −

3Khp) = ∅, assumption p ≥ 2 implies that, for all h ∈ (0, h0], ∆h ∩ δh = ∅. Hence,

the four arcs β1,h, ∆h, β2,h, δh form a simple closed curve in cl(Ch), say µh. The

closure of the interior of µh is denoted by Gh.
For x ∈ λh, set

Rh(x) =


Jh(x) if x ∈ α1,h ∪ α2,h,

Hh(x) if x ∈ Γ,

ϕ(h,Hh(Φ(−h, x))) if x ∈ γh.

It is easy to check that Rh is well-defined, Rh is a homeomorphism of λh onto µh,

Rh(Φ(h, x)) = ϕ(h,Rh(x)) whenever x ∈ Γ and, with b = max{3, 3c(h0) + h0},
|Rh(x)− x| ≤ bKhp whenever x ∈ λh.

Using p ≥ 2 again, the geometric properties of λh imply the existence of a simple

closed curve ωh ⊂ (Fh\λh) ∩ (Gh\µh) and of a homeomorphism Zh of ωh onto λh
such that, with a suitable constant c > 1 (independent of h but depending on the

angle between Γ and αs,h at Bs, s = 1, 2), |Zh(x)− x| ≤ bcKhp whenever x ∈ ωh.
The closure of the interior of ωh is denoted by Ωh.

Next we construct a homeomorphism Sh of the annulus cl (Fh\Ωh) onto the an-

nulus cl (Gh\Ωh) with the properties that Sh(x) = Rh(x) whenever x ∈ λh,
Sh(x) = x whenever x ∈ ωh and |Sh(x) − x| ≤ 24bcKhp for all x ∈ cl(Fh\Ωh).
This will be done by applying Schönfliess theorem to the cells of a suitable cellular

decomposition of cl (Fh\Ωh), h ∈ (0, h0].

In fact, by elementary considerations from plane topology, there exists a planar

graph Gh with vertices A1
h, A

2
h, . . . , A

N
h , C1

h, C
2
h, . . . , C

N
h and edges ϕjh = AjhA

j+1
h ,

ϕN+j
h = CjhC

j+1
h , ϕ2N+j

h = AjhC
j
h, j = 1, 2, . . . , N (AN+1

h = A1
h, C

N+1
h = C1

h) such
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that ∪{ϕhj | j = 1, 2, . . . , N} = ωh, ∪{ϕ
N+j
h |j = 1, 2, . . . , N} = µh and, last but

not least, for j = 1, 2, . . . , N , the diameter of the curvilinear rectangle

AjhA
j+1
h Cj+1

h Cjh is less than 12bcKhp. Similarly, there exists a planar graph

Fh with vertices A1
h, A

2
h, . . . , A

N
h , B1

h = R−1
h (C1

h), B
2
h = R−1

h (C2
h), . . . , BNh =

R−1
h (CNh ) and edges εjh = ϕjh, ε

N+j
h = BjhB

j+1
h , ε2N+j

h = AjhB
j
h, j = 1, 2, . . . , N

(BN+1
h = B1

h) such that ∪{εN+j
h | j = 1, 2, . . . , N} = λh and, for j = 1, 2, . . . , N ,

the diameter of the curvilinear rectangle AjhA
j+1
h Bj+1

h Bjh is less than 12bcKhp.

Finally, there exists a homeomorphism Sh of Fh onto Gh with the properties that

Sh(x) = Rh(x) whenever x ∈ λh, Sh(x) = x whenever x ∈ ωh (and consequently,

Sh(ε
j
h) = ϕjh, j = 1, 2, . . . , 3N).

By an N -fold application of Schönfliess theorem (applied to the curvilinear

rectangles AjhA
j+1
h Bj+1

h Bjh, j = 1, 2, . . . , N , separately), we may extend Sh to a

homeomorphism of cl (Fh\Ωh) onto cl (Gh\Ωh). Further, by letting Sh(x) = x

for all x ∈ Ωh, Sh is extended to a homeomorphism (denoted also by Sh) of Fh
onto Gh. The estimates on the diameter of the curvilinear rectangles imply that

|Sh(x)− x| ≤ 24bcKhp for all x ∈ Fh.

It is easy to check that the conditions of applying the method of fundamen-

tal domains described in Step 4 are satisfied. Starting with Fh as fundamen-

tal domain, the homeomorphism Sh : Fh → Gh can be extended to a homeomor-

phism Kh : cl (B)→ cl (Ch) such that Kh(Φ(h, x)) = ϕ(h,Kh(x)) and |Kh(x)−x| ≤
const ·hp for all x ∈ cl (B). This concludes Step 6 as well as the proof of the The-

orem.

Remark 1.3. Though condition p ≥ 2 was made use of only in Step 6, the

proof of the Theorem breaks down badly in the case p = 1. The main difficulty

is that the arcs β1,h and β2,h are only Hölder continuous (like the conjugacy in

the classical Hartman-Grobman lemma [15, Thm. 5.14]) and so the construc-

tion of the simple closed curve µh requires delicate considerations. This is the

first point where condition p ≥ 2 was exploited. (As a matter of fact, there ex-

ists a C1 conjugacy — this is a planar case improvement [13] of the classical

Hartman-Grobman lemma — but this does not imply automatically the validity

of the C1 version of Lemma 1.1. Alternatively, the construction of µh might be

possibly furnished within the framework [19] of Conley’s index theory for dis-

crete dynamical systems. Neither this approach seems to be straightforward.)

The second point where condition p ≥ 2 was exploited is the construction of

graphs Fh and Gh. (This made the application of the classical Schönfliess ex-

tension theorem possible. However, no matter whether p ≥ 2 or p = 1, the whole

Schönfliess argument could be replaced by an affirmative answer to the follow-

ing Conjecture: Given the simple closed planar curves γ1, γ2 with re-

spective interiors Ω1, Ω2 and a homeomorphism H of γ1 onto γ2, there

exists an extended homeomorphism H̃ of γ1 ∪ Ω1 onto γ2 ∪ Ω2 with the

property that max{|H̃(x) − x|
∣∣ x ∈ γ1 ∪ Ω1} = max{|H(x)− x|

∣∣ x ∈ γ1}. The
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above conjecture relates to a conjecture in [11] whose special cases were solved in

[5] and [20]).

Remark 1.4. It is known that hyperbolic periodic orbits of autonomous ordi-

nary differential equations persist under discretization. More precisely, hyperbolic

periodic orbits go over into nearby hyperbolic invariant curves of the discretized

system [3], [9]. Since rotation numbers on these hyperbolic invariant curves may

depend on the stepsize of the discretization, no conjugacy results can be expected.

Instead of, we pose the following conjecture (see Remark 2.4 as well where also

the meaning of the expression “for most h” will be specified).

Conjecture. With (iii) replaced by condition

(iii)’ there are finitely many periodic orbits in D, all hyperbolic; alpha- and omega-

limit sets of trajectories in D are equilibria or periodic orbits,

let N , p, D, f , Φ, ϕ,M be as in the Theorem. Then there is a positive constant K

and, for most h sufficiently small, there exist a homeomorphism Hh : D→Hh(D)

and a continuous-time local dynamical system Φ̃h (defined on N ) with the proper-

ties that ϕ(h, x) = Φ̃h(h, x) and |Hh(x)− x| ≤ Khp whenever x ∈ D and, last but

not least, preserving time-orientation, the homeomorphism Hh maps trajectory

segments of Φ in D onto trajectory segments of Φ̃h in Hh(D).

2. Some General Remarks. The Real Problems to Solve

Let f : Rn → Rn be a Cp+1 function and consider the differential equation

ẋ = f(x). The induced dynamical system and its time-T -map are denoted by Φ

and Φ(T, ·), respectively. The h-discretized system of order p is defined as a Cp+1

mapping ϕ : R+ ×Rn → Rn satisfying, with some positive constants K and h0

(independent of h and x),

(11) |Φ(h, x)− ϕ(h, x)| ≤ Khp+1 for all h ∈ (0, h0], x ∈ Rn.

As in Step 2 of the proof of the Theorem, it follows easily that, for all h ∈ (0, h0],

(12) ϕ(h, ·) is a Cp+1 diffeomorphism of Rn onto Rn,

(13) |Φ(j)
x (h, x)− ϕ(j)

x (h, x)| ≤ Khp+1−j whenever j = 0, 1, . . . , p+ 1 and x ∈ Rn

and, with ϕ(k, h, x) defined by the recursion ϕ(0, h, x) = x, ϕ(k + 1, h, x) =

ϕ(h, ϕ(k, h, x)), x ∈ N,

(14) |Φ(1, x)− ϕ(N, 1/N, x)| ≤ KN−p whenever 1/N < h0 and x ∈ Rn

(— the constantsK, h0 etc. are not necessarily the same at different appearances).
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Proposition 2.1. There holds also

(15) |Φ′x(1, x)− ϕ
′
x(N, 1/N, x)| ≤ KN

−(p−1) whenever 1/N < h0 and x ∈ Rn.

Proof. For brevity, we write F (x) = Φ(1/N, x), G(x) = ϕ(1/N, x). Then

Φ(1, x) = FN(x), ϕ(N, 1/N, x) = GN (x) and, in virtue of the simple inequalities

|F ′(x)| ≤ 1 + a/N, |G′(x)| ≤ 1 + a/N,

|F ′(F k(x))−G′(Gk(x))| ≤ |F ′(F k(x))−G′(F k(x))| + |G′(F k(x))−G′(Gk(x))|

≤ KN−p + b|F k(x) −Gk(x)| ≤ cN−p, k = 0, 1, . . . , N, x ∈ Rn,

(where a, b, c are constants independent of N), we obtain via some elementary

“product formulas [7]” that

|Φ′x(1, x)− ϕ
′
x(N, 1/N, x)| = |(F

N )′ − (GN )′|

= |F ′(FN−1) · F ′(FN−2) · . . . · F ′ −G′(GN−1) ·G′(GN−2) · . . . ·G′|

≤
N−1∑
k=0

|F ′(FN−1) · . . . · F ′(F k+1) · [F ′(F k)−G′(Gk)] ·G′(Gk−1) · . . . ·G′|

≤ N(1 + a/N)N−1cN−p

≤ exp(a) · cN−(p−1) whenever 1/N < h0 and x ∈ Rn.

�

Remark 2.2. As a joint generalization of (14) and (15), an inductive ap-

plication of the arguments we used in proving Proposition 2.1 yields that, for

j = 0, 1, . . . , p, there holds

(16) |Φ(j)
x (1, x)− ϕ(j)

x (N, 1/N, x)| ≤ KN−(p−j) whenever 1/N < h0, x ∈ Rn.

It is worth to note that (16) is conform to the Hadamard-Landau interpolation

inequality (see e.g. [12, Thm. 2.6]) valid for u ∈ Cp(Rn,Rn):

(17) |u(j)|p ≤ const (j, p) · |u|p−j · |u(p)|j , j = 0, 1, . . . , p .

Conformity means that, with u = Φ(1, ·)− ϕ(N, 1/N, ·), inequality (17) implies

that (16) is equivalent to its special cases j = 0 and j = p. For Runge-Kutta or

l-derivative one-step methods of order p, (16) can be slightly improved [9, Prop. 1].

Now we turn back to the qualitative properties of discretizations. Assuming

p ≥ 2, inequalities (14) and (15) imply that ϕ(N, 1/N, ·) is a small C1 perturbation

of Φ(1, ·). Encouraged by this observation, especially when treating persistence

phenomena for qualitative properties under discretizations, one is induced to apply
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perturbation theory for the limiting process ϕ(N, 1/N, ·)→ Φ(1, ·), N →∞. An

immediate result is that, for N sufficiently large, ϕ(N, 1/N, ·) and Φ(1, ·) are con-

jugate providing Φ(1, ·) is structurally stable. This is the case e.g. for Morse-Smale

gradient systems [23, Cor. 1.3].

Everything is much harder if the relationship between Φ(h, ·) and ϕ(h, ·) is

investigated where standard perturbation results can not be directly applied. The

difficulty is that, with h → 0+, both Φ(h, ·) and ϕ(h, ·) approach the identity, an

operator which behaves badly in perturbation theory. The fact that h−1(Φ(h, ·)−
Id) → f and h−1(ϕ(h, ·) − Id) → f is fundamental for applying [7] nonlinear

semigroup theory in numerical analysis but does not give much help in studying

the relationship between Φ(h, ·) and ϕ(h, ·). However, from the view-point of

introducing stepsize as an additional small parameter, a refinement of classical

qualitative theory might help. The proof of the Theorem is nothing else but such

an analysis of the proofs in [6], [24]. Reconsideration of some hard proofs (e.g. in

[14], [22], [25]) would also be desirable.

The previous two paragraphs indicate that a natural way for comparing the

qualitative properties of Φ(h, ·) and ϕ(h, ·) is to subdivide the problem into compar-

ing the pairs Φ(1/N, ·)←→ Φ(1, ·), Φ(1, ·)←→ ϕ(N, 1/N, ·) and ϕ(N, 1/N, ·)←→
ϕ(1/N, ·), respectively — for simplicity, we assumed that h = 1/N for some posi-

tive integer N . Roughly speaking, the three steps are “takingNth power”, “apply-

ing classical perturbation results” and “taking Nth root”. (We feel the last step is

the hardest. In general, contrary to the situation considered in [12], the conjugacy

found for time T = 1 (i.e. the conjugacy between Φ(1, ·) and ϕ(N, 1/N, ·)) does

not work automatically for time T = 1/N (i.e. between Φ(1/N, ·) and ϕ(1/N, ·)).
Neither time averages of conjugacies work.) This is the context the first question

of Problem 2.3 has to be understood. The second question of Problem 2.3 relates

already to Remark 2.4 as well. Of course, we do not expect one-word “yes” or “no”

answers but look for examples, necessary and/or sufficient conditions, connections

to weakenings of the concept of structural stability etc.

Problem 2.3. Is it true that the qualitative properties of ϕ(N, 1/N, ·) and

ϕ(1/N, ·) are, in some sense, the same (qualitative root problem)? Is it pos-

sible to embed ϕ(h, ·) into a continuous-time dynamical system Φ̃h such that the

qualitative properties of Φ̃h and Φ are, in some sense, the same (qualitative

embedding problem)?

Remark 2.4. The problem of embeddability of discrete dynamical systems

into continuous ones is extremely difficult. For a survey, see [27]. Besides the

line case which is trivial, only the circle case is entirely solved [17]. C2 self-

diffeomorphisms of the circle with irrational rotation numbers are conjugate to

rotations. In particular, they embed into continuous-time dynamical systems. If

the nonzero rotation number is rational, then embeddability implies all points are

periodic [17]. Thus, ϕ(h, ·) restricted to the collection of the hyperbolic invariant
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curves embeds into a continuous-time dynamical system provided that all rotation

numbers are irrational. But rotation numbers are strictly increasing continuous

functions of the stepsize [3, Thm. 4.1]. This gives an indication that the exceptional

set in the Conjecture might be countable. (Or should one take only the “nice”

irrational numbers?)

Concluding this paper, we present a simple local conjugacy result which cor-

responds to the local flow-box/rectification theorem [15, Thm. 5.8] and, in its

various aspects, is implicitely contained in several papers [4], [10], [12], [16], [21]

on discretizations and/or embeddings but was probably never stated explicitely.

The easy proof is omitted.

Proposition 2.5. Assume that the conditions listed at the beginning of this sec-

tion are all satisfied and let P be a nonequilibrium point for ẋ = f(x). Then there

is an open neighbourhood N of P in Rn with the properties as follows. There exist

positive constants h0,K and, for all h ∈ (0, h0], there exists a Cp+1 diffeomorphism

Hh : N → Hh(N ) such that Hh(Φ(h, x)) = ϕ(h,Hh(x)) and |Hh(x)− x| ≤ Khp

whenever x ∈ N , Φ(h, x) ∈ N and h ∈ (0, h0]. In particular, locally, in a neigh-

bourhood of P , ϕ(h, ·) embeds into a continuous-time local Cp+1 dynamical system

which is transversal to the codimension one affine hyperplane orthogonal to f(P )

at P .
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