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WEAK CONGRUENCE SEMIDISTRIBUTIVITY

LAWS AND THEIR CONJUGATES

G. CZÉDLI

Dedicated to the memory of Viktor Aleksandrovich Gorbunov

Abstract. Lattice Horn sentences including Geyer’s SD(n, 2) and their conjugates
C(n, 2) are considered. SD(2, 2) is the meet semidistributivity law SD∧. Both
SD(n, 2) and C(n, 2) become strictly weaker when n grows. For varieties V the
satisfaction of SD(n, 2) in {Con(A) : A ∈ V} is characterized by a Mal’cev condition.
Using this Mal’cev condition it is shown that C(n, 2) |=con SD(n, 2), which means
that, for every variety V , whenever C(n, 2) holds in {Con(A) : A ∈ V} then so
does SD(n, 2). In particular, C(2, 2) |=con SD(2, 2), which is a stronger statement
than SD∨ |=con SD∧, the only previously known |=con result between lattice Horn
sentences “not below congruence modularity”. Some other |=con statements are also
presented.

I. Introduction and the Main Results

This paper is primarily concerned with Mal’cev conditions and the consequence

relation |=con between lattice Horn sentences in congruence (quasi)varieties.

Given a variety V of algebras, the class of congruence lattices of members of V
will be denoted by

Con(V) = {Con(A) : A ∈ V}.

By a (universal lattice) Horn sentence we mean a first order sentence

(1) (∀x0, . . . , xt−1)
(
(p1 = q1 & . . . & pk = qk) =⇒ p = q

)
where p1, . . . , pk, q1, . . . , qk, p and q are lattice terms of the variables x0, . . . , xt−1.

Notice that using “≤” instead of “=” in (1) would give the same notion modulo

lattice theory. Lattice identities are special Horn sentences with k = 0 (or with pi =

x0 and qi = x0 for all i). For convenience, lattice operations will be denoted by +
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(join) and · (meet);
∧

and & will denote conjunctions. The join semidistributivity

law

SD∨ : x+ y = x+ z =⇒ x+ y = x+ yz

and the meet semidistributivity law

SD∧ : xy = xz =⇒ xy = x(y + z)

are the most known Horn sentences that are not equivalent to lattice identities.

For a lattice H resp. class H of lattices and a Horn sentence λ let H |= λ denote

the fact that λ holds in H resp. in all members of H. The same symbol is used for

the standard consequence relation between Horn sentences λ and µ: λ |= µ means

that for every lattice L if L |= λ then L |= µ. If Con(V) |= λ implies Con(V ) |= µ

for every variety V then the notation

λ |=con µ

is used. The statement λ |=con µ is said to be nontrivial if λ 6|= µ. This fact, i.e.

the conjunction of λ |=con µ and λ 6|= µ, will be denoted by λ |=nt
con µ. Starting

with Nation [22], there are many results of the form λ |=nt
con µ, cf., e.g., Day [6],

[7], Day and Freese [8], Freese, Herrmann and [11], Jónsson [17], [18], Mederly

[21], and [2], with various lattice identities. (As a related deep result, Freese [10]

is also worth mentionig here.) These results are “below congruence modularity”

in the sense that modularity |=con µ. The only known λ |=nt
con µ type result not

below congruence modularity is

(2) SD∨ |=
nt
con SD∧

from Hobby and McKenzie [14, p. 112]. One of our goals is to strengthen (2)

and, by generalizing (2), to present infinitely many λ |=nt
con µ results not below

modularity.

Given a lattice identity λ, the class of varieties {V : Con(V) |= λ} is a weak

Mal’cev class by Wille [26] and Pixley [24]. In other words, (the satisfaction

of) λ (in congruence varieties) can be characterized by a weak Mal’cev condition.

In many cases, all being covered by Chapter XIII in Freese and McKenzie [12],

{V : Con(V) |= λ} is known to be a Mal’cev class. E.g., the distributivity resp.

modularity are characterized by the famous Mal’cev conditions given by Jónsson

[16] resp. Day [5].

Now let λ be a Horn sentence. Then {V : Con(V) |= λ} is known to be a weak

Mal’cev class only in certain cases described in [3]; these cases include SD∧ and

SD∨. Using commutator theory, Lipparini [20] and Kearnes and Szendrei [19]

have recently proved that {V : Con(V) |= SD∧} is a Mal’cev class. For a direct

approach (and also for an important application of the corresponding Mal’cev
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condition) cf. Willard [25], and cf. also Hobby and McKenzie [14] for the locally

finite case. Using ideas from [1], [3] and [25] we present Mal’cev conditions for

infinitely many Horn sentences. These Mal’cev conditions provide the key to our

λ |=nt
con µ type achievements.

For n ≥ 2 put n = {0, 1, . . . , n − 1} and let P2(n) denote {S : S ⊆ n and

|S| ≥ 2}. For ∅ 6= H ⊆ P2(n) we define the generalized meet semidistributivity

law SD(n,H) as follows:

αβ0 = αβ1 = . . . = αβn−1 =⇒ α
∏
I∈H

∑
i∈I

βi ≤ β0.

Equivalently, SD(n,H) is

αβ0 = αβ1 = . . . = αβn−1 =⇒ αβ0 = α
∏
I∈H

∑
i∈I

βi.

When H = {S ∈ P2(n) : |S| = 2}, SD(n,H) will be denoted by SD(n, 2). Notice

that

SD(n, 2) : αβ0 = αβ1 = . . . = αβn−1 =⇒ α
∏

0≤i<j<n

(βi + βj) ≤ β0

has been studied by Geyer [13], and SD(2, 2) is exactly SD∧.

Now with SD(n,H) we associate its conjugate Horn sentenceC(n,H) as follows.

Let α and βi,I (i ∈ I ∈ H) be the variables of C(n,H). Denoting {I ∈ H : j ∈ I}
by Hj , C(n,H) is∧
I∈H

(
(α ≤

∑
i∈I

βi,I) &
∧
i∈I

(βi,I ≤ α+
∑

j∈I\{i}

βj,I)
)

=⇒

α ≤
∑
I∈H0

β0,I + α(
∑
I∈H1

β1,I + α(
∑
I∈H2

β2,I + α(. . .+ α
∑

I∈Hn−1

βn−1,I) . . . ).

The conjugate of SD(n, 2) is denoted by C(n, 2); it is the following Horn sentence:

(0,n−1∧
i<j

(α ≤ βij + βji) &

0,n−1∧
i6=j

(βij ≤ α+ βji)
)

=⇒

α ≤
0,n−1∑
j 6=0

β0j + α(

0,n−1∑
j 6=1

β1j + α(

0,n−1∑
j 6=2

β2j + α(. . . α

0,n−1∑
j 6=n−1

βn−1,j) . . . ).

For example, C(2, 2), the conjugate of SD∧, is (clearly equivalent to):

(3) C(2, 2) : x+ y = x+ z = y + z =⇒ x+ y = x+ yz.

Our main results are as follows; the proofs will be given in the next chapter.
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Theorem 1. For every n ≥ 2 and ∅ 6= H ⊆ P2(n), {V : V is a variety and

Con(V) |= SD(n,H)} is a Mal’cev class.

A concrete Mal’cev condition will be given in Theorem 9.

Theorem 2. For every n ≥ 2 and ∅ 6= H ⊆ P2(n), C(n,H) |=con SD(n,H).

Theorem 3. For every n ≥ 2 and ∅ 6= H ⊆ P2(n), (SD(n,H) and modularity)

|=con distributivity.

To justify the notation used in Theorem 3 let us mention that the conjunction of

two Horn sentences is equivalent to a single Horn sentence modulo lattice theory.

While (SD∧ and modularity) |= distributivity, the five element nonmodular lattice

M3 witnesses that (SD(n, 2) and modularity) 6|= distributivity for n > 2. Hence

|=con in Theorem 3 is nontrivial in many cases. The same is true for Theorem 2,

as it is pointed out by the following

Corollary 4. For every n ≥ 2, C(n, 2) |=nt
con SD(n, 2).

Notice that C(2, 2) is a weaker Horn sentence than SD∨. Indeed, SD∨ |=
C(2, 2) is trivial, and C(2, 2) 6|= SD∨ is witnessed by

Figure 1.

Hence Corollary 4 for n = 2 is a stronger result than (2), and it is worth separate

formulating.

Corollary 5. C(2, 2) |=nt
con SD∧.

Now we formulate a statement on the relations among the Horn sentences

C(n,H) and SD(n,H).

Proposition 6. Let k > 2, m ≥ 2, n ≥ 2, ∅ 6= H ⊆ P2(n) and ∅ 6= K ⊆ P2(m).

Then

(a) SD(k, 2) is strictly weakening in k, i.e., SD(k − 1, 2) |= SD(k, 2) but

SD(k, 2) 6|= SD(k − 1, 2);
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(b) C(k, 2) is strictly weakening in k, i.e., C(k−1, 2) |= C(k, 2) but C(k, 2) 6|=
C(k − 1, 2);

(c) SD(2, 2) |= SD(n,H);

(d) SD(m,K) 6|= C(n,H);

(e) C(m, 2) 6|= SD(n,H) and, moreover, SD∨ 6|= SD(n,H).

Since Proposition 6 does not answer all questions, the remarks concluding the

paper will add some further information. Part (d) of Proposition 6 can be strength-

ened to

Theorem 7. For any m,n ≥ 2, ∅ 6= K ⊆ P2(m) and ∅ 6= H ⊆ P2(n) we have

SD(m,K) 6|=con C(n,H).

The Mal’cev conditions we are going to present in the following chapter are

far from being simple. However, they are useful to prove Theorems 2 and 3.

Interestingly enough, for all known λ |=nt
con µ statement {V : Con(V) |= µ} is

known to be a Mal’cev class (even if λ |=con µ was proved or can be proved

without Mal’cev conditions). The proof of Theorem 7 is also based on our Mal’cev

condition, and resorting to Theorem 7 is, at present, the only way to prove (d)

of Proposition 6. On the other hand, we could not solve the naturally arising

problem if SD(n, 2) |=con SD(n− 1, 2) is true or not.

II. Proofs and Technical Statements

Like in some previous papers, e.g. in [1] and [3], our Mal’cev conditions will

be given by certain graphs. This is not just an economic way to establish the

appropriate Mal’cev conditions, it is also a possible way to work with them. For

any lattice term p(α0, . . . , αn−1) and integer k ≥ 2 we define a graph Gk(p) asso-

ciated with p. The edges of Gk(p) will be coloured by the variables α0, . . . , αn−1,

and two distinguished vertices, the so-called left and right endpoints, will have

special roles. In figures, the endpoints will always be placed on the left-hand side

and on the right-hand side, respectively. By E(Gk(p)) we denote the edge set of

G1

G2

Figure 2.
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Gk(p). An α-coloured edge connecting the vertices x and y will often be denoted

by (x,α, y). Before defining Gk(p) we introduce two kinds of operations for graphs.

We obtain the parallel connection of graphs G1 and G2 by taking disjoint copies

of G1 and G2 and identifying their left (right, resp.) endpoints, cf. Figure 2.

By taking disjoint graphs H1, . . . ,Hk (k ≥ 2) such that Hi
∼= G1 for i odd and

Hi
∼= G2 for i even, and identifying the right endpoint of Hi and the left endpoint

of Hi+1 for i = 1, 2 . . . , k − 1 we obtain the serial connection of length k of G1

and G2. (The left endpoint of H1 and the right one of Hk are the endpoints of the

serial connection, cf. Figure 3.)

G1 G2 G1 Hk

Figure 3.

p

Figure 4.

Now, if p is a variable then, for any k ≥ 2, let Gk(p) be the graph depicted

in Figure 4, which consists of a single edge coloured by p. Let Gk(p1 + p2) resp.

Gk(p1p2) be the serial connection of length k resp. the parallel connection of graphs

Gk(p1) and Gk(p2). Now we have defined Gk(p) for lattice terms p with binary

operations. However, p is often given by means of
∑

and
∏

as well. Then we

always assume a fixed binary representation of p. Although each fixed binary

form makes the rest of the paper work and the corresponding G2(p) does not

depend too much on this form, we note that Gk(p) (k ≥ 3) heavily depends on

the binary representation chosen. E.g., G3

(
(β0 +β1)+β2

)
has eight vertices while

G3

(
β1 + (β2 + β0)

)
has only six.

For an algebra A, a lattice term p = p(α0, . . . , αn−1), congruences α̂0, . . . ,

α̂n−1 ∈ Con(A), a0, a1 ∈ A and k ≥ 2 we say that a0 and a1 can be connected

by Gk(p) in the algebra A if there is a map ϕ (referred to as the connecting

map) from the vertex set of Gk(p) into A such that a0 and a1 are the images of

the left and right endpoints, respectively, and for every edge (x,αi, y) ∈ E(Gk(p))

we have
(
ϕ(x), ϕ(y)

)
∈ α̂i. If it is necessary, we can emphasize that the colour αi

is represented by the congruence α̂i. The following statement from [3] was proved

by an easy induction.

Lemma 8. With the above notations, (a0, a1) ∈ p(α̂0, . . . , α̂n−1) iff a0 and a1

can be connected by Gk(p) in A for some k ≥ 2 iff there is a k0 ≥ 2 such that a0

and a1 can be connected by Gk(p) in A for all k ≥ k0.
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Now with any pair of (finite coloured) graphs G′ and G′′ we associate a strong

Mal’cev condition U(G′ ≤ G′′) in the following way, cf. [3]. Let α0, . . . , αn−1 be

the colours occurring on edges of G′ and G′′, and let X = {x0, x1, . . . , xt−1} and

F = {f0, f1, . . . } be the vertex sets of G′ and G′′, respectively, with x0, x1, f0, f1
being the endpoints. For 0 ≤ j ≤ t − 1 and 0 ≤ i ≤ n − 1 let αi(j) be the

smallest s such that there is an αi-coloured path in G′ connecting xj and xs.

(By convention, the empty path connecting xj with itself is αi-coloured.) Now

U(G′ ≤ G′′) is defined to be the following (strong Mal’cev) condition:

“There exist t-ary terms f(x0, . . . , xt−1) (f ∈ F ) which satisfy (1) the

endpoint identities f0(x0, . . . , xt−1) = x0 and f1(x0, . . . , xt−1) = x1,

and (2) for every edge (f, αi, g) ∈ E(G′′) the corresponding identity

f(xαi(0), xαi(1), . . . , xαi(t−1)) = g(xαi(0), xαi(1), . . . , xαi(t−1)).”

The identity associated with the edge (f, αi, g) above will often be denoted by

I(f, αi, g).

Now let n ≥ 2 be fixed, and define lattice terms β
(k)
i = β

(k)
i (α, β0, . . . , βn−1),

0 ≤ i < n, 0 ≤ k, via induction as follows. Let β
(0)
i = βi, and let β

(j+1)
i = βi +

αβ
(j)
i+1. Here the subscript i+ 1 is understood modulo n, and the same convention

applies for subscripts of β in the sequel. Theorem 1 is an easy consequence of the

following theorem.

Theorem 9. Let n ≥ 2 and ∅ 6= H ⊆ P2(n). Then, for an arbitrary variety V,
the following three conditions are equivalent.

(i) Con(V) |= SD(n,H).

(ii) The Mal’cev condition

“there is a k ≥ 2 such that Uk := U
(
G2(α

∏
I∈H

∑
i∈I

βi) ≤ Gk(β
(k)
0 )
)
”

holds in V.
(iii) (x0, x1) ∈ β

(k)
0 (α̂, β̂0, . . . , β̂n−1) for some k where X is the vertex set of

G2 = G2(α
∏
I∈H

∑
i∈I βi), x0 and x1 are the endpoints, α̂ resp. β̂i de-

note the congruence generated by {(x, y) ∈ X2 : (x,α, y) ∈ E(G2)} resp.

{(x, y) ∈ X2 : (x, βi, y) ∈ E(G2)} in the free algebra FV(X).

Proof. (i) =⇒ (iii): Let A = FV(X). With the notation β̂
(k)
i = β

(k)
i (α̂, β̂0, . . . ,

β̂n−1), an evident induction gives β̂
(0)
i ⊆ β̂

(1)
i ⊆ β̂

(2)
i ⊆ . . . for 0 ≤ i < n. Hence

β̂
(ω)
i :=

⋃∞
k=0 β̂

(k)
i ∈ Con(A). Suppose (a, b) ∈ α̂ ∩ β̂(ω)

i . Then (a, b) ∈ α̂ ∩ β̂(k)
i for

some k, which gives (a, b) ∈ α̂ ∩ β̂(k+1)
i−1 ⊆ α̂ ∩ β̂(ω)

i−1 for all i, i.e.,

α̂ ∩ β̂(ω)
0 ⊇ α̂ ∩ β̂(ω)

1 ⊇ . . . ⊇ α̂ ∩ β̂(ω)
n−1 ⊇ α̂ ∩ β̂

(ω)
0 .
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Hence all the α̂ ∩ β̂(ω)
i are equal, and (i) gives α̂

∏
I∈H

∑
i∈I β̂

(ω)
i ≤ β̂

(ω)
0 . Using

Lemma 8 we conclude

(x0, x1) ∈ α̂
∏
I∈H

∑
i∈I

β̂i ⊆ α̂
∏
I∈H

∑
i∈I

β̂
(ω)
i ⊆ β̂

(ω)
0 .

Hence (x0, x1) ∈ β̂
(k)
0 = β

(k)
0 (α̂, β̂0, . . . , β̂n−1) for some k, i.e., (iii) holds.

(iii) =⇒ (ii): Suppose (iii). By Lemma 8, x0 and x1 can be connected by

Gt(β
(k)
0 ) in FV(X) for some t ≥ 2. Since β

(k)
0 ≤ β(k+1)

0 in all lattices, it is not hard

to see that both k and t can be enlarged, and therefore t = k can be assumed†.

Now the routine technique of deriving strong Mal’cev conditions, cf. e.g. Wille

[26], Pixley [24] and [3], yields that Uk holds in V.

(ii) =⇒ (i): Suppose k ≥ 2, Uk holds in V, A ∈ V, α̂, β̂0, . . . , β̂n−1 ∈ Con(A)

and α̂β̂0 = . . . = α̂β̂n−1. Let (a0, a1) belong to α̂
∏
I∈H

∑
i∈I β̂i; we have to show

that (a0, a1) ∈ β̂0. By Lemma 8, there is an s ≥ 2 such that a0 and a1 can be

connected by Gs(α
∏
I∈H

∑
i∈I βi) in A. Hence there are finitely many elements

cI,0 = a0, cI,1, . . . , cI,mI = a1 for each I ∈ H such that (cI,j , cI,j+1) ∈
⋃
i∈I β̂i for

0 ≤ j < mI .

Now G2(α
∏
I∈H

∑
i∈I βi) is depicted in Figure 5 where I, J . . . ∈ H, I =

{i1 < i2 < i3 < . . . } and J = {j1 < j2 < j3 < . . . }. The inner (i.e., not endpoint)

vertices of this graph are denoted by yI,1, yI,2, . . . (I ∈ H); the corresponding

variables in the Mal’cev condition Uk are called inner variables.

x0 x1

βi1

βi2

βj1 yJ,1
yJ,2

yI,1

yI,2
yI,3

yJ,3

βi3

βj2 βj3

α

Figure 5.

Now we define some subgraphs, referred to as permitted subgraphs, of

Gk(β
(k)
0 ). The only permitted subgraph of height k is Gk(β

(k)
0 ) itself. By defi-

nition, Gk(β
(k)
0 ) is a serial connection of length k of Gk(αβ

(k−1)
1 ) and the single

edge graph Gk(β0); the copies of Gk(αβ
(k−1)
1 ) in the serial connection are the per-

mitted subgraphs of height k − 1. Each copy of Gk(β
(k−1)
1 ), i.e. each permitted

†Essentially by the same reason, Uk |= Uk+1, i.e., “(∃k)(Uk)” is a Mal’cev condition, indeed.
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subgraph of height k − 1 without its α-edge connecting its endpoints, is a serial

connection of length k of Gk(β1) and Gk(αβ
(k−2)
2 ); the copies of Gk(αβ

(k−2)
2 ) are

the permitted subgraphs of height k − 2. And so on, for 0 ≤ j < k, the permit-

ted subgraphs of height j are isomorphic to Gk(αβ
(j)
k−j), and each of them is a

subgraph of a permitted subgraph of height j + 1. (Of course, according to our

general agreement, the subscript k − j is understood modulo n.) In particular,

the permitted subgraphs of height 0 are isomorphic to Gk(αβ
(0)
k ) = G2(αβk). For

k = 4 the situation is outlined in Figure 6. The expression “permitted subgraph”

will mean a permitted subgraph of Gk(β
(k)
0 ) of height j for some 0 ≤ j ≤ k.

G4(β
(2)
2 ) G4(β

(2)
2 ) G4(β

(2)
2 ) G4(β

(2)
2 )

β0 β1 β1 β0 β1 β1

G4(β
(3)
1 )

height = 3 height = 2

α α

G4(β
(4)
0 ) :

where G4(β
(2)
2 ):

β2 β3 β4 β3 β4 β2 β3 β4 β3 β4

G4(β
(3)
1 )

height = 1 height = 0

α α

α

α α α α

Figure 6.

The term symbols in the strong Mal’cev condition Uk are vertices inGk(β
(k)
0 ), so

they are endpoints of permitted subgraphs; this fact will be utilized in the sequel.

Let m = 2 +
∑
I∈H(|I| − 1), the number of vertices in G2(α

∏
I∈H

∑
i∈I βi).
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Claim 10. Let f and g be the endpoints of a permitted subgraph and let

~u = (a0, a1, d2, . . . , dm−1) ∈ {a0} × {a1} ×A
m−2

be arbitrary. Then f(~u) α̂ g(~u).

Since (f, α, g) is an edge of the permitted subgraph in question, using the iden-

tity I(f, α, g) associated with this edge we obtain

f(~u) α̂ f(a0, a0, d2, . . . , dm−1) = g(a0, a0, d2, . . . , dm−1) α̂ g(~u),

proving Claim 10.

Claim 11. Let f and g be the endpoints of a permitted subgraph. If there exists

a ~u ∈ {a0}×{a1}×{a0, a1}m−2 with f(~u) α̂β̂0 . . . β̂n−1 g(~u) then f(~v) α̂β̂0 . . . β̂n−1

g(~v) holds for all ~v ∈ {a0} × {a1} × {a0, a1}m−2.

It suffices to show that if 2 ≤ i < m and the i-th component of ~u = (a0, a1, u2,

. . . , um−1) is ui = a0 then f(~v) α̂β̂0 . . . β̂n−1 g(~v) holds for ~v = (a0, a1, u2, . . . ,

ui−1, a1, ui+1, . . . , um−1). Fix an I ∈ H and consider the m-tuples ~w(j) = (a0,

a1, u2, . . . , ui−1, cI,j , ui+1, . . . , um−1), j = 0, 1, . . . ,mI . Then ~w(0) = ~u and

~w(mI ) = ~v, so it suffices to show via induction that for all j ≤ mI

(4) f(~w(j)) α̂β̂0 . . . β̂n−1 g(~w
(j)).

When j = 0, (4) states what we have assumed. Now suppose (4) for some j < mI .

Since (cI,j , cI,j+1) ∈
⋃
`∈I β̂`, there is an ` ∈ I with (cI,j , cI,j+1) ∈ β̂`, and we have

f(~w(j)) β̂` f(~w(j+1)) and g(~w(j)) β̂` g(~w
(j+1)). Using (4) for j and transitivity

we infer f(~w(j+1)) β̂` g(~w
(j+1)). By Claim 10, f(~w(j+1)) α̂ g(~w(j+1)). Since

α̂β̂0 = . . . = α̂β̂m−1, we conclude (4) for j + 1. We have shown that a0 can be

changed to a1 at the ith component; the transition from a1 to a0 follows similarly.

This proves Claim 11.

Claim 12. Let f and g be the endpoints of a permitted subgraph S. Then for

all ~u ∈ {a0} × {a1} × {a0, a1}m−2 we have f(~u) α̂β̂0 . . . β̂n−1 g(~u).

We prove this claim via induction on the height of S. Suppose S is of height 0,

i.e., S = Gk(αβk). We define ~u = (u0, . . . , um−1) ∈ {a0} × {a1} × {a0, a1}m−2 as

follows. Let u0 = a0, and for all edge (x0, βk, yI,1) ∈ E
(
G2(α

∏
I∈H

∑
i∈I βi)

)
, cf.

Figure 5, let the component of ~u corresponding to yI,1 be a0. Let the rest of the

components be defined as a1. Since 2 ≤ |I| for all I ∈ H, for each βk-coloured edge

of G2(α
∏
I∈H

∑
i∈I βi) the components of ~u corresponding to the endpoints of this

edge are equal. Hence the identity I(f, βk, g) applies and we obtain f(~u) = g(~u).

This gives f(~u) α̂β̂0 . . . β̂n−1 g(~u) for one ~u, whence it holds for all ~u in virtue of

Claim 11.
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S′ S′ S′
βj βj βj

f = h0 h1 h2 h3 h4 h5 h6 g = hk

S :

Figure 7.

Now let S be of height k− j, 0 ≤ j < k. Then S is a serial connection of length

k of graphs Gk(βj) and S′ = Gk(αβ
(k−j−1)
j+1 ). Let h0 = f , h1, . . . , hk = g be the

endpoints of copies of Gk(βj) and S′ in this serial connection, cf. Figure 7.

As previously, we can choose a ~u ∈ {a0}×{a1}×{a0, a1}m−2 such that, applying

the identity associated with (ht, βj , ht+1) ∈ E(S), we obtain ht(~u) = ht+1(~u) for

t even, 0 ≤ t < k. Since each copy of S′ in Figure (7) is a permitted subgraph

of height k− j − 1, the induction hypothesis yields ht(~u) α̂β̂0 . . . β̂m−1 ht+1(~u) for

0 < t < k, t odd. By transitivity,
(
f(~u), g(~u)

)
=
(
h0(~u), hk(~u)

)
∈ α̂β̂0 . . . β̂n−1.

This holds for one carefully chosen ~u, whence for all ~u ∈ {a0}×{a1}×{a0, a1}m−2

in virtue of Claim 11. Claim 12 has been shown.

Now let us apply Claim 12 for the whole graph Gk(β̂
(k)
0 ) with endpoints f0

and f1; we obtain (a0, a1) =
(
f0(~u), f1(~u)

)
∈ α̂β̂0 . . . β̂m−1 ⊆ β̂0 for arbitrary

~u ∈ {a0} × {a1} × {a0, a1}m−2. This proves (ii) =⇒ (i) and Theorem 9. �

Proof of Theorem 2. Let V be a variety with Con(V) |= C(n,H), and let us

consider the graph G2(α
∏
I∈H

∑
i∈I βi), cf. Figure 5. The vertex set of this graph

is denoted by X. For i ∈ I ∈ H, the path x0, yI,1, yI,2, . . . , x1 contains a unique

βi-coloured edge; let β̂i,I be the smallest congruence of the free algebra FV(X)

that collapses the endpoints of this edge. The congruence generated by (x0, x1)

is denoted by α̂. Clearly, α̂ and the β̂i,I (i ∈ I, I ∈ H) satisfy the premise of

C(n,H). Since C(n,H) holds in Con(FV (X)),

(5) (x0, x1) ∈ α̂ ≤ β̂0 + α̂(β̂1 + α̂(β̂2 + . . .+ α̂β̂n−1) . . . )

where β̂i :=
∑
I∈Hi

β̂i,I (0 ≤ i < n, Hi = {I ∈ H : i ∈ I}). Notice that the right-

hand side of (5) is just β
(n−1)
0 (α̂, β̂0, . . . , β̂n−1), and α̂, β̂0, . . . , β̂n−1 are exactly

the congruences occurring in (iii) of Theorem 9. Hence Con(V) |= SD(n,H) by

Theorem 9. The proof is complete. �

Proof of Theorem 3. Suppose, to obtain a contradiction, that V is a congruence

modular but not congruence distributive variety such that Con(V) |= SD(n,H).

Let k := 1 +
∑
I∈H |I − 1| = |X| − 1 where X is the vertex set of G2 :=

G2(α
∏
I∈H

∑
i∈I βi), cf. Figure 5. Since |I| ≥ 2 for I ∈ H, k ≥ 2. If k = 2 then

SD(n,H) is equivalent to SD∧ modulo lattice theory, and the theorem follows

from (SD∧ and modularity) |= distributivity. Thus we can assume that k ≥ 3.
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Now, recalling Huhn’s lattice identity

dist k : x

k∑
i=0

yi =
k∑
j=0

(
x

0, k∑
i6=j

yi
)
,

it is known that distk |=con distributivity, cf. Nation [22]. Therefore Con(V) 6|=
distk, so we can take an algebra A ∈ V with Con(A) 6|= distk. We conclude from

Huhn [15, Thm. 1.1(C)] that there is a prime field K such that L(PGk(K)), the

subspace lattice of the k-dimensional projective geometry over K, is a sublattice

of Con(A). Let M be the vector space over K freely generated by X. Then

L(PGk(K)) is isomorphic to L(M), the subspace lattice of M , so we conclude

that SD(n,H) holds in L(M).

Now the desired contradiction proving Theorem 3 is supplied by the following

statement.

Claim 13. SD(n,H) fails in the subspace lattice L(M) defined above.

Indeed, for 0 ≤ i < n, let β̂i ∈ L(M) be the subspace spanned by {u − v :

(u, βi, v) ∈ E(G2)}, and let α̂ := K(x1 − x0), the (cyclic) subspace spanned by

{u− v : (u, α, v) ∈ E(G2)} = {x0 − x1}. Since for each edge (u, βi, v) either u or

v is an endpoint of no other βi-coloured edge, and {u, v} 6= {x0, x1}, it is easy to

conclude that x1 − x0 /∈ β̂i. Hence α̂β̂0 = . . . = α̂β̂n−1 = 0. By the construction,

x1 − x0 ∈ α̂
∏
I∈H

∑
i∈I β̂i but x1 − x0 /∈ β̂0. So SD(n,H) fails in L(M). This

proves Claim 13 and Theorem 3. �

Proof of Proposition 6. (a) SD(k − 1, 2) |= SD(k, 2) is evident. It is easy to

see that SD(k, 2) holds for any k + 1 elements in a lattice that do not form an

antichain. Let Mk denote the k + 2 element lattice with a k element antichain,

then SD(k, 2) holds but SD(k−1, 2) fails in Mk. Hence SD(k, 2) 6|= SD(k−1, 2).

(b) C(k − 1, 2) |= C(k, 2) is easy, so we do not detail it. For t > 1 let Lt be the

lattice depicted in Figure 8.

0

a

1

c1 c2

b2b1

ct

bt

Figure 8.
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The substitution α = bk, βij = bi+1 (i 6= j, 0 ≤ i < k− 1, 0 ≤ j < k− 1) shows

that C(k − 1, 2) fails in Lk. Now we show that C(k, 2) holds in Lk. Suppose the

contrary and fix α, βij ∈ Lk (i < k, j < k, i 6= j) satisfying the premise of C(k, 2)

such that, with the notation βi :=
∑
j 6=i βij ,

(6) α 6≤ β0 + α(β1 + α(β2 + . . .+ αβk−1) . . . ).

Then α 6≤ βij, for otherwise α ≤ βi would contradict (6). Hence βij 6= 0, for

otherwise α ≤ βij + βji = βji, which we have already excluded.

Case 1: α = 1. Then βij = a would lead to 1 = α = a+ βji =⇒ βji = 1 ≥ α,

a contradiction. Hence {βij : i 6= j} ⊆ {b1, . . . , bk, c1, . . . , ck}. For a given i,

the βij must belong to the same {bϕ(i), cϕ(i)}, for otherwise βi = 1 ≥ α. Since

βij + βji ≥ α = 1, ϕ : {0, . . . , k − 1} → {1, . . . , k} is injective, and therefore

surjective. Hence the right-hand side of (6) is
∑
i6=j βij ≥ b1 + . . . + bk = 1, a

contradiction.

Case 2: α is a coatom, say α = c1. If we had βij ∈ {a, b1} for some pair (i, j),

i 6= j, then α 6≤ βji ≤ α+βij = α and α ≤ βij+βji would yield {βij, βji} = {a, b1},
say (βij , βji) = (a, b1), and βi ≥ a and βj ≥ b1 would easily contradict (6). Hence

{βij : i 6= j} ⊆ {b2, . . . , bk, c2, . . . , ck}, whence the previous ϕ cannot be injective,

a contradiction.

Case 3: α = a. Then {βij : i 6= j} ⊆ {b1, . . . , bk}, ϕ is a bijection, and

α+ βij = α+ bϕ(i) = cϕ(i) 6≥ bϕ(j) = βji is a contradiction.

Case 4: α is another atom, say α = b1. Then {βij : i 6= j} ⊆ {a, b2, . . . , bk,
c2, . . . , ck}. If βij 6= a for all i 6= j then ϕ cannot be a bijection. Hence βij = a

for some i 6= j, and b1 = α ≤ βij + βji = a+ βji implies α ≤ βji, a contradiction.

We have seen that Lk |= C(k, 2). Hence C(k, 2) 6|= C(k − 1, 2), proving (b).

(c) To show SD(2, 2) |= SD(n,H), firstly we assume that |H| = 1, sayH = {{0,

1, . . . , t− 1}}. Then the statement follows via induction; indeed, after deriving

α(β1 + . . .+βt−1) = αβ1 = αβ0 from the induction hypothesis, we can apply SD∧
for the elements α, β0 and β1 + . . .+βt−1. From the |H| = 1 case the general case

is evident.

(d) is a consequence of Theorem 7.

In order to show (e), let L be the set of convex polytopes in the (n − 1)-

dimensional Euclidean space En−1. By a polytope we mean the convex hull of

finitely many points. Since polytopes can also be defined as bounded intersections

of finitely many half spaces, cf., e.g., Ziegler [27], L is a lattice with intersection

as meet and convex hull of union as join. First we show that L |= SD∨. Let

P,Q1, Q2 ∈ L such that P+Q1 = P+Q2. Let R = P+Q1+Q2 = P+Q1 = P+Q2,

and denote by V the vertex set of R. Then conv(V ), the convex hull of V , is R

but conv(R \ {v}) 6= R for all v ∈ V . We claim that

(7) V ⊆ P ∪ (Q1 ∩Q2).
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Suppose a ∈ V \
(
P ∪ (Q1 ∩ Q2)

)
=
(
V \ (P ∪ Q1)

)
∪
(
V \ (P ∪ Q2)

)
, then

P+Qi ⊆ conv(R\{a}) ⊂ R = P+Qi for i = 1 or i = 2, a contradiction. This shows

(7). Armed with (7) we conclude P +Q1 = R = conv(V ) ⊆ conv
(
P ∪(Q1∩Q2)

)
=

conv(P ) + conv(Q1 ∩ Q2) = P + Q1Q2. Hence L |= SD∨; therefore L |= C(2, 2)

and, by (b), L |= C(m, 2).

Now let b0, b1, . . . , bn−1 ∈ En−1 be points in general position, i.e., they do not

belong to a hyperplane. Then S = conv({b0, . . . , bn−1}) is a symplex. For i =

0, . . . , n− 1 let βi := conv({b0, . . . , bi−1, bi+1, . . . , bn−1}), a facet of the symplex.

Choose an inner point a of the symplex, i.e., a ∈ S \ {β0 ∪ β1 ∪ . . . ∪ βn−1}. Set

α = {a}. Since αβi = {a} ∩ βi = ∅, the polytopes α, β0, . . . , βn−1 easily witness

that SD(n,H) fails in L. This yields (e). Proposition 6 is proved. �

Proof of Theorem 7. Let V be the variety of (meet) semilattices. By Pa-

pert [23] Con(V) |= SD(2, 2), so Con(V) |= SD(m,K) by Proposition 6(c).

We intend to show that Con(V) 6|= C(n,H); suppose the contrary. The graph

G2(α
∏
I∈H

∑
i∈I βi) will be denoted by G2. With the notations of the proof of

Theorem 2 we have

(8) (x0, x1) ∈ β
(n−1)
0 (α̂, β̂0, . . . , β̂n−1).

For semilattice terms g0 and g1 over the vertex set X = {x0, x1, . . . } of G2 and for

a permitted subgraph S (cf. the proof of Theorem 9) of Gk(β
(n−1)
0 ) with vertex

set FS and endpoints f0S and f1S we define the following condition:

“there exist semilattice terms h(x0, x1, . . . ), h ∈ FS , which satisfy the

identities f0S(x0, x1, . . . ) = g0(x0, x1, . . . ), f1S(x0, x1, . . . ) = g1(x0, x1, . . . )

and for each (h1, γ, h2) ∈ E(S) the identity I(h1, γ, h2).”

This condition will be denoted by U∗(G2 ≤ S; f0S = g0, f1S = g1). For example,

U∗(G2 ≤ S; f0S = x0, f1S = x1) is the same as ”U(G2 ≤ S) holds in V”.

From (8) we obtain (x1, x0) ∈ β
(n−1)
0 (α̂, β̂0, . . . , β̂n−1), whence, similarly to the

proof of (iii) =⇒ (ii) in Theorem 9, we conclude that there is a k ≥ 2 such that

(9) U∗(G2 ≤ Gk(β
(n−1)
0 ); f0S = x1, f1S = x0) holds.

(Interchanging x0 and x1 serves technical purposes.) We will use the fact that each

semilattice term is, modulo semilattice theory, the meet of all variables occurring

in it.

Multiplying (i.e., meeting) all terms by x1, we infer from (9) that

(10) U∗(G2 ≤ Gk(β
(n−1)
0 ); f0 = x1, f1 = x0x1) holds.

We intend to show that for all permitted subgraphs S of Gk(β
(n−1)
0 )

(11) U∗(G2 ≤ S; f0S = x1, f1S = x0x1) holds.
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This will be done via a downward induction on the height of S. If S is of height

n− 1 then (11) coincides with (10).

Now suppose that S is of height n − 1 − t > 0, i.e., S = Gk(β
(n−1−t)
t ), and

U∗(G2 ≤ S; f0S = x1, f1S = x0x1) holds. We want to show the same for T =

Gk(β
(n−2−t)
t+1 ). Let g0 = f0S , g1, g2, . . . , gk = f1S be the endpoints needed to

form S from Gk(βt) and T via serial connection, cf. Figure 9, and suppose that all

T T T
βtf0S f1Sβt βt

g0 = x1
g1 g2 g3 g4 g5 g6 gk = x0x1

S :

Figure 9.

terms are chosen in V such that they witness U∗(G2 ≤ S; f0S = x1, f1S = x0). Let

At := {u ∈ X : (u, βt, x1) ∈ E(G2)}. Our argument uses the general convention

that the colours on the arcs of G2 (cf. Figure 5) occur from left to right order. This

means that if (x0, βi1 , yI,1), (yI,1, βi2 , yI,2), (yI,2, βi3 , yI,3), . . . , (yI,`−1, βi` , x1) are

adjacent consecutive edges from the left to the right then i1 < i2 < i3 . . . < i`. Let

β̆i denote the smallest equivalence on X that includes {(u, v) ∈ X2 : (u, βi, v) ∈
E(G2)}. It follows from the above-mentioned convention that

(12) for u ∈ At and j > t, |[u]β̆j | = 1,

i.e., the β̆j-class of u is a singleton.

Suppose first that one of the gi (0 < i < k) contains some u ∈ At. Let d be

the smallest integer such that gd contains u, and let m be the largest integer such

that gd, gd+1, . . . , gm all contain u. Since any two vertices of T are connected by

a path containing the colours βt+1, βt+2, . . . , βn−1 only, we conclude from (12)

that if one of the endpoints of (a copy of) T contains u then all vertices (inner and

endpoint vertices) of T contain u. Therefore d is odd and m is even, for otherwise

gd−1 and gd or gm and gm+1 would be the endpoints of a copy of T .

Now we can change u to x1 in all terms (vertices) between gd and gm (including

gd, gm, and the inner vertices of the corresponding copies of T ). We claim that the

new terms obtained this way still witness that U∗(G2 ≤ S; f0S = x1, f1S = x0x1)

holds. Since (12) and |[u]ᾰ| = 1, u “was not used” within T , whence for every

copy of T between gd and gm the identities associated with the edges of T hold.

Since (u, x1) ∈ β̆t, the identities I(gi, βt, gi+1) remain valid for d < i < m, i even,

and also for i = d− 1 and i = m. Hence the new terms do the job.

We have seen how to reduce the occurrences of elements of At. After doing this

reduction in a finite number of steps we can get rid of all elements of At. Hence

we can assume that

(13) no u ∈ At occurs in our terms.
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From now on let m be the smallest number such that x0 occurs in gm. We claim

that

(14) gj = x1 for 0 ≤ j < m.

This is true for g0 = f0S . If gj−1 = x1, j < m and j − 1 is even then (13) and

I(gj−1, βt, gj) yield gj = x1. If gj−1 = x1, j < m and j−1 is odd then the identity

I(gj−1, α, gj) associated with (gj−1, α, gj) ∈ E(T ) and the lack of x0 in gj give

gj = x1. This induction shows (14).

If m− 1 is even then I(gm−1, βt, gm) cannot hold, for gm−1 = x1, (x0, x1) /∈ β̆t
but x0 occurs in gm. Consequently, m − 1 is odd and (gm−1, α, gm) ∈ E(S).

Since gm−1 = x1 and x0 occurs in gm, the identity I(gm−1, α, gm) can hold only if

gm = x0 or gm = x0x1. Hence either

(15) U∗(G2 ≤ T ; f0T = x1, f1T = x0)

or

(16) U∗(G2 ≤ T ; f0T = x1, f1T = x0x1)

holds. Notice that (15) implies (16), for all terms h occurring in (15) can be

replaced by hx1. This completes the induction proving (11).

Applying (11) to the subgraphs of height 0, it follows that U∗(G2 ≤ Gk(αβn−1);

f0 = x1, f1 = x0x1) holds, which contradicts (x0, x1) /∈ β̆n−1. This proves Theo-

rem 7. �
We conclude the paper with some remarks on Proposition 6. The five element

nonmodular lattice N5 witnesses that SD∨ 6|= C(3, {{0, 1, 2}}) and so C(2, 2) 6|=
C(3, {{0, 1, 2}}). This explains why Proposition 6 does not include a “conjugate”

counterpart of (c).

We do not know if (e) holds with C(m,K) instead of C(2, 2) but the present

proof of (e) is not appropriate to decide this. Indeed, if K is the center and

B0, . . . , B4 are consecutive vertices of a (planar) regular pentagon then α =

conv({B0, B1,K}), β0 = conv({B1, B2}), β1 = conv({B0, B3, B4}) and β2 =

conv({B2, B3, B4}) witness that C(3, {{0, 1, 2}}) fails in L.

Acknowledgment. The author expresses his thanks to János Kincses for a

helpful discussion on convex geometry.

Added on June 19, 1998. As an affirmative answer to the problem raised at

the end of the first section, an anonymous referee has proved that SD(n,H) |=con

SD∧ for every n ≥ 2 and ∅ 6= H ⊆ P2(n). The proof is based on Kearnes and Szen-

drei [19], Lipparini [20], and Theorem 3. Now Theorem 1 becomes a consequence

of Proposition 6(c) and Willard [25], and the referee’s method together with [3]

gives a shorter proof of Theorem 2. However, the present approach to Theorems 1

and 2 can still be justified. Not only by its role in finding the results but also in

the proofs of Theorem 7 and (the purely lattice theoretic) Proposition 6(d).
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