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STRICT REFINEMENT FOR DIRECT SUMS AND GRAPHS

A. A. ISKANDER

Abstract. We study direct sums of structures with a one element subuniverse.
We give a characterization of direct sums reminescent to that of inner products of
groups. The strict refinement property is adapted to direct sums and to restricted
Cartesian products of graphs. If a structure has the strict refinement property (for
direct products), it has the strict refinement property for direct sums. Connected
graphs satisfy the strict refinement property for their restricted Cartesian products.

Chang, Jénsson and Tarski introduce in [6] the strict refinement property for
relational structures. Some of the ideas also appear in Fell and Tarski [9]. They
show that for algebras with the strict refinement property, such as lattices, rings
with zero annihilators and perfect groups, if an algebra A is a direct product
of directly indecomposable algebras, then not only the directly indecomposable
factors are unique up to isomorphism, but also the resulting factor congruence
set on A is unique. In [23], Sabidussi defines relations on the edges of graphs
that give a representation of certain connected graphs as Cartesian products of
finitely many Cartesian indecomposable graphs and again these Cartesian inde-
composable factors are unique up to isomorphism and the defined relation itself is
unique. Cartesian products of infinite sets of connected nontrivial graphs are not
connected. The strict refinement property is not (easily) applicable to Cartesian
decompositions of graphs. In the present paper, we study the possibility of strict
refinement for direct sums of structures and follow this study with an adaptation
of the strict refinement property to graphs.

For any set A we denote the identity or diagonal relation {(x,x) : x A} on
A by A(A), and sometimes simply by A. If a is an equivalence relation on a set
A and a [CA, a/a is the a-equivalence class of a; i.e., a/a = {x A : aax}. If
a, B are equivalence relations on a set A, then a < 3 is the relational composition
of a and B; i.e., x(a o B)y i[there is z [CA such that xaz and zfy. A set of
congruence relations {a; : i I} on an algebra A is called a direct factor set
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(DFS) on A if %! ©i I} = A and for any a; [CA (i 1) thereisa [CA
such that aaja; (i [IJ. The direct factor sets on an algebra A are thﬁlgruence
relations a; = {(x,y) CAx A: x; =Vi} where A is identified with  {A; : i I}
and conversely A; can be identified with the quotient algebra A/a;. If a; (i =1,2)
is a direct factor set, then ay, a, is called a direct factor pair. This is the case
iCd;no, =Aand a;c0; = az ea;p = A X A, A decomposition operation
on an algebra (or a structure in general) is a homomorphism f: Ax A —, A
satisfying the equations f(x,x) = x and f(f(X,y),z) = f(x,2) = f(x,f(y,2)). If
v A, f,(x) = f(x,v) and fY(y) = f(v,y), then kerf,, ker fV is a direct factor
pair. Conversely, if A = B x C, then f((b,c), (b5cH) = (b,cH is a mposition
operation. If aj(i [CI) are equivalence relations on a set A, then Ig{agf: i I} is
the smallest equivalence relation on A that contains a; (i [CI). We shall present
a similar concept for direct sums of algebras, or structures in general, with a one
element subuniverse.

Unless otherwise stated we shall use the terminology of McKenzie, McNulty and
Taylor [20]. For the general theory of universal algebras the reader may consult
Burris and Sankappanavar [5], Cohn [7], Gratzer [11], Maltsev [19] and McKenzie,
McNulty and Taylor [20]. For refinement properties of direct products of finite
structures the reader may consult Jonsson and Tarski [16]. For the general theory
of graphs the reader may consult Berge [1], Biggs [2], Bollobas [3], Bondy and
Murty [4] and Harary [13].

Definition 1. Let A; (i [CI) be algebras of a given similarity type such that
f ery i [I] there is a one element subuniverse a; of Aj. The subset of all x 1
% i such that {i 11 x; & a;} is finite is a subalgeb he Cartesian
product % ;i [I}. This subalgebra will be denoted by Ai,a) @i I}
and will be called the direct sum of (Aj,a;) (i CI).

Definition 2. Let A be an algebra with a one element subuniverse 0. A set of
congruences {a; : i [T} is called a direct sum set (DSS}—m;Of]iMO a congruence o
and a is the direct sum of a; (i CIJ and we write a = {a; : i 1} if

() a= {ai:i 13
(ii) For every x A, the set {i 11 (x,0) Fat} is finite.

(iii) For any family x; (i CI) of elements of A such that {i [I1: (x;,0) [ at}

is finite, there is x Al such that (x,x;) Cal for every i [Tl

If the congruences a; (i L) form a direct sum set modulo A(A), then a; (i D
will be called a direct sum set.

If 1 is a finite set, then a; (i [I) is a DSS iit is a DFS. If ay, a5 is a direct
factor pair modulo a, rite a = a; [Cad.

The notation a = Iw%‘: i 1} is used here similar to the parallel notation for
the case when the congruences {a; : i I} is a direct factor set modulo a (as for
instance in [20]).
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Let A be an algebra and let a; (i [CI) be congruences on A and a = %‘i :
i [I}. The epimorphism x — x/aiﬁ onto A/a; will be denoted by p;. The
resulting homomorphism of A into {A/a; : i I} will be denoted by p; i.e.,
pP(x) = (pi(x) 1 i L.

Theorem 1. Suppose A is an algebra with a one element subuniverse 0 and q;
(i I are congruences on A. Then p(A) is a direct sum of {(pi(A), pi(0)) : i CI}
i Cd; (i D) is a direct sum set modulo a = ker(p).

Pr; et aj (i 1) be a DSS modulo a = %! ;i I} = ker(p). Let
a C1{pi(A) :i [I}. ThenF = {i I a; € pi(0)} isfinite. Letx; = 0ifi CI\F
and xj/a; = a; if i CEL Thus x; (i D) satisfies F = {i 11 (xj,0) rai} is finite.
There is x [CA such that (x,x;) [ak for every i Il Thus pi(X) = pi(Xi) = aj
if i [H and pi(x) = pi(0) if i CINF. Thus p(X) = a. Lety [CA. Then
{i 1 &p) Y4} is finite. Hence {i [1l: pi(y) & pi(0)} is finite and so
p(y) CI{(pi(A), pi(0)) : i

Conversely, let p(A) =  {(pi(A),pi(0)) : i CIF. If x A, then p(x) [p(A)
and the set {i [I: pi(x) & pi(0)} is finite. Hence {i [I: (x,0) Yr_ak} is finite.
Let x; (i [CI) be elements of A satisfying {i |1_=I;I_4_‘xi,0) Y ai} is finite. Then
{i: pi(xi) 8 pi(0)} is finite. Hence there isa C_T1{(pi(A), pi(0)) : i I} such that
aj = pi(xj),i I So, there is x A such that @l: a; i.e,, pi(X) = aj = pi(Xi),
i I Thus (x,x;) o, i I Also ker(p) = {a; : i [CI}. This shows that q;
(i I is a DSS modulo ker(p). 1

Definition 3. Suppose A is an algebra and ¢; (i [I) are congruences on A.
The family ¢; (i [CI) is called a dual direct sum set (DDSS) modulo a congruence
a if

(i) i ° bj=2=;j~ ¢;, foralli,j 1)
@) & i o J CI\{i}}p) =aforalli
(iii) it O=AxA.
The motivation behind this definition will be clear from the following theorem:

Theorem 2. Let A be an algebra with a one element subuniverse 0. Then
() Ifo; (i O isadirect sum set modulo o and ¢; = {a; : j CIA{i}} for

all i Iﬁwn ¢i (i I is a dual direct sum set modulo a. Furthermore,
o = {¢; : j TIN{i}} for all i [CHand ¢;,0; is a direct factor pair
modulo a. 1

(i) If ¢; (i [ is a dual direct sum set modulo a and a; = {¢; : j CIN{i}}
for all I%D then o; (i I is a direct sum set modulo a. Furthermore,
¢i = {oj : j LIN{i}} for all i [ and ¢;,0; is a direct factor pair
modulo a.

Proof. Let a; (i [CI) be a DSS modulo a and let ¢; = %} o j CIN{i}},
i 11 We need to show that ¢; (i [I) is a DDSS modulo a. Denote by Aj
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the quotient algebra A/q; and identify A/a with I%\Ii,O/on) © i1 I} Then
ai = {(x,y) : pi(x) = pi(y)} and ¢i = {(x,y) : p;(x) = pj(y).J CINi}}. Thus
(x,y) Ldl o ¢; ithere is z [CA such that (x,z) [l and (z,y) ;. Thus
di o 0 = {(xy) 1 pr(X) = pr(y),r CIMi,J}} = &5 © di. Let (x,y) CAxA,

Then F :E{%l 1 (x,y)I%| is finite. Thus p; (X) =ps(y) for all j L Fl. Hence
(x,y) CH{; :j CE} i 1 J I3 oY) CI{$; : j Cj B i}, thereis

a finite set G [CIN{i} such that (x,y) C—I{¢; : j QA hen pr(X) = p,(y) for
[CI\G. Thus pi(x) = pi(y); i. ,y) ok and i o3 CIMi}} L1
i o J CI{i}} If (x,y) Tk n i CIN{i}}, then (x,y) C@k =  {q;j :
j CIA{i}} and (x,y) Cat; i.e., (X,y) I:II%_JE—IJ- : j I} = a. Since ¢j, a; permute,
dinai =aand ¢; Cal = A x A, (A/d;) x (A/ai) LAYa. 1
We nee@establish the statement (ii). For any X [Lllet X2 {¢; :j X}
As ¢i n ( {d; :j [IN{i}}) = a, a [+br every non-void X [T1Then

Claim 1. For any subsets S, T of I, $=lft2 fold_1

Indeed, since the relations ¢; (i 1) are mutually permutable, ¢;od; = ¢i Cqy.
The assertion follows easily.

Claim 2. If S,T [CThnd SnT = [ then $A 12 a.

Let (x,y) CEATThen there are finite subsets F CSland G [Tlsuch that
(x,y) CH-d &IWe show that B & o by induction on |F| = 1. It is true
for |[F] = 1. Let|F| > 1and (O H, (¥ W and F =V LI} By induction,
VA &= a. Let a(fd & As V5-bare permutable, there is ¢ A such that
aed b and adb] Then c(prs E)d; ie., a(d LD and alel AsV and G [{IH
are disjoint, V- (¢ L&)t a by induction. So aac. Thus adbhand adh. Hence
aab as ¢pn &= a.

Claim 3. If S, T [Llthen $AT2 (s IH—1
We need to show only the case Sn T 8 B [Tland T [S1 Let A = (S k), —1

u = (St -andv3 (TASYThenrhnp = Anv = pnv = aand $2 A Qrit2 A v
Let a($-ATE. As A, , v are permutable, there are ¢, d A such that aAcpb and
aAdvh. Hence cAd. Also, c(u [)d since cub and dvh. But (U ) n A =a. Thus

cad. But then c(p n v)b. Hence cab and so, ab. Thus $ATHx= (S B —Fhe d
reverse inclusion is obvious.

From Clai , 2, 3,0 = %} :J CIN{i}} (i D are mutually permutable.
Let (x,y) CI{a; : j CIN\{i}}. Then (x,y) Caj for every j CIN{i}. Thus there
are finite subsets F; CTW{j} suc t (x,y) CH—Rix r CIN{i}. For every
s Bi,s IEL. Thus Frn( {Fs:s [CHE,s&i}) L. Thus (x,y) Céf;
i.e?% J COj Bir Pl As ¢i for every j B i. the reverse inclusion

I% o {i}}. We need to show that

olds. Thus for € i 1) ¢; =
zai:i 1} = a. %:i CO}=ain( {o:j CO\{i}}) =aind; = a.
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As ¢j, a; are permutable and ¢; Caf = A < A, ¢;,q; are a direct factor pair
modulo G'Iﬂ x [CA. We need to show that {i [I1: (x,0) rak} is finite. Since
AxA = {;j:i I} there is a finite set F [Ilsuch that (x,0) CH—aj for
every i [INF. Thus {i [I: (x,0) Yok} CFEl Finally, suppose xj CA (i D
satisfy {i [II: (x;,0) rdj} = G is finite. We need to find x A such that
(X, x;) [Cajl for every i [T This is possible by induction on |G|. If |G| =0, then
x =0 will do. Let |G| >0and G=H LI} CIH. Then |[H| <|G|. Puty; = X;
if i & Cand y—+= 0. Then {i II: (y;,0) L ai} = H. By induction there isy A
such that (y,yi) Ca§ for every i [0 Now (y,Xxph CAx A = ¢al-+ ¢rp O
Thus there is x A such that (y,x) Cdli—and (X, Xy [k Hence (y,x) Caj for
all i CIZ{H Hence xajyaix; for all i CI i & Cand (x,%;) Caf foralli CI0 [

Remark 1. The characterization of dual direct sums in the case when 1 is
finite also works for algebras without one element subuniverses and is similar to
the case of internal direct sums in groups. In fact condition (ii) of Definition 3 can
be replaced He following condition:

(i oin {Pj:l<j<i}=aforl<i=sn.

We shall show that condition (i) implies condition (ii) of Definition 3 in the
presence of conditions (i) and (iii) of Definition 3 in the case I = {1,2,...,n}.
Assume that conditions (i), (iii) of inition 3 and condijtion (ii)~hold. We first
show by induction on n —k that ( icl=sj=k}n( i ck<j=n})=aq,
for all 1 <k < n. Since Itislis true fork =n—1, asyumg it is true for all k > m
wherem<n. Let A= {¢j:l<sj=m}andp= {p; m+1<j=n} We
need to show that An (¢m+1 ) = a. Let a,b CAand a(A n (dm+1 CH))b. As the
®m=+1, 1 are permutable, there is ¢ Al such that adpm+1cpb. Thus c(Pm+1 CA)b.
As pn (dm+1 [A) = q, cab. Hence a(pm+1 nA)b and by condition (ii") aab. Since
conditions (ii) and (ii") are identical for i = n, we shall prove that (ii% implies (ii)
by inducliia_n_lon n —i. Let condition ‘ii_pe true for all i > m for some m < n.
Lety= {¢j:1=<j<m}andd= {¢; :m <j=<n} We need to show that
bm n(y @) = a. Let a(bm n (y [))b. Then there is ¢ [CA such that aycéb.
Hence c(y Cgk)b. But (y Cdln) nd = q, so cab. Thus a(dpm ny)b. Then aab.

A DDSS is essentially an internal characterization of a direct sum.

Theorem 3. Let A be an algebra and let ¢; (i [CI) be a dual direct sum set
on A. Sll%e 0 is a one element subuniverse. Then there is an isomorphism of

Aonto {(0/9¢;,0):1i CTI}.

Proof. Let ¢; (i be a DDSS and let 0 be a one element subuniverse. By
Theorem 2, a; = i - J CIN{i}} (i D is a DSS and for every i [ ¢, O
is a direct factor pair. Thus for every x [A, there is X; Al such that 0¢;x;a;X.

As ¢i naj = A, Xj is . By Theorem 1, p(xX) = (X/a; : i [I) gives an
isomorphism of A onto %qﬁlﬁai i CI}. Also A £-AVa; < A/¢i. The mapping
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x/a; —- X; is an isomorphism of A/a; onto t@balgebra 0/¢;, i 1 Thus
X —= (xj : i ) is an isomorphism of A onto  {(0/¢;,0) : i [1}.

The following lemmas prepare for characterizations of the strict refinement
property for direct sums:

Lemma 1. Let A be an algebra with a one element subuniverse 0. Suppose Qj
(i I is a direct sum set modulo o‘imli Bi (i CIJ are congruences on A such that
foreveryi [CIJ o; [CBland B = {Bi:i CI}. Then B; (i D is a direct sum
set modulo 3.

Proof. Let x; CA (i CI) and let {i [10: (x;,0) Y B} = F be finite. Let
yi =X ifi CHandy; =0 if i CINF. Then {i [C1: (y;,0) ok} = F is finite
and so there is x [CA such that (x,y;) o [ for every i [CI1 Asy; = 0 if
i CINF and (x;,0) B if i CINF, (X,x;) B for every i IO If x A, then
{i I (x,0) LB} I (x,0) Fal} is finite. Thus the family B; (i £ is a
DSS modulo B. 1

Lemma 2. Let A be an algebra with a one el t subuniverse 0. Let q;
(i D be a direct sum set modulo a and let a = E{L}[;P i I} where Bi (i CD
are congruences on A such that a; [l for every i [CI1 Then a; = B for every
i 1]

Proof. Letk Elpfpt Yi = q; if ilgl{k} and yx = Bk. By Lemma 1, vy; (i )
is a DSS modulo  {y; : i CI} C—KB; : il% = a. Now ¢k,ﬁnd ok, yk are
direct factor pairs modulo a, where ¢ = {o; : i CIN{k}} = {yi: i CIN{k}}.
Let aykb. Then there is ¢ [CA such that adyxcaxh. Thus cykb and aykb. Hence
aykc. As ¢k nyk = d, adc and so, adgb. Thus ax = yk = Bk. 1

Lemma 3. Let A be an algebra with a one element subuniverse 0 and let q;
(i D and Bj (j 1) be direct sum sets modulo a. Then the following conditions
are equivalent:
(i) There are gongruences vij ((i,j) CIIx J) such that a; = I{:yilj () I
and B; = {y;j : i (13 for every i [Mand j CI1 1
(i) oi LB (i, 1) D]ﬁ] is a direct sum set modulo a and o; = {a; L[ :
J CI}and B = {o; [y ;i 13 for every i [and j [l
(iii) o; [B§ ((i,j) LX< J) is a direct sum set modulo a.

Proof. It is clear that (ii) (D1 (iii). We need how that (iii) [(ii) and

() ). Asaimmforalljg ai [B] I} =vi. By
Lemma 1, y; (i 1) is a DSS modul yi i I} = a;i OB} : (,j)
I xJ} =0 Bylemma?2, o =y; = {o; (B :j I}, i O The equalities
Bi = {oi [P :i I} G I are simyi It remains to s hat (i) [C_(id).
For every (i, j) = J, o; [ . i OB] - j IR vij - J I} = a;.
Hence {o; [P} : (i,j) COxJ} = aj ;i I} = a. Let x [CA. As qj
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(i D and Bj (J .I) are DSSs modulo a, the sets F = {i LI (x,0) Lai} and
G ={j CI: (x,0) [B]} are finite. Hence {(i,j) [IxJ : (x,0) La} [} CEXG
is finite. Suppose x;; CA ((i,j) I J) satisfy {(i,]j) : (xij,0) La} LB} is finite.
Fix k I Then {j CI: (x«j,0) Fak CBJ} is finite. As o [ (G CI) is a DSS
modulo ag, by Lemma 1, there is xx A that (X, Xxj) Cak Bl forall j CI1
Let G = {k I (xx,0) rak}. Asax = {ax [B:j CIW, for every k G, there
is (k) Csuch that (xk,0) Fak [Bjuy. But (Xk, Xkj) Cak B4 for all k [CTand
J [0 Hence (Xkjy,0) Fak [Bj) for every k Q. Thus G is finite and there is
x [CAlsuch that (x, xk) Cak for all k CT1 Hence (X, Xkj) Cak C(dk Bfl) = ok B3l
for all k Cdand j [CJ1 This shows that the family o; CB) ((i,j) COx J) is a
DSS modulo a. —1

Lemma 4. Let A be an algebra and let ¢; (i L) and 5 (j [.I) be dual direct
sum sets on IA_,_|If ¢i n Y5 ((i,j) CIx J) is a dual direct ],':L_Lmlset, then for every

i CO¢i= {dinyj:j CIyandforevery j CI yj = {diny;:i (1}
Proof. Let apyh. Since A x A = %‘. n W : (i,j) CIx J}, there is a finite
set F I J such that (a,b) CI{i n ; : (i,j) CE}. As ¢jny; are mutually

permutable, there [CAl such that ayc and cob, wherey = k N Yk, j) 1
F}Eﬁlandéz%n%:(i' i & k}. Thus bdyc and (b,c) C_H; ;i [
I\{k}}. Hence b =c and ¢« kN Yj o j CIF Chd. 1

The strict refinement property can be defined for direct sums. Later we shall
see that an algebra or a structure satisfies the strict refinement property for direct
sums i [it satisfies the strict refinement property (for direct products.)

Definition 4. Let A be an algebra with a one element subuniverse 0. Then
A satisfies the strict refinement property for direct sums (SRPS) if for any direct
sum sets o (i I%iand Bj G LI, there is a direct sumrsitlyij ((i,j) COx J)
such that o; = {y;j : j I} for every i [CHand B = {yij : i I3 for every
j o

For direct sums, the strict refinement property implies the refinement property.
In other words, if A lgebra with element subuniverse 0 and A satisfies
the SRPS and A % ﬁfﬂa %Lthfn there are algebras D;j;
((| j) 1 h that for every i 1] B; =—'{Dj; : j LI} an very

Jﬁ% :i [CI}. Furthermore, if A has SRPS and A £ 1{B; : i [

I} Cj : J I where all B;, i [and Cj, j CJlare directly indecomposable
algebras, then there is a DDSS ¢; (i [IJ on A and a bijective mappingg: | — J
such that 0/¢; £BY £-€|;) for every i [Tl Algebras with SRPS and with a
one element subuniverse that are direct sums of directly indecomposable algebras
have a unique DDSS ¢; (i [Il) such that the substructures 0/¢; are directly
indecomposable.

We are now ready to show that for structures with a one element subuniverse,
the strict refinement property is equivalent to SRPS.
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Theorem 4. For an algebra A with a one element subuniverse 0, the following
conditions are equivalent:

(i) A has the strict refinement property for direct sums.

(ii) A has the strict refinement property for direct sums for finite index sets |
and J.

(iii) The set of factor congruences of A forms a Boolean lattice (i.e., it is a
sublattice of the congruence lattice of A and the distributive laws hold on
this sublattice).

(iv) If A=a Cat=p [B¥for a,aB, B congruences on A, then (a [R) Cal
=B.

(v) fvgv = gy Ty for all decomposition operations f, g, and all v CAL
(vi) There is v A such that f,g, = gy, for all decomposition operations

f, 0.
(vii) A has the strict refinement property for direct sums for index sets 1 and
J such that |I]| =|J| = 2.
(viii) For any dual direct sum sets ¢; (i ) and W~ CID, ¢i n W5 (G, j) 3
I < J) is a dual direct sum set, and ¢; = i nYj o j G for every
i [ and Y; = i nj 1 i CI3 for every j 1

(ix) For any dual direct sum sets ¢1, ¢ and Y1, Yz, d1 n W1, ¢1 N W2, P2 NP1,
¢2 n Yo is a dual direct sum set.

Proof. Conditions (i), (ii), (iii), (iv), (v), (vi) are the formulation for direct
sums of the corresponding conditions for direct products in ([20, Theorem 5.17,
p. 303]). Since for any finite set I, a; (i [CI) is a DFS i1t is a DSS, Lemma 2 of
([20, p. 302]) holds for direct sums as its proof uses only finite direct factor sets.
The only place that needs a change in the proof of ([20, rem 5.17, p. 303])
is that[ﬂer obvious notational changes, following o; = {o; [B] : j I} and
Bi = {oi [ [:EIE} by Lemma 3, the fan]uiql- B ((i,J) 1% J) forms a
DSSand a; = {o; B :j CI}y and B = {o; [P : i CIF. It is clear that
condition (ii) implies condition (vii). We can show that condition (vii) implies
condition (iii) in the same way as (ii) implies (iii) in ([20, Theorem 5.17, p. 303]).
That conditions (viii) and (i) are equivalent and condition (vii) is equivalent to
condition (ix) follows from Theorem 2, Lemma 3, and Lemma 4. 1

From Theorem 4, the strict refinement property for direct sums holds i[it is
true for finite index sets | and J. As for finite index sets DSS coincides with DFS,
the following is valid.

Corollary 1. Let A be an algebra with a one element subuniverse 0. Then A
has the strict refinement property i CA satisfies the strict refinement property for
direct sums.
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Let A be any algebra with a one element subuniverse 0 that has the strict
refinement property such as congruence distributive algebras, perfect or center-
less algebras in congruence permutable varieties such as rings with zero annihi-
lator, etc. If A is the direct sum of directly indecomposable algebras A; (i [
1), then is precisely one DDSS ¢; (i [I) such that 0/di £-A, i 1
If A J_:“h;% : J 233} where every Bj is directly indecomposable, and
(i [J) is the DDSS such that B; £0¥y;, j T3, then |I| = |J| and {¢; :
i I} = {y; : j 3} Examples: If a lattice L is a direct sum of directly
indecomposable sublattices containing an element a [I1, then this set of “di-
rect summands” is unique. If a ring is a direct sum of its directly indecompos-
able ideals and every such ideal is a ring with zero annihilator, then this set of
ideals is unique. A direct sum of a set of finite centerless groups is a direct sum
of directly indecomposable groups and the set of resulting normal subgroups is
unique.

Now we study the applicability of refinement properties to graphs. All the
results of this paper can be carried over to directed graphs without loops and for
which from any given vertex to another there can be no more than one directed
edge. By a graph I" we mean a pair of not necessarily finite sets (V (I"), E(I")) where
V (M) is the set of vertices of I" and E(I") (the set of edges of I') is a set of unordered
pairs of distinct elements of V (I"). Thus, in this article, graphs have neither loops
nor multiple edges. A graph may be viewed as a set with a symmetric irreflexive
binary relation. We write a [VI(I") to mean that a is a vertex of I' and if a pair
{a,b} is an edge of I', we write ab [CH(IN). A path in " connecting the vertices
a,b CVI(I") is a sequence of vertices co, C1,...,Cn CMI(IM) such that for 1 < i <n,
ci—1Ci [CH(IN) and a = ¢p, b = cn. If n = 3, a graph with n distinct vertices
€o,C1,---,Cn—1 and n edges coC1,C1C2, ..., Chn—2Cn—1,Cn—1Co IS called a cycle of
length n and denoted by C,. A graph I" is connected if for any distinct vertices
a,b CVI(IM), there is a path in " connecting a,b. A homomorphism of a graph
1 into a graph Iz is a mapping f from V (I'1) into V (I'2) such that for any
a,b CVI(Iy), if f(a) 8 f(b) and ab [CH(I1), then f(a)f(b) CH(2). Two graphs
M1, 2 are isomorphic and we write 'y L) ifthereisa bijective mapping f from
V (I'1) onto V (I"2) such that f and £~ are homomorphisms. For any non-void set
A of vertices of a graph I, by I'[A] we denote the subgraph of I' whose vertex
set is A and for any a,b [CA, ab is an edge of I'[A] iCab CEIIN). The Cartesian
product of graphs I, i [Lis the graph I such that V (I") is the direct product of
the V (Iy), i CI(i.e., the set of all x = (..., X;,...) where x; C\MI([), i IO For
X,y CMI(IM), xy CHE(I) i Cthere is precisely one i [Tlsuch that x;y; CH(I) and
for every j CI\{i}, X; = yj. We denote the Cartesian product of graphs 'y, > by
I, [T21 This construction appeared in Harary [12], Miller [21], Sabidussi [22], [23]
and, in Shapiro [24]. The restricted Cartesian product of graphs (I, vi), i [I]
where v; CMI(T;) is given for every 1 [I] is the graph I such that V (I) is the direct



100 A. A. ISKANDER

sum of the pointed sets (V (i), vi), i [I(i.e., the setof all x = (..., X;,...) where
Xi CVI(T), i Csuch that {i CT: x; 8 v;} is finite). For x,y CVI(IM), xy CE(N)
i Cthere is precisely one i [Hsuch that xjy; [CH(I';) and for every j [CIN{i},
Xj = ¥j I" is the restricted Cartesian product of (i, vj), i [IJ we shall write
r= >iTT_(L_FLIi,vi) ;i I}. A graph I' is called Cartesian indecomposable if
it is non-trivial, i.e., contains more than one vertex, and I is not isomorphic to
a Cartesian product of any two non-trivial graphs. The general theory of strict
refinement of relational structures introduced in Chang, Jonsson, and Tarski [6],
is applicable to the direct product of graphs; i.e., the direct product 'y [T where
V(M L) =V (M) <V (I2) and (ug, u2)(va,v2) CHE(M O i Cwivi CE(T) for

i =1,2. A graph I' satisfie refinement pro for restricted Cartesian
products if whenever I ﬁ?ﬁ,vi) S CIB ﬁ% uj )=}, there are
graphs W;;, ij CVI(W;5), i 0 j Cdsuch that 'y = Wi, wij) - j CIR
and =; = Wij,wij) : i IOy for every i [l j [J. Some of the graphs
W;; may be composed of one vertex only. A similar definition can be given for
the refinement property relative to direct product decompositions. If G is any
finite bipartite graph and 2C3 is the disjoint union of two cycles of length 3,
then G [CCy £-d [2@;. (cf. Lovasz [17], [18] and McKenzie, McNulty and
Tayler [20, p. 331].) The cycle C4 is directly indecomposable, i.e., not isomorphic
to the direct product of any two nontrivial graphs. The same is true of 2Cs,
but Cs £, [C} where K, is a graph with two vertices and one edge. Since
C, is bipartite, C, CKL [C} £-¢l, [2C; and so the direct product does not
satisfy the refinement property even for finite graphs. A directly indecomposable
graph may not be Cartesian indecomposable and vice-versa. K, K} L 2K, and
K, [K3 £€). Cg is Cartesian indecomposable. However, the restricted Cartesian
product of a set of connected graphs is connected and every connected graph is,
up to an isomorphism, uniquely the restricted Cartesian product of Cartesian
indecomposable graphs. (cf. Sabidussi [23], Imrich [14])

Sabidussi gives in [23], an internal characterization of Cartesian decomposition
of connected graphs by means of an equivalence relation on the set of edges. A
similar method was given by Vizing [25]. Similar equivalence relations on the edges
of a graph are used in Feder [8], Graham and Winkler [10] and Imrich and Zerovnik
[15] to give e Lcieht algorithms for the Cartesian decompositions of finite connected
graphs. Imrich shows that every connected graph is, up to isomorphism, uniquely
the restricted Cartesian product of Cartesian indecomposable graphs ([14, Szatz 4
and Szatz 5]). We shall give another characterization using equivalence relations
on the set of vertices in a fashion reminiscent of the inner product of groups. We
shall adapt the definition of the strict refinement property so that we can apply it
to the restricted Cartesian product of graphs.

The following definition and lemma provide a connection between dual direct
sum sets and restricted Cartesian decompositions of graphs:
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Definition 5. Let ¢, Y be equivalence relations on the set of vertices of a
graph I'. The relation ¢ satisfies the edge condition relative to the relation ¢ if
for any a, b, c of V(') such that a¢b, apc and ab [CH(I"), there is d [VI(I") such
that cdd, byd and cd CEITN). A family of equivalence relations ¢; (i L) on V (IN)
satisfies the edge condition if ¢; satisfies the edge condition relative to ¢; for any
ordered pair (i,J) CIIx1,i & j.

Lemma 5. LEtIH‘ (i CI) be equivalence relations on the set of vertices of a
graph ' and ¢ = {y; : i CI}. If for every i [CIJ ¢ satisfies the edge condition
relative to yj;, then ¢ satisfies the edge condition relative to .

Proof. This is routine from the definition. 1

Definition 6. Let I' be a graph and let ¢; (i [I) be equivalence relations on
V (I). The family ¢; (i D) is called a graph dual direct sum set (GDDSS) if

(i) The family ¢; (i I is a dual direct sum set on V (I).
(ii) The family ¢; (i [CI) satisfies the edge condition.
(iii) If ab CHE(IM), then ad;b for some i [Tl

Now we give an internal characterization for Cartesian decompositions of
graphs.

Theorem 5. Let T, &IED be graphs and vi (M) (i CI). There is an
isomorphism of I onto ~ {(I"i, vi) : i I} iCihere is a graph dual direct sum set
¢i (i CI) on V(M) and v CVI(T) such that for every i CI) (i, vi) £ANV/i], v).

Proof. Let (IN,v) = I%‘i,vi) i CIF. Define ¢; on V (I") by a¢ib i & = bj
for all j CI\{i}. Checking that the family ¢; (i [IJ is a GDDSS routinely follows
from the definitions.

We need to show the converse. Suppose ¢; (i [CI) is a GDDSS on V (IN). Let
V=Y (M) and let Ty = Tv/¢il, vi = v, i @F shall show that (I,v) £

{(i,vi) : i CI}. By Theorem 3, (V(IN),v) =—{(V (I),vi) : i I} as pointed
sets. For eye_r_yli 10 we define a mapping m;: ' — ;. Let x (M), As ¢
and a; = {¢; : j TIN{i}} is a factor pair, there is a unique t [CM(I") such
that vitaix. Define mij(x) = t. It is clear that m; is surjective. Actually m; is a
graph homomorphism. Indeed, let bc CH(IN) and let mj(bh) & mi(c). As véimi(b)aib
and vé;mi(c)aic, then mi(b)pimi(c). Also there is a unique j [CTsuch that bgjc,
since bc CH(I). If j 8 i, then ¢; [ak and so bajc, which in turn implies

mi(b)a;imi(c) and consequently, as a; n ¢i = A, mi(b) =mi{c). Thus j = i and
bdic. As ¢;, i [Isatisfy the edge condition and a; = j:l<j=n,jBi}
by Lemma 5, the pair ¢j, q; satisfies the edge condition. This and o; n ¢; = A
implies m; (b)m; CB(M[v/i]). We need to show that cd [CH(IN) i Cd(c)m(d) is

an edge in [i,vi) : i CI}, where n(xX) = (..., m(X),...). Letcd CH(IN). As
¢;i (i I is a GDDSS, there is a unique i [[I] such that c¢;id. As ¢; n aj = A,
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mi(c) E mi(d). As m; is a graph homomrphism, mi(c)mi(d) CH(;). If j CIA{i},
then (c,d) @l [aj and so m;(c) = m;(d). So mk(c)m(d) CH(Ik) holds only for
k = i. Hence t(c)m(d) is an edge of the restricted Cartesian product. On the other
hand, if m(c)m(d) is an edge of the restricted Cartesian product, then cd CH(I")
follows from the fact that there is precisely one i [Tl with mj(c)mi(d) CH(T)
and for j CIN{i}, mj(c) = mj(d) and ¢;, a; satis edge condition; i.e., the
mapping T is a graph isomorphism of (I, v) onto %‘f vi) ;i CI}. 1

Remark 2. Viewing the equivalence relations ¢; (i [1l) as partitions, for
any given i [Il and any vertices a,b of I" the graphs '[a/¢;] and '[b/¢;] are
isomorphic subgraphs of I'. The homomorphism m; restricted to b/¢; provides a
graph isomorphism of I'[b/¢;] onto Na/;].

In order to adapt the definition of the strict refinement property to the case of
graphs, we need to find what a DSS for graphs should be. This is achieved by the
following definition.

Definition 7. Let I be a graph and v CVI(IN). A set a; (i [CI) of equivalence
relations on V (I) is called a graph direct sum set (GDSS) and every q; is called
a graph direct factor if

() a; (i IJ is a direct sum set on the pointed set (V ("), V).
(i) If ab CE(IM), then tl]eEIis i [Msuch that aq;b for every j CIA{i}.

(iii) Forevery i L ai, {qj:j CIA{i}} satisfy the edge condition.

Similar to Theorem 2 we have

Theorem 6. Let I be a graph and v [CVI(I"). Then
(i) If aj (i I is a graph direct sum set on I', then ¢; = %} cj CI\{i}}
(i I is a graph dual direct sum set.
(i) If ¢; (i D is a graph dual direct sum set on I', then a; = %} o) 1
IN{i}} (i D) is a graph direct sum set.

Proof. In view of Theorem 2, we need only show that in (i), ¢; (i [CI) satisfy
the edge condition and for every ab [CH(IM), there is i [Tlsuch that ad;b. The
latter follows from (ii) of Definition 7. Leti,j [(and i & j, a,b,¢c CVI(IN), adib,
adjc and ab [CH(IM). Since ¢, aj is a factor pair and ¢; [aj, there is a unique
d V(M) such that cd;id and bajd. As aj, ¢; satisfy the edge condition ((iii) of
Definition 7), cd CHE(I"). Now ¢; and ¢; are permutable. Hence there is e [I(I)
such that cpie and bje. Again ¢; [Cad. So cdie and baje. Then e = d and bé;d.

To show (ii), let ab [CH(IM). Then there is a unique i [CMsuch that ad;b. So
aajb for every j [CIN{i}. Since ¢i, ¢; satisfy the e ondition for i & j, by
Lemma 5, ¢; satisfies the edge condition relative to q%f ) CIN{i}}=q;. If
ab CH(IM), aaib and a¢jc. There is j CIX{i} such that ap;b. As ¢; Caid and ¢;
satisfies the edge jtion relative to ¢j, a; satisfies the edge condition relative
to ¢;. Since ¢; = Cloiugjl- . j CIZ{i}}, (iii) of Definition 7 is satisfied. 1
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Definition 8. Let I be a graph. A graph decomposition operation f on I' is
a graph homomorphism of the Cartesian product ' [T bonto I such that

(i) The equations f(x,x) = x and f(f(x,y),z) = f(x, f(y,z)) = f(x,z) hold
in V().
(i) If ab CENI), then f(a,b) L&, b}.

Theorem 7. Let I be a graph. Then

() 1fr=1r 03 and £((X1,X2), (y1,¥2)) = (X1,¥2), then f is a graph
decomposition operation on .

(ii) If f is a graph decomposition operation on I' and v [CM(I"), then I L1
v/ ker f,] CTv/ ker fV].

Proof. It is su Lcieht to show in (i) that f(a,b) [{&,b} if ab CH() and f is
a graph homomorphism of ' Clinto . If x CM(IN), then X = (X1, X2) where
Xj CMI(TG), i = 1,2. f(a,b) = (a1,h2). As ab CH(I), either a; = by in which
case f(a,b) = (ar,b2) = (b, b2) = b, or by = by, in which case f(a,b) = a. If
(a,b)(c,d) CB(I L), then either a=c and bd CH(I") or ac [CHA(I") and b = d.
f(a,b) = (a1,b), f(c,d) = (c1,d2). If a=c, then a; =c;. If f(a,b) 8 f(c,d),
then bz = dz. As bd EE[(Fl m) and bz = dz, b1 = dl and bzdz EE[(rz).
Hence (a1, b2)(a1,d2) CH(M, [13). Thus f(a,b)f(c,d) CET). The other case is
similar.

To show (ii), it su [ced, in view of Theorem 5, to verify that the factor pair
kerf,, kerfV is a GDSS. Let ab [CH(IN). There is no loss in generality assuming
f(a,b) = a. Thus f(a,b) = a = f(a,a) and (a,b) Ckerf, = kerf,. We need to
show that ker f,, ker fV satisfy the edge condition. It su [ced to show that ker f,
satisfies the edge condition relative to ker fV. Let (a,b) Ckerf,, (a,c) CkerfY
and ab CE(IM). There is d V(") such that (c,d) Ckérf, and (b,d) CkérfV. As
ker f, = kerfy, f(c,a) = f(d,a). Also kerf¥ = kerf® and f(c,a) = f(c,c) =c.
Similarly (d,d) = f(d,b) = d as kerf¥ = kerf9. So f(d,a) = c and f(d,b) = d.
If c = d, then f(d,b) = d = c = f(c,a) = f(d,a). This implies that (a,b) 1
ker fV nkerf, = A(V (). So a =b contradicting ab CH(IN). Thusc &d. As f is
a homomorphism of the Cartesian square of I" onto I and f(d,a) =c 8d = f(d,b)
and ab [CH(IN), cd [CH(IN). This shows that ker f, satisfies the edge condition
relative to ker fV. 1

Now we propose to define the strict refinement property for graphs.

Definition 9. A graph I' has the strict refinement property for restricted
Cartesian products (GSRP) if for any v [CM(I") and graph direct sum sets q;
(i D and B; (j on I, there is a graph direct sum ij ((1,) COxJ)
such that a; = q#ij]):j [0y for every i [Cand B; = yij : i I3 for every
j o
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In view of Theorems 4, 5, 6 and 7, we have the following characterization of
GSRP:

Theorem 8. The following conditions for a graph I are equivalent:

(i) T has the strict refinement property for restricted Cartesian products.

(ii) T has the strict refinement property for restricted Cartesian products for
finite index sets I and J.

(iii) The set of factor congruences of I' forms a Boolean lattice (i.e., it is a
sublattice of the lattice of equivalence relations on V (I") and the distributive
laws hold on this sublattice).

(iv) If AV (MN) = a Cat= B [BTwhere a, a”and B, Bare graph direct sum
sets on I, then (a [B) Cal< B.

(v) fvgv = gy Ty for all graph decomposition operations f, g and all v YI(I").

(vi) There is v [CM(I") such that f,g, = g,f, for all graph decomposition
operations f, g.

(vii) T has the strict refinement property for restricted Cartesian products for

index sets | and J such that [I| = [J] = 2.

(viii) For any graph dual direct sum sets ¢; (i CI) and ; ), &i N Y
((i,j) CIxJ) is a graph irect sum set, and ¢; = iny; 1 j CIR
for every i [Mand y; = inyj ;i CI3 for every j CI1

(ix) For any graph dual direct sum sets ¢1, ¢ and U, Yo, the set ¢1 n P,
&1 NP2, &2 NP1, ¢2 N Yy is a graph dual direct sum set.

As in the general case GSRP implies the refinement property for restricted
Cartesian products of graphs.

Theorem 9. Every connected graph has the strict refinement property for re-
stricted Cartesian products.

A graph has the strict refinement property for restricted Cartesian products i ]
it satisfies condition (ix) of Theorem 8. First we prove the following lemma:

Lemma 6. If d1,$, and Yy, P, are graph dual direct sum sets on a graph I,
then the family ¢1 n Y1, ¢1 n P2, d2 NP1, d2 N> is a graph dual direct sum set i [
the equivalence relations ¢ N1, &1 nP2, danyPy, b2 NP2 are mutually permutable

and ¢i = (i n Y1) C(Pi n P2) and Yi = (Wi n d1) C@in d2), i =1,2.

Proof. Let ¢1,9, and Y1,y be GDDSS on a graph I'. Suppose the family
q)]_ N LIJ]_, ¢1 N L|Jz, ¢2 N L|J]_, ¢2 N L|J2 is a GDDSS. Then q)]_ n LIJ]_, q)]_ N L|J2, ¢2 n LIJ]_,
b2 n Yy is a DDSS on the set V (IN) and by Lemma 4, ¢; = (bi n Y1) T(di n Y3)
and Yi = (Wi n §1) C@in §o), i =1,2.

Conversely, if 1 n Y1, &1 n Y2, §2 N W1, 2 n Y, are mutually permutable and
di = (¢i n Y1) L(i 0 Y2), Wi = (Wi n ¢1) Wi n §2), i = 1,2, then the family
b1 NP1, ¢1 N W, &2 N Y1, 2 N W, is a DDSS. Indeed, they satisfy conditions (i)
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and (iii) of Definition 3. Let a(¢1 n W1)b and a((p1 n W) C(d> n Y1) (G2 n Ww2))b.
As (¢1 nW2) L2 n Y1) L2 nY2) = (1 n Y2) L3, there is ¢ LVI(I) such that
a(d1 n Yo)ecdob. Hence chiadib and c(dy n d2)b. As by nd, = A, ¢c=b. Then
a(P1 n W)b and a =h. The other cases to verify condition (ii) of Definition 3 are
similar. If ab CEKI"), then ap;b and ay;b for some i, j = 1,2. It remains to verify
the edge condition. Let a(¢;y n Y3)b and let ab CEIIN). As Y1, P, satisfy the edge
condition, if a(¢1 n Wy)c, there is d CVI(IM) such that cy1d, by,d and cd CH(I).
As ¢ n Y1 and ¢y n Yo are permutable, there is a vertex e such that b(¢p; n Yo)e
and e(¢p1 n Y1)c. Then (e,d) [k n Yo = A. Thus e =d and so ¢, n Y, satisfies
the edge condition relative to ¢1 n Wo. If a(d2 n P2)c, again since Y1, Y, satisfy
the edge condition, there is d [CMI(I") such that cd [CH(IN), cyid and by,d. As
&1 n Py and ¢ n Yo are permutable and c(p2 n Wo)a(dy n W1)b, there is e CVI(IM)
with ¢(¢y n Y1)e and e(p2 n Wy)b. Thus (e,d) [y n Yo = A. So, e = d and
&1 n Y, satisfies the edge condition relative to ¢, n Y. The remaining cases are
similar. Thus the family ¢1 n @1, &1 n Y2, d2 n Yy, 2 n Yo is a GDDSS. 1

The following definition is useful.

Definition 10. Let I be a graph and let ¢, { be equivalence relations on V (I").
The relations ¢, are edge permutable if for any vertices a, b, ¢ CVI(I") such that
adb, ayc, where ab, ac [CH(I"), there is d [M(IN) such that céd, byd and cd,
bd CEI(I).

Lemma 7. Let I" be a graph and let ¢, Y be equivalence relations on V (I').
If ¢, Y are edge permutable and for every v CMI(I"), '[v/y] is connected, then ¢
satisfies the edge condition relative to (.

Proof. Let apb, ayic, a B ¢ and ab [HE(lN). Then there is a path a =
€o,C1,...,Cn = c such that cjyci+; for all 0 < i < n. As ¢, Y are edge per-
mutable, there is by [CM(IN) such that bby, ciby CH(I), cipby and byb;. By
induction there is a path b = b, by, ..., bn such that bjybi+1, cjdb;, cjb; CH()
forall0<i<nandl1l<j<n. Thus byb,, cdb, and cb, CH(I). 1

Proof of Theorem 9. Suppose I is a connected graph, a [CM(I") and ¢1, ¢>
and , Y, are two GDDSSs on . By Theorem 5, I £-Fa/d,] x Ma/d,] £
Ma/Y,] =< Ma/P,]. Since Cartesian factors of connected graphs are connected (cf.
Sabidussi [23]), from Theorem 5, Ia/¢i], Ma/yi], i = 1,2 are connected. We
need to show that ¢; n Y; (i,j = 1,2) is a GDDSS. First we show that ¢1, ¢
and similarly @, Y, are edge permutable. Indeed, suppose a,b,c CM(I"), ad1b,
ad,c and ab, ac CH(IN). As ¢1, ¢, satisfy the edge condition, there is d [CVI(I")
such that cd [CH(I") and c¢.d, bdod. Reversing the roles of ¢1, ¢,, there is
e [CM(IN) such that be CCH(IN) and cdie, bpoe. Thus ddic, ddab, edic, edab.
As 1 nd, = A, d = e and ¢;, ¢, are edge permutable. Next we show that
any two of the four equivalence relations ¢; n j, i,j = 1,2 are edge permutable.
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This does not require that I" be connected. Let ab, ac [CH(I") and a(¢1 n Y1)b.
Suppose a(bi n P2)c. As Y1, Yo are edge permutable, there is d CVI(IM) such that
cy1d, byod and bd, cd CH(IM). Now cdid or cd,d and bdid or bd.d. Also ch,d
iChip1d. If cdod, then bdod and c(p1 n d2)b. Thus b = ¢ and a(Py n Yo)b; i.e.,
a = b contradicting ab CH(I"). Hence c(¢1 n Y1)d and b(dy n P2)d. Thus ¢1 n Py,
¢1 n P, are edge permutable. If a(dp, n Po)c, there is d [CMI(IN) such that cy,d
and byod where bd, cd CH(I). Again cd1d or cd,d and bd:d or bdod. If chp.d
and b¢;d, then a(¢p1 n ¢,)c and a = ¢ contradicting ac CEI(I). If cd,d and b¢,d,
then a(¢1 n $2)d and a = d. Then c(P1 nP2)d and ¢ = d contradicting cd CH(I).
If cd,od and bd.d, then a(¢p1 n ¢2)b and a = b contradicting ab CH(I"). Thus the
only possibility is cd;d and bd.d; i.e., c(d1 n PY1)d, b(do n W)d. Thus ¢1 n Yy,
&2 n P, are edge permutable. The treatment of the remaining pairs is similar. If
I" is connected, we shall show that Ma/(¢; n P1)] is connected. If a,c [CM(IN),
a 8 c and a(¢; n Yy)c, there is a path a = ¢g,C1,...,Ch = c in [a/P;1]. As
ckCk+1 [CB(IN) for 0 < k < n, ckP1Ci+1 Or cxWPack+1 for 0 < k < n. Suppose for
some 0 < s <n, (Cs,Cs+1) Y k. As ¢1 n Yy and ¢1 n Y, are edge permutable,
if (ck—1,Ck) [0k and (ck,Ck+1) [, there is cisuch that (ck—1,c) Tk n Yy
and (ci ck+1) C@h n Yp. Thus we can assume that in the given path, for some
0<r=n, (ck,ck+1) [y forall 0=k <r and (ck,Ck+1) b forallr =k <n.
Thus a(d1 n P1)er(dr n Yo)e. Then ¢ (Y1 n Po)c and ¢ = ¢,.. Thus there is a
path a = co,C1,...,Cn = C in INa/(d1 n Y1)]. This shows that for any v V(M)
and for any i, j = 1,2, the subgraph I'[v/(¢i n ;)] is connected. Now we show
that the family ¢i n @; (i,j = 1,2) satisfies the edge condition. This follows
from Lemma 7. We need to show that any pair of ¢; n ; are permutable. Let
a(di ny;)b, a(drns)c, whered, j, r, s L1, 2} and (i, j) E (r,s). AsTa/(diny;)]
is connected, there is a path a = b, by, ..., bn = b such that (by, bk+1) Tt ny; for
all 0 = k < n. By the edge condition there is d; with cd; CHIIT, (by,d1) Tl n s
and (c,dy) L@k n ;. By induction there is a path ¢ = dp, dy,...,dn in [[¢i n Yj]
such that (bk, dx) Tl n Ys for every 1 < k < n. Thus there is d(= dn) such that
c(di n Yj)d(dr n Ys)b. This shows the permutability of ¢; n P; and ¢r n Ys. By
Lemma 6, and by symmetry, it su [ced to show that ¢; = (di n Y1) C(di n P2).
Let adib. As I'[a/i] is connected, there is a path a = bg, b1,...,bnh =bin Ma/¢;].
Every (b, bk+1) T for some r 1,2} and thus belongs to (¢i n Y1) C(di nY2).

Thus (a,b) C(bi n Y1) C(Pi n Y2). This shows that &1 n Y1, &1 N Yo, b2 N Yq,
d2 n Y, form a GDDSS. 1

If a graph satisfies the strict refinement property for restricted Cartesian prod-
ucts, it satisfies the property for any two GDDSSs. However, the Cartesian prod-
uct of an infinite family of nontrivial connected graphs is not connected as shown
in [23]. For general structures, as indicated in [6], the strict refinement prop-
erty carries over to infinite direct products. Since pointed sets do not satisfy
the strict refinement property, there are (disconnected) graphs that do not sat-
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isfy GSRP. If ¢; (i [I) and ; (j [J) are GDDSSs on a connected graph T,
a LVI(IM) and all I'[a/¢;] and I'a/y;] are Cartesian indecomposable, then [I| = [J],
{¢i -1 OO} = {y; : j I} and so {[[a/;i] : i [1} = {I[a/y;] : j CIG}. The
following theorem is due to Imrich ([14, Szatz 4]). We shall give a proof using
methods from the present paper.

Theorem 10. Every connected graph is a restricted Cartesian product of
Cartesian indecomposable graphs.

The proof will be based on the following lemmas:

Lemma 8. Let I' be a connected graph and let a be an equivalence relation on
V(). Then a is a graph direct factor on I i [

(i) If aab, (a,¢) Yd and ab, ac [CH(I"), then there is d [CMI(I") such that
cad, (b,d) Faland bd, cd CE(I).

(ii) If apay...an is a path and (aj, aj+1) falfor 0<i<n and ag & an, then
(20, an) [al

Proof. If a, B is a GDSS, then (i) follows from the edge condition and ii follows
from (aj,aj+1) (Rl for0<i<nandso (ag,an) [Pl AsanP =A, (ag,an) Fal
Conversely, the set {(x,y) : xy [CE(I),(x,y) I_d} generates an equivalence
relation B on V(). We need to show that a, 3 is a GDSS. It is clear that
for every v [CI(IM), I'[v/B] is connected. From (i), a, B are edge permutable. By
Lemma 7, a satisfies the edge condition relative to 3. We shall show that for every
v CYI(I), Iv/qa] is connected. Indeed, let aob and a & b. As T is connected, there
is a path a =cg,Cy1,...,Cnh = b. If (i, Ci+1) YAl then ciBci+1. In view of the edge
permutabilty of a, B we can assume that cjacj+; for all 0 <i < r and cijBcj+1 for
all r =i <n. If r=n, we are through. Otherwise, bpc,, aac, and aab. Thus
bacy. In view of (ii), b = ¢, and I'[aZq] is connected. Again, applying Lemma 7,
B satisfies the edge condition relative to a. Every edge belongs to either a or B.
Thus we need only show that a, B is a DSS. If a,b CVI(I") and a & b, then there
is a path from a to b. As a, B are edge permutable, we can assume the existence
of a path a = bg, by, ..., by = b such that bjab;+1 and bjBbj+1 implies i <j. Thus
VD) xV({)=ae-B. From (ii), anB =A. Thus a, f form a GDSS and a is a
graph direct factor. 1

Le 9. If ¢; is a graph direct factor on a connected graph I" for every i [T]
then {&;:i I} is a graph direct factor on I'.

Proof. Leta = %‘. i CI}. We need to show that a is a graph direct factor.
Let aab, ab, ac [CH(IN) and (a,c) Fal There is k [CIsuch that (a,c) I §k. As
¢k is a graph direct factor, there is d [CVI(I") such that c¢kd, (b,d) F-¢k,and bhd,
cd CH(N). If cppd’ bd™” CB(M) and (b, dY Ik, then d = dY otherwise, dod"is
a path where db, bd®CB(I"), (d,b) Ik, (b,dT Ik and dpxcdrd-contradicting
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(ii) of Lemma 8. Let j 11 Applying GSRP to the GDDSSs ¢«, ¢’ and ¢;, ¢},
where ¢k, ¢’ and ¢;, ¢ are (graph) factor pairs, ¢k n ¢, bk n df; b’ b;,
¢i'n ¢j'is a GDDSS on I. Thus ¢« n §; is a graph direct factor. As a(¢x n d;)b,
(a,c) ik n ¢j and ab, ac [CH(IN), there is e M (M) such that c(dk n d;j)e,
(b,e) ik n ¢; and be, ce CH(). If (b,e) ik, then adredkc contradicting
(a,c) I ¢k. Thus (b,e) ¥ dk. Hence d = e. Thus c;d for every i 1] i.e., cad.
As (b,d) I, (b,d) I_d and so a satisfies (i) of Lemma 8. We need to show
that o satisfy (ii) of Lemma 8. If apa; ...an is a path, ag & d (aj,ai+1) Fa
for 0 =< i < n, there is a finite set F [Isuch that = r . r CH} and
(ai,aji+1) FPfor 0 <i<n. AsF is finite, GSRP implies B is a graph direct
factor and so (ag,an) Bl Since a [B] (ag,an) ¥a. Thus a is a graph direct
factor. —1

Proof of Theorem 10. Let I connected graph with at least two vertices.
For every ab CEII), let ¢gp = %? adb and ¢ is a graph direct factor on '}. We
shall show that {¢4, : ab CH(IMN)} isa GDDSS on I" and for any v CMI(I), T[v/$ap]
is Cartesian indecomposable. Since a & b, ¢ap B A. Every ¢, is a graph direct
factor on I by Lemma 9. If F[v/dap] £ [T3, then dap = x LU0 where X, Y are
graph direct factors on I and '[v/ap] J_Efv/x] [CLCv/y]. Hence either axb, or
ayb. If axb, then ¢ay [ Chdy. Thus Mv/dap] is Cartesian indecomposable. If
®ab B def, then dap N der = A. Otherwise, Pap N def is a nontrivial graph direct
factor and §ap N der, dan N O5f, G5} N der, 5 N G54 is @ GDDSS by GSRP and
$ab = (Pannder) [(Panndf). As Ias/dap] is Cartesian indecomposable, dap Chds
or dap IEEF If ap Cde, then der = (dap N Per) E@Eb N ¢er), again by GSRP.
As [[v/der] is Cartesian indecomposable, der = Pap N Per OF Per = G5 N et
The first option implies b.f = b4y Which is a contradiction. The other option
(Per = ¢S Nder) contradicts dap Chde. Thus dap Chlt and papnder = A. Then
(e, f) L] for every ef CEI(T), der B dap Sinc&lf) L ky. Thus der Ty for
every ef [H(T) suchthat ¢ap & der. Hence {der : ef [H(N), der & dap}
oL Actually ¢ =  {der : ef CH(I), befEdan}, since for every cd CH(T),
(c,d) L fhky implies Gca & Pap. Thus Gap N ( {Per : ef CH(), der E Pan}) = A.
If Gab E Ped, then ap, G5} and deq, P5 are GDDSSs. Hence by GSRP, ¢ap, dcd,
dL) N ooy is a GDDSS since ¢ap N = A, ¢op N ded = Pea and Pa S = bap.
Thus ¢ap © Pcd = Gcd © Pap. As xy - XY CH(M} = dap CO {der : ef [
E(), ber B dav}) = Pap LRl = V(M) x V() and if uv CH(T), then udpyyv.
This shows that (iii) of Definition 6 holds. Thus ¢y, (xy CH(I')) is a GDDSS
on I'. Since every IN[v/¢g4p] is Cartesian indecomposable for every v [CVI(IN) and
every ab [CH(I"), by Theorem 5, I is a restricted Cartesian product of Cartesian
indecomposable graphs. 1

The factorization in Theorem 10 is essentially unique. On a connected graph I,
the relation ab [Ccd i Cdlan = doq is an equivalence relation on E(I), where ¢4y is
the smallest graph direct factor on I' containing (a,b). Let T(I") be a transversal
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of the equivalence relation [ ile., T(I') [CEKI) such that if ab, cd CTI(IM) and
{a,b} 8 {c,d}, then ¢ E g and if xy [CH(I), there is ef [TI() such that
dxy = ®er. Then the uniqueness of factorization can be expressed as follows:

Theorem 11. Let [ %,vi) ©i I, vi CM(G), i O Suppose I
is connected and I; is a Cartesian indecomposable graph for every i 11 Then
there is a bijective mapping g: I —- T (I") puchythat I’ L F/dgay], | Cwhere
v V(") corresponds to (...,Vvi,...) (. {(F,vi) : i C1}).

This theorem states the uniqueness of decomposition of connected graphs as
restricted Cartesian products of Cartesian indecomposable graphs. It is essentially
Szatz 5 in Imrich [14].
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