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A NEW CLASS OF ANALYTIC FUNCTIONS INVOLVING

CERTAIN FRACTIONAL DERIVATIVE OPERATORS

S. BHATT and R. K. RAINA

Abstract. The present paper systematically investigates a new class of functions
involving certain fractional derivative operators. Characterization and distortion
theorems, and other interesting properties of this class of functions are studied.
Further, the modified Hadamard product of several functions belonging to this class
are also investigated.

1. Introduction, Definitions and Preliminaries

The theory of fractional calculus has recently found interesting applications in

the theory of analytic functions. The classical definition of Riemann-Liouville in

fractional calculus operators [5] and their various other generalizations ([14]; see

also [13]) have fruitfully been applied in obtaining, for example, the character-

ization properties, coefficient estimates, distortion inequalities, and convolution

structures for various subclasses of analytic functions ([7], [8], [9], [10], [11], [12],

[15] and [16]) and the works in the research monographs [3], [6], [17] and [18].

The purpose of the present paper is to systematically study a new class of an-

alytic functions involving a certain fractional derivative operator (defined below

by (1.2)).

In Section 1 we give the necessary details and definitions of the class of analytic

functions and fractional derivative operators. Section 2 describes the character-

ization property for the functions belonging to the class Sλ,µ,η(α, β,m) defined

below, and Section 3 gives the distortion theorems. Its further properties (in-

cluding those related to Hadamard product of several functions) are discussed in

Sections 4 and 5, respectively. The significant relationships and relevance with

other results are also invariably mentioned.
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Denote by A the class of functions f(z) defined by

(1.1) f(z) = z −
∞∑
n=2

anz
n (an ≥ 0; n ∈ N),

which are analytic in the unit disk U = {z : |z| < 1}.
We introduce the class Sλ,µ,η(α, β,m) of analytic functions f(z) belonging to

A and satisfying the condition:

(1.2)

∣∣∣∣∣ ∆λ,µ,η
z,m f(z)− 1

∆λ,µ,η
z,m f(z) + (1− 2α)

∣∣∣∣∣ < β (z ∈ U),

for

(1.3) 0 ≤ λ < 1, µ < 1, 0 ≤ α < 1, 0 < β ≤ 1, m ∈ N and η > max{λ, µ} − 1,

where the function ∆λ,µ,η
z,m f(z) is defined by

(1.4) ∆λ,µ,η
z,m f(z) = L(λ, µ, η,m)z

µ
m−1Dλ,µ,η

0,z, 1
m

f(z),

such that 0 ≤ λ < 1, µ < 1, η > max{λ, µ} − 1 and m ∈ N ; and

(1.5) L(λ, µ, η,m) =
Γ(1− µ+m)Γ(1 + η − λ+m)

Γ(1 +m)Γ(1 + η − µ+m)
,

where the operator Dλ,µ,η

0,z, 1
m

is a modified fractional derivative operator of

Saigo [14] ([10]), and is defined as follows:

Definition. For 0 ≤ α < 1; β, η ∈ R and m ∈ N ,

Dα,β,η
0,z,mf(z) =

d

dz

(
z−m(β−α)

Γ(1− α)

∫ z

0

(zm − tm)−αf(t)(1.6)

× F
(
β − α, 1− η; 1− α; 1−

tm

zm

)
d(tm)

)
.

The function f(z) is analytic in a simply-connected region of the z-plane con-

taining the origin, with the order

(1.7) f(z) = O(|z|ε), z → 0,

where

(1.8) ε > max{0,m(β − η)} −m.
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The multiplicity of (zm − tm)−α in (1.6) is removed by requiring log(zm − tm)

to be real when (zm − tm) > 0, and is assumed to be well defined in the unit

disk.

The operator defined by (1.6) include the well-known Riemann-Liouville and

Erdélyi-Kober operators of fractional calculus. Indeed, we have

(1.9) Dα,α,η
0,z;1 f(z) = Dα

z f(z),

where Dα
z is the familiar Riemann-Liouville fractional derivative operator [5].

Also,

(1.10) Dα,1,η
0,z,1 zf(z) = E−α,−η0,z f(z) + (α− η)E1−α,η

0,z f(z),

in terms of the Erdélyi-Kober operator [14] (see also [13]).

2. Characterization Property

Before stating and proving our main assertions, we need the following result to

be used in the sequel:

Lemma 1 ([10]). If 0 ≤ α < 1, m ∈ N ; β, η ∈ R, and k > max{0,m(β−η)}−
m, then

(2.1) Dα,β,η
0,z,mz

k =
Γ
(
1 + k

m

)
Γ
(
1 + η − β + k

m

)
Γ
(
1− β + k

m

)
Γ
(
1 + η − α+ k

m

)zk−mβ .
We investigate the characterization property for the function f(z) ∈ A to be-

long to Sλ,µ,η(α, β,m), thereby, obtaining the coefficient bounds. We prove the

following:

Theorem 1. Let f(z) be defined by (1.1). Then, f(z) ∈ Sλ,µ,η(α, β,m) if and

only if

(2.2)
∞∑
n=2

Φn(λ, µ, η,m)(1 + β)an ≤ 2β(1− α),

where

(2.3) Φn(λ, µ, η,m) = L(λ, µ, η,m)M(λ, µ, η,m, n),
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with L(λ, µ, η,m) defined by (1.5), and

(2.4) M(λ, µ, η,m, n) =
Γ(1 + η − µ+ nm)Γ(1 + nm)

Γ(1 + η − λ+ nm)Γ(1− µ+ nm)
,

under the conditions given by (1.3). The result (2.2) is sharp.

Proof. Suppose that (2.2) holds true, and let |z| = 1. Then, on using (1.4),

(1.5) and (2.1), we have∣∣∣∆λ,µ,η
z,m f(z)− 1

∣∣∣− β∣∣∣∆λ,µ,η
z,m f(z) + (1− 2α)

∣∣∣
=
∣∣∣− ∞∑

n=2

Φn(λ, µ, η,m)anz
n−1
∣∣∣− β∣∣∣2(1− α)−

∞∑
n=2

Φn(λ, µ, η,m)anz
n−1
∣∣∣

≤
∞∑
n=2

Φn(λ, µ, η,m)(1 + β)an − 2β(1− α) ≤ 0,

by hypothesis, where Φn(λ, µ, η,m) is given by (2.3).

Therefore it follows that f(z) ∈ Sλ,µ,η(α, β,m).

Conversely, let f(z) defined by (1.1) be such that f(z) ∈ Sλ,µ,η(α, β,m). Then,

in view of (1.2), we have∣∣∣∣∣ ∆λ,µ,η
z,m f(z)− 1

∆λ,µ,η
z,m f(z) + (1− 2α)

∣∣∣∣∣ < β (z ∈ U)

=

∣∣∣ ∞∑
n=2

Φn(λ, µ, η,m)anz
n−1
∣∣∣∣∣∣2(1− α)−

∞∑
n=2

Φ(λ, µ, η,m)anzn−1
∣∣∣ < βφ (z ∈ U).

Since |Re(z)| ≤ |z|, for all z, we get

(2.5) Re


∞∑
n=2

Φn(λ, µ, η,m)anz
n−1

2(1− α)−
∞∑
n=2

Φn(λ, µ, η,m)anzn−1

 < β .

Now choosing the values of z on the real axis, simplifying and letting z → 1

through the real values, we get

(2.6)
∞∑
n=2

Φn(λ, µ, η,m)an ≤ 2β(1− α)− β
∞∑
n=2

Φn(λ, µ, η,m)an,

which yields (2.2).
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We also note that the assertion (2.2) is sharp and the extremal function is given

by

(2.7) f(z) = z −
2β(1− α)

(1 + β)Φn(λ, µ, η,m)
zn .

�

Remark 1. If µ = λ = m = 1, then in view of (1.4), (1.5) and (1.9), we have

(2.8) ∆1,1,η
z,1 f(z) = f ′(z),

and also the class

(2.9) S1,1,η(α, β, 1) = P ∗(α, β),

where P ∗(α, β) is the class of functions studied by Gupta and Jain [2].

Remark 2. If µ = λ, then in view of (1.4), (1.5) and (1.9), we have

(2.10) ∆λ,λ,η
z,1 f(z) = Γ(2− λ)zλ−1Dλ

z f(z),

and the class

(2.11) Sλ,λ,η(α, β, 1) = P ∗λ (α, β),

where P ∗λ (α, β) is the class studied by Srivastava and Owa [15]. By virtue of (2.10)

and (2.11), Theorem 1 corresponds to the result [15, p. 177, Theorem 1].

The following consequences of Theorem 1 are worth noting:

Corollary 1. Let the function f(z) defined by (1.1) belong to the class

Sλ,µ,η(α, β,m). Then

(2.12) an ≤
2β(1− α)

(1 + β)Φn(λ, µ, η,m)
, ∀n ≥ 2,

where Φn(λ, µ, η,m) is given by (2.3).

Remark 3. From (2.12), we express

an ≤
2β(1− α)

(1 + β)Φn(λ, µ, η,m)
= K ·

Γ(1 + η − λ+mn)Γ(1− µ+mn)

Γ(1 + η − µ+mn)Γ(1 +mn)
,

where

K =
2β(1− α)Γ(1 +m)Γ(1 + η − µ+m)

(1 + β)Γ(1− µ+m)Γ(1 + η − λ+m)
≤ 1,
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which is observed to be true for 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ λ ≤ µ < 1, η ∈ R+

and m ∈ N .

Using the asymptotics for the ratio of gamma functions [14, p. 17] for finite

large n, we note that

Γ(1 + η − λ+mn)Γ(1− µ+mn)

Γ(1 + η − µ+mn)Γ(1 +mn)
∼ (mn)−λ ≤ n (0 ≤ λ < 1).

The assertion (2.12) of Corollary 1 therefore satisfies

(2.13) an ≤
2β(1− α)

(1 + β)Φn(λ, µ, η,m)
≤ n, ∀n ≥ 2,

for 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ λ ≤ µ < 1, η ∈ R+ and m ∈ N .

Thus, if T denotes the class of functions f(z) of the form

(2.14) f(z) = z +
∞∑
n=2

Cnz
n (z ∈ U),

that are analytic and univalent in U , then there do exist functions f(z) ∈
Sλ,µ,η(α, β,m) with 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ λ ≤ µ < 1, η ∈ R+ and m ∈ N ,

not necessarily in the class T , for which the celebrated Bieberbach conjecture (now

de Brange’s theorem)

(2.15) |Cn| ≤ n (n ≥ 2),

holds true ([1]).

3. Distortion Theorems

Theorem 2. Let the function f(z) defined by (1.1) be in the class

Sλ,µ,η(α, β,m). Then,

(3.1) |f(z)| ≥ |z| −
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
|z|2

and

(3.2) |f(z)| ≤ |z|+
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
|z|2,

for z ∈ U , where Φ2(λ, µ, η,m) is given by (2.3) holds under the conditions given

by (1.3).

Proof. If f(z) ∈ Sλ,µ,η(α, β,m), then by virtue of Theorem 1, we have

Φ2(λ, µ, η,m)(1 + β)
∞∑
n=2

an ≤
∞∑
n=2

Φn(λ, µ, η,m)an(1 + β)(3.3)

≤ 2β(1− α).
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This yields

(3.4)
∞∑
n=2

an ≤
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
.

Now

(3.5) |f(z)| ≥ |z| − |z|2
∞∑
n=2

an ≥ |z| −
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
|z|2.

Also,

(3.6) |f(z)| ≤ |z|+ |z|2
∞∑
n=2

an ≤ |z|+
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
|z|2,

which proves the assertions (3.1) and (3.2). �
Theorem 3. Let the function f(z) defined by (1.1) be in the class

Sλ,µ,η(α, β,m). Then,

(3.7)
∣∣∣Dλ,µ,η

0,z, 1
m

f(z)
∣∣∣ ≥ |z|1−

µ
m

L(λ, µ, η,m)

(
1−

2β(1− α)

(1 + β)
|z|

)
,

and

(3.8)
∣∣∣Dλ,µ,η

0,z, 1
m

f(z)
∣∣∣ ≤ |z|1−

µ
m

L(λ, µ, η,m)

(
1 +

2β(1− α)

(1 + β)
|z|

)
,

for z ∈ U if µ ≤ m and z ∈ U−{0} if µ > m, where L(λ, µ, η,m) is given by (1.5),

under the condition given by (1.3).

Proof. Using (1.1), (1.5) and (2.1), we observe that∣∣∣L(λ, µ, η,m) · z
µ
mDλ,µ,η

0,z, 1
m

f(z)
∣∣∣ = ∣∣∣z − ∞∑

n=2

Φn(λ, µ, η,m)anz
n
∣∣∣

≥ |z| −
∞∑
n=2

Φn(λ, µ, η,m)an|z|
n

≥ |z| − |z|2
∞∑
n=2

Φn(λ, µ, η,m)an

≥ |z| − |z|2
2β(1− α)

(1 + β)
,

because f ∈ Sλ,µ,η(α, β,m) by hypothesis. Thus, the assertion (3.7) is proved.

The assertion (3.8) can be proved in a similar manner. �
Remark 4. When µ = λ and n = 1, then Theorems 2 and 3 give the corre-

sponding distortion properties obtained by Srivastava and Owa [15, p. 179, The-

orem 2].

The following consequences of Theorems 2 and 3 are worth mentioning here:
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Corollary 2. Under the hypothesis of Theorem 2, f(z) is included in a disk

with its centre at the origin and radius r given by

(3.9) r = 1 +
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
.

Corollary 3. Under the hypothesis of Theorem 3, Dλ,µ,η

0,z, 1
m

f(z) is included in a

disk with its centre at the origin and radius R given by

(3.10) R =
1

L(λ, µ, η,m)

{
1 +

2β(1− α)

1 + β

}
.

4. Further Properties of Sλ,µ,η(α, β,m)

We next study some interesting properties of the class Sλ,µ,η(α, β,m).

Theorem 4. Let 0 ≤ λ < 1, µ < 1, 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ α′ < 1,

0 < β′ ≤ 1, m ∈ N and η > max{λ, µ} − 1. Then

(4.1) Sλ,µ,η(α, β,m) = Sλ,µ,η(α
′, β′,m),

if and only if

(4.2)
β(1− α)

(1 + β)
=
β′(1− α′)

(1 + β′)
.

Proof. First assume that f(z) ∈ Sλ,µ,η(α, β,m) and let the condition (4.2) hold

true. By using assertion (2.2) of Theorem 1, we have then

(4.3)
∞∑
n=2

Φn(λ, µ, η,m)an ≤
2β(1− α)

(1 + β)
=

2β′(1− α′)

(1 + β′)
,

which readily shows that f(z) ∈ Sλ,µ,η(α′, β′,m) (again by virtue of Theorem 1).

Reversing the above steps, we can establish the other part of the equivalence

of (4.1).

Conversely, the assertion (4.1) can easily be used to imply the condition (4.2)

and this completes the proof of Theorem 4. �

Remark 5. For 0 ≤ λ < 1, µ < 1, 0 ≤ α < 1, 0 < β ≤ 1, m ∈ N and

η > max{λ, µ} − 1 it follows from (4.1) that

(4.4) Sλ,µ,η(α, β,m) = Sλ,µ,η

(
1− β + 2αβ

1 + β
, 1,m

)
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Theorem 5. Let 0 ≤ λ < 1, µ < 1, 0 ≤ α1 ≤ α2 < 1, 0 < β ≤ 1, m ∈ N and

η > max{λ, µ} − 1. Then

(4.5) Sλ,µ,η(α1, β,m) ⊃ Sλ,µ,η(α2, β,m).

Proof. The result follows easily from Theorem 1. �

Theorem 6. Let 0 ≤ λ < 1, µ < 1, 0 ≤ α < 1, 0 ≤ β1 ≤ β2 ≤ 1, m ∈ N and

η > max{λ, µ} − 1. Then

(4.6) Sλ,µ,η(α, β1,m) ⊂ Sλ,µ,η(α, β2,m).

Letf(z) ∈ Sλ,µ,η(α, β1,m). Then by virtue of Theorem 1 we have

(4.7)
∞∑
n=2

Φn(λ, µ, η,m)an ≤
2β1(1− α)

1 + β1
= 1−

1− β1 + 2αβ1

1 + β1
.

Now in view of the inequalities

(4.8)

0 ≤
1− β2 + 2αβ2

1 + β2
≤

1− β1 + 2αβ1

1 + β1
< 1, (0 ≤ α < 1, 0 < β1 ≤ β2 ≤ 1)

we find that

(4.9)
∞∑
n=2

Φn(λ, µ, η,m)an ≤ 1−
1− β2 + 2αβ2

1 + β2
=

2β2(1− α)

1 + β2
,

implying by virtue of Theorem 1 that f(z) ∈ Sλ,µ,η(α, β2,m), and so assertion

(4.6) is established.

Corollary 4. Let 0 ≤ λ < 1, µ < 1, 0 ≤ α1 ≤ α2 < 1, 0 ≤ β1 ≤ β2 ≤ 1,

m ∈ N and η > max{λ, µ} − 1. Then

(4.10) Sλ,µ,η(α2, β1,m) ⊂ Sλ,µ,η(α1, β1,m) ⊂ Sλ,µ,η(α1, β2,m).

Theorem 7. Let 0 ≤ λ1 ≤ λ2 ≤ µ < 1, 0 ≤ α < 1, 0 < β ≤ 1, m ∈ N and

η ∈ R+. Then

(4.11) Sλ1,µ,η(α, β,m) ⊃ Sλ2,µ,η(α, β,m).

Proof. Suppose f(z) defined by (1.1) belongs to Sλ2,µ,η(α, β,m). Applying

Theorem 1, we obtain

(4.12)
∞∑
n=2

Φn(λ1µ, η,m)(1 + β)an ≤
∞∑
n=2

Φn(λ2, µ, η,m)(1 + β)an ≤ 2β(1− α),
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since

(4.13) 1 ≤ Φn(λ1, µ, η,m) ≤ Φn(λ2, µ, η,m) ≤ n,

for 0 ≤ λ1 ≤ λ2 ≤ µ < 1, m ∈ N , n ≥ 2, and η ∈ R+.

The validity of the inequalities in (4.13) is observed from the following:

In view of the arguments in Remark 3, we note that

1 ≤
Γ(1− µ+m)Γ(1 + η − λ1 +m)

Γ(1 +m)Γ(1 + η − µ+m)
≤ n (n ≥ 2)

for 0 < λ1 ≤ µ < 1, m ∈ N and η ∈ R+.

Also,

1 ≤
Γ(1 + η − µ+mn)Γ(1 +mn)

Γ(1 + η − λ1 +mn)Γ(1− µ+mn)
∼ (mn)λ1 ≤ n (n ≥ 2)

for 0 < λ1 ≤ µ < 1, m ∈ N and η ∈ R+.

Similar bound hold true for the above gamma quotients (wherein λ1 is replaced

by λ2) under the conditions that 0 < λ2 ≤ µ < 1, m ∈ N and η ∈ R+.

The dominant expressions of Φn(λ1, µ, η,m) and Φn(λ2, µ, η,m) thus satisfy

1 ≤
Γ(1 + η − λ1 +m)

Γ(1 + η − λ1 +mn)
≤

Γ(1 + η − λ2 +m)

Γ(1 + η − λ2 +mn)
≤ n (n ≥ 2),

provided that 0 ≤ λ1 ≤ λ2 ≤ µ < 1, m ∈ N and η ∈ R+.

Hence, from (4.12) it follows that f(z) ∈ Sλ,µ,η(α, β,m) (in view of Theorem 1),

which proves (4.11) of Theorem 7. �
We now recall the following known results:

Lemma 2 ([2]). A function f(z) defined by (1.1) is in the class P ∗(α, β) if and

only if

(4.14)
∞∑
n=2

n(1 + β)an ≤ 2β(1− α).

The result is sharp, the extremal function being

(4.15) f(z) = z −
2β(1− α)

n(1 + β)
zn (n ∈ N).

Lemma 3 ([15, p. 177, Theorem 1]). A function f(z) defined by (1.1) is in the

class P ∗λ (α, β) if and only if

(4.16)
∞∑
n=2

Γ(n+ 1)Γ(2− λ)

Γ(n+ 1− λ)
(1 + β)an ≤ 2β(1− α).
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Theorem 8. Let 0 ≤ λ ≤ µ < 1, 0 ≤ α < 1, 0 ≤ β ≤ 1, m ∈ N and η ∈ R+.

Then

(4.17) P ∗(α, β) ⊂ P ∗λ (α, β) ⊂ Sλ,µ,η(α, β,m),

where P ∗(α, β) and P ∗λ (α, β) are the classes defined by (2.9) and (2.11), respec-

tively.

Proof. Let f(z) defined by (1.1) belong to the class P ∗(α, β). Then, by using

Lemma 2 and Lemma 3, we have

∞∑
n=2

Φn(λ, µ, η,m)(1 + β)an ≤
∞∑
n=2

Γ(n+ 1)Γ(2− λ)

Γ(n+ 1− λ)
(1 + β)an(4.18)

≤
∞∑
n=2

n(1 + β)an ≤ 2β(1 + α),

since

(4.19) 1 ≤ Φn(λ, µ, η,m) ≤
Γ(n+ 1)Γ(2− λ)

Γ(n+ 1− λ)
≤ n,

for 0 ≤ λ ≤ µ < 1, m ∈ N , η > R+, n ≥ 2, and 0 ≤ α < 1, 0 < β ≤ 1. �

Now (4.18) in conjunction with Theorem 1 yields the desired result (4.17).

5. Results Involving Hadamard Product

In this section we study interesting properties and theorems for the class of func-

tions Sλ,µ,η(α, β,m) involving the modified Hadamard product of several functions.

Let f(z) be defined by (1.1) and let

(5.1) g(z) = z −
∞∑
n=2

bnz
n (bn ≥ 0).

Then the modified Hadamard product of f(z) and g(z) is defined by

(5.2) f ∗ g(z) = z −
∞∑
n=2

anbnz
n.

The following result reveals an interesting property of the modified Hadamard

product of several functions.
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Theorem 9. Let the functions f1(z), f2(z), . . . , fr(z) defined by

(5.3) fi(z) = z −
∞∑
n=2

Cn,i z
n (Cn,i ≥ 0),

be in the class Sλ,µ,η(αi, βi,m); i = 1, 2, . . . , r, respectively. Also, let

(5.4) Φ2(λ, µ, η,m)
(
1 + min

1≤i≤r
βi

)
≥ 2.

Then,

(5.5) f1 ∗ f2 ∗ · · · ∗ fr(z) ∈ Sλ,µ,η
( r∏
i=1

αi,

r∏
i=1

βi,m
)
.

Proof. By hypothesis, fi(z) ∈ Sλ,µ,η(αi, βi,m), ∀ i = 1, 2, . . . , r; therefore, by

Theorem 1, we have

(5.6)
∞∑
n=2

Φn(λ, µ, η,m)(1 + βi)Cn,i ≤ 2βi(1− αi), ∀ i = 1, 2, . . . , r;

and

(5.7)
∞∑
n=2

Cn,i ≤
2βi(1− αi)

(1 + βi)Φ2(λ, µ, η,m)
, ∀ i = 1, 2, . . . , r.

For βi satisfying 0 < βi ≤ 1 (i = 1, . . . , r), we observe that

∞∑
n=2

Φn(λ, µ, η,m)
[
1 +

r∏
i=1

βi

] r∏
i=1

Cn,i ≤
∞∑
n=2

Φn(λ, µ, η,m)(1 + βr)
r∏
i=1

Cn,i

=
∞∑
n=2

{
Φn(λ, µ, η,m)(1 + βr)Cn,r

} r−1∏
i=1

Cn,i.

Using (5.6) for any fixed i = r, and (5.7) for the rest, it follows that

∞∑
n=2

Φn(λ, µ, η,m)
[
1 +

r∏
i=1

βi

] r∏
i=1

Cn,i(5.8)

≤

[2βr(1− αr)]
[
2r−1

r−1∏
i=1

{βi(1− αi)}
]

r−1∏
i=1

(1 + βi) {Φ2(λ, µ, η,m)}r−1

≤ 2
r∏
i=1

βi

[
1−

r∏
i=1

αi

] 2

Φ2(λ, µ, η,m)

{
1 + min

1≤i≤r
βi

}

r−1

≤ 2
r∏
i=1

βi

[
1−

r∏
i=1

αi

]
,
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because in view of (5.4):

(5.9) 0 <
2

Φ2(λ, µ, η,m)
[
1 + min

1≤i≤r
βi

] ≤ 1.

Hence with the aid of Theorem 1, the assertion (5.5) is proved. �
For αi = α and βi = β, i = 1, 2, . . . , r; Theorem 1 yields the following result:

Corollary 5. Let each of the functions f1(z), f2(z), . . . , fr(z) defined by (5.3)

be in the same class Sλ,µ,η(α, β,m). Also, let

(5.10) Φ2(λ, µ, η,m)(1 + β) ≥ 2.

Then

(5.11) f1 ∗ f2 ∗ · · · ∗ fr(z) ∈ Sλ,µ,η(α
r, βr,m).

Theorem 11. Let the functions fi(z) (i = 1, 2), defined by (5.3) be in the class

Sλ,µ,η(α, β,m). Then

(5.12) f1 ∗ f2(z) ∈ Sλ,µ,η(σ, β,m),

where

(5.13) σ = σ(α, β, λ, µ, η,m) = 1−
2β(1− α)2

(1 + β)Φ2(λ, µ, η,m)
.

The result is sharp.

Proof. In view of Theorem 1, we need to prove the following:

(5.14)
∞∑
n=2

Φn(λ, µ, η,m)(1 + β)Cn,1Cn,2
2β(1− σ)

≤ 1,

where σ is function given by (5.13).

By Cauchy-Schwarz inequality it follows from (2.2) of Theorem 1 that

(5.15)
∞∑
n=2

(1 + β)Φn(λ, µ, η,m)

2β(1− α)
·
√
Cn,1Cn,2 ≤ 1 .

Let us find largest σ such that

∞∑
n=2

(1 + β)Φn(λ, µ, η,m)

2β(1− σ)
Cn,1Cn,2(5.16)

≤
∞∑
n=2

(1 + β)Φn(λ, µ, η,m)

2β(1− α)

√
Cn,1Cn,2 ,
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which implies

(5.17)
√
Cn,1Cn,2 ≤

1− σ

1− α
with n ≥ 2.

In view of (5.15) it is sufficient to find largest Ψ such that

(5.18)
2β(1− α)

(1 + β)Φn(λ, µ, η,m)
≤

1− σ

1− α
,

which yields

(5.19) σ ≤ 1−
2β(1− α)2

(1 + β)Φn(λ, µ, η,m)
.

That is

(5.20) σ ≤ 1−
2β(1− α)2

(1 + β)
θ1(n),

where

(5.21) θ1(n) =
1

Φn(λ, µ, η,m)
.

Noting that θ1(n) is a decreasing function of n (n ≥ 2) for fixed λ·µ, η,m satisfying

0 ≤ λ ≤ µ < 1, m ∈ N and η ∈ R+ since we have for large n:

θ1(n+ 1)

θ1(n)
∼

(n+ 1)−λ

n−λ
=

(
1−

1

1 + n

)λ
≤ 1

for n ≥ 2, 0 ≤ λ < 1; and under the aforementioned constraints.

Hence

(5.22) σ ≤ σ(α, β, λ, η,m) = 1−
2β(1− α)2

(1 + β)
θ1(2).

In view of (5.14), (5.18), (5.20) and (5.22), the assertion (5.12) is hence proved.�

Lastly, by considering the functions

(5.23) fi(z) = z −
2β(1− α)

(1 + β)Φ2(λ, µ, η,m)
z2, (i = 1, 2),

it can be shown that the result is sharp.
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