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ON n-PERMUTABLE AND DISTRIBUTIVE AT 0 VARIETIES

I. CHAJDA

Abstract. Mal’cev conditions characterizing varieties which are 3-permutable at 0,
distributive and n-permutable at 0, and having weakly parallel classes, are pre-

sented. Every of these conditions is completed by an example of variety having this
condition.

Some of congruence conditions were “localized at 0” by the author in [2]. How-
ever, the most useful “at 0” conditions are distributivity at 0, see [1], [4] and
permutability at 0, see e.g. [5]. Also congruence modularity was localized at 0
in [3], however no Mal’cev condition characterizing varieties with this property
was found. Moreover, recently P. Lipparini [6] characterized varieties which are
simultaneously congruence distributive and n-permutable. We also try this at-
tempt for the localized version to obtain a simple and useful Mal’cev condition. It
is worth to say that, contrary to the case of distributivity or permutability, the so
called n-permutability cannot be localized (the characterization of n-permutability
at 0 presented in [2] is unfortunately wrong; an essential error in it was found out
by Frank Lindauer). Hence, we do it here at least for 3-permutability at 0 (our
Theorem 1) and, suprisingly, such a characterization can be derived by the stan-
dard way when it is taken together with distributivity at 0 (Theorem 2). Finally,
we will describe varieties having weakly parallel congruence classes which, under
certain conditions, satisfy also a version of distributivity.

From now on, every algebra will be considered with a constant, which is either
a nullary operation of the similarity type or a nullary term. In every algebra or
variety, this constant will be denoted by the symbol 0 although for some special
algebras (e.g. for implicative algebras) it is usually denoted by another symbol
(e.g. by 1).

Recall that an algebra A is n-permutable at 0 if for every Θ,Φ ∈ Con A,

[0]Θ◦Φ◦Θ··· = [0]Φ◦Θ◦Φ···

where the symbol ◦ denotes relational product and there is exactly n factors on
every side of the foregoing equality. A variety V is n-permutable at 0 if V has
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a constant 0 and every A ∈ V has this property with respect to 0. Especially, A
(and also V) is 3-permutable at 0 if

[0]Θ◦Φ◦Θ = [0]Φ◦Θ◦Φ .

It was shown in [3] that if A is 3-permutable at 0 then A is also modular at 0.
Varieties of 3-permutable at 0 algebras can be characterized by a (strong) Mal’cev
condition:

Theorem 1. A variety V with 0 is 3-permutable at 0 if and only if there exist
a ternary term f and a binary term d satisfying

f(x, y, y) = x, f(x, x, 0) = d(x, 0), d(x, x) = 0 .

Proof. Let V be 3-permutable at 0 and FV(x, y, z) be a free algebra of V with
three free generators x, y, z. Set Θ = Θ(x, y) ∨ Θ(z, 0) and Φ = Θ(y, z). Then
x ∈ [0]Θ◦Φ◦Θ since xΘyΦzΘ0. Thus, by 3-permutability at 0, there are f, g ∈
FV(x, y, z) such that

xΦfΘgΦ0 .

Since FV(x, y, z) is a free algebra with three generators, f and g are ternary terms,
say f = f(x, y, z), g = g(x, y, z).

From 〈x, f〉 ∈ Φ we deduce f(x, y, y) = x, from 〈f, g〉 ∈ Θ we have f(x, x, 0) =
g(x, x, 0) and the last relation 〈g, 0〉 ∈ Φ yields g(x, y, y) = 0. We can set d(x, y) =
g(x, x, y). Then d(x, 0) = g(x, x, 0) = f(x, x, 0) and d(x, x) = g(x, x, x) = 0.

Conversely, let V have the terms f, d satisfying the identities of Theorem 1 and
let A = (A,F ) ∈ V, a ∈ A, Θ,Φ ∈ Con A. Suppose a ∈ [0]Θ◦Φ◦Θ. Then there are
b, c ∈ A such that aΘbΦcΘ0. We infer immediately:

a = f(a, b, b)Φf(a, b, c)Θf(b, b, 0) = d(b, 0)Θd(b, c)Φd(b, b) = 0

i.e. [0]Θ◦Φ◦Θ ⊆ [0]Φ◦Θ◦Φ. The converse inclusion can be shown analogously, i.e.
A, and hence also V, is 3-permutable at 0. �

Example 1. Consider a variety V of type (2, 2, 0) where 0 is the nullary oper-
ation and the binary operations are denoted by +, ·. Let V satisfies the identities
x · x = 0, x+ 0 = x, x+ (x · 0) = x · 0. Set

f(x, y, z) = x+ (y · z)
d(x, y) = x · y .

Then

f(x, y, y) = x+ (y · y) = x+ 0 = x

d(x, x) = x · x = 0

f(x, x, 0) = x+ (x · 0) = x · 0 = d(x, 0)

thus V is 3-permutable at 0. �
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Let us recall that an algebra A is distributive at 0 if

(d) [0]Θ∩(Φ∨Ψ) = [0](Θ∩Φ)∨(Θ∩Ψ)

for every Θ,Φ,Ψ ∈ ConA. A variety V with 0 is distributive at 0 if every A ∈ V
has this property.

It is worth saying that the identity (d) is not equivalent to its dual, see [4]. E.g.
the variety of ∨-semilattices with 0 is distributive at 0 but there is a five element
semilattice which does not satisfy the dual of (d). It was shown by J. Duda [5]
that if V is permutable at 0, (i.e. 2-permutable at 0) then V satisfies (d) if and
only if V satisfies the dual of (d).

Theorem 2. For a variety V with 0, the following conditions are equivalent:

(1) V is n-permutable at 0 and distributive at 0;
(2) For each A ∈ V and every α, β, γ ∈ Con A,

[0]γ∩(α◦β◦α◦··· ) = [0](γ∩β)◦(γ∩α)◦(γ∩β)◦···

(with n factors in both sides);
(3) There exist ternary terms q0, . . . , qn−2 and a binary term d such that

q0(x, y, x) = x, d(x, x) = 0 = d(0, x),

qi(0, x, 0) = 0 for i = 0, . . . , n− 2,

qi−1(x, x, z) = qi(x, z, z) for i = 1, . . . , n− 2

qn−2(x, x, 0) = d(x, 0) .

Proof. (1)⇐⇒(2) is evident. Prove (2) ⇒ (3): Let A = FV(x1, . . . , xn) be a
free algebra of V with n free generators x1, . . . , xn. We set

γ = Θ(x1, 0)

α = Θ(x1, x2) ∨Θ(x3, x4) ∨ · · · ∨ ρ
β = Θ(x2, x3) ∨Θ(x4, x5) ∨ · · · ∨ σ ,

where ρ = Θ(xn, 0), σ = ωA for n odd and ρ = ωA, σ = Θ(xn, 0) for n even
(ωA denotes the identity relation on A). Clearly x1γ0 and x1αx2βx3 · · · 0, whence

x1 ∈ [0]γ∩(α◦β◦α◦··· ).

By (2), there exist a0, a1, . . . , an ∈ A such that a0 = x, an = 0 and

a0(γ ∩ β)a1(γ ∩ α)a2(γ ∩ β) · · · an = 0.
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Applying the standard procedure, there are n-ary terms p1, . . . , pn satisfying

x1 = p0(x1, . . . , xn), 0 = pn(x1, . . . , xn)

pi(0, x2, . . . , xn−1, 0) = 0 for i = 0, . . . , n

pi−1(x1, x1, x3, x3, . . . , xn−1, xn−1) = pi(x1, x1, x3, x3, . . . , xn−1, xn−1)

for n even and i even,

pi−1(x1, x3, x3, . . . , xn−1, xn−1, 0) = pi(x1, x3, x3, . . . , xn−1, xn−1, 0)

for n even and i odd,

pi−1(x1, x1, x3, x3, . . . , xn−2, xn−2, 0) = pi(x1, x1, x3, x3, . . . , xn−2, xn−2, 0)

for n odd and i even,

pi−1(x1, x3, x3, . . . , xn, xn) = pi(x1, x3, x3, . . . , xn, xn)

for n odd and i odd.

We can set d(x, y) = pn−1(x, . . . , x, y) and for i = 1, . . . , n− 2

qi(x, y, z) = p1(x, . . . , x︸ ︷︷ ︸
i times

, y, z, . . . , z, 0) if i 6≡ nmod 2

and
qi(x, y, z) = pi(x, . . . , x︸ ︷︷ ︸

i times

, y, z, . . . , z) if i ≡ nmod 2 .

It is a routine way to check (3).
(3)⇒ (2): LetA = (A,F ) ∈ V and α, β, γ ∈ ConA. Suppose x ∈ [0]γ∩(α◦β◦α···).

Then there exist a0, a1, . . . , an−1 ∈ A such that

x = a0αa1βa2α · · · 0 .
Set vi = qi(ai−1, ai, ai+1) for i = 1, . . . , n−2 and vn−1 = d(an−2, an−1). Applying
(3), we have

x = a0 = q1(a0, a2, a2)βq1(a0, a1, a2) = v1αq1(a1, a1, a3)

= q2(a1, a3, a3)αq2(a1, a2, a3) = v2βq2(a2, a2, a4) = · · · = 0 ,

i.e. xβv1αv2β · · · 0. Further, qi(x, vj , 0)γqi(0, vj , 0) = 0 for all i, j, thus also
qi(x, vj , 0)γqi(x, vj+1, 0).

This yields

qi(x, x, 0)(γ ∩ β)qi(x, v1, 0)(γ ∩ α)qi(x, v2, 0)(γ ∩ β) · · · qi(x, 0, 0) ,

thus
qi(x, x, 0)µqi(x, 0, 0)

for µ = (β ∩ γ) ◦ (α ∩ γ) ◦ (β ∩ γ) · · · (n factors).
Hence, we conclude

x = q0(x, x, 0) = q1(x, 0, 0)µq1(x, x, 0) = q2(x, 0, 0)µ · · · 0 ,
proving (2). �
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Example 2. Consider a variety of groupoids with 0 satisfying the identities

x · x = 0, 0 · x = x, x · 0 = 0

(e.g. every reduct of an algebra of logic where instead of 0 we have the true-value
1 and x · y is x ⇒ y). We can take n = 2 (thus i = 0 is the only possibility) and
q0(x, y, z) = x, d(x, y) = y ·x. One can easily verify that V is distributive at 0 and
permutable at 0 (= 2-permutable at 0), i.e. arithmetical at 0 in the terminology
of [5].

Example 3. Let V be a variety of type (2, 2, 0) where the binary operations
are denoted by + and ·, and let V satisfies the identities

x · x = 0 = 0 · x
x+ 0 = x

x+ (x · 0) = x · 0
0 + (x · 0) = 0

We can set n = 3, d(x, y) = x · y, q0(x, y, z) = x and q1(x, y, z) = x+ (y · z).
Then d(x, x) = 0 = d(0, x) and

q0(0, x, 0) = 0, q1(0, x, 0) = 0 + (x · 0) = 0

q0(x, x, z) = x = x+ 0 = x+ (z · z) = q1(x, x, z)

q1(x, x, 0) = x+ (x · 0) = x · 0 = d(x, 0)

Hence, V is 3-permutable at 0 and distributive at 0.

In the remaining part of the paper, we introduce a new concept which is related
with distributivity at 0: A variety V with 0 has weakly parallel classes if for
every A,B ∈ V and each Θ ∈ Con A× B and for each x, y ∈ A, z, v ∈ B it holds:

〈[0, z], [0, v]〉 ∈ Θ =⇒ 〈[y, z], [y, v]〉 ∈ Θ

〈[x, 0], [y, 0]〉 ∈ Θ =⇒ 〈[x, v], [y, v]〉 ∈ Θ .

Theorem 3. A variety V with 0 has weakly parallel classes if and only if there
exist (2 + k)-ary terms q0, . . . , qn and unary terms s1, . . . , sk and binary terms
r1, . . . , rk (k ≥ 0) such that

x = qi(0, 0, s1(x), . . . , sk(x)) for i = 0, 1, . . . , n

x = q0(x, y, r1(x, y), . . . , rk(x, y))

qi(y, x, r1(x, y), . . . , rk(x, y)) = qi+1(x, y, r1(x, y), . . . , rk(x, y))

for i = 1, . . . , n− 1

y = qn(y, x, r1(x, y), . . . , rk(x, y)).
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Proof. Let V have weakly parallel classes and let A = FV(x), B = FV(x, y),
the free algebras of V with one or two free generators, respectively. Let θ =
θ([0, x], [0, y]) ∈ ConA × B. Then 〈[x, x], [x, y]〉 ∈ θ, i.e. there exist elements
z0, z1, . . . , zn ∈ A × B and binary polynomials over A × B ϕ0, . . . , ϕn such that
z0 = [x, x], zn = [x, y] and zi = ϕi([0, x], [0, y]), zi+1 = ϕi([0, y], [0, x]) for i =
0, . . . , n− 1. Hence, there exist (2 + k)-ary terms q0, . . . , qn and elements e1, . . . ,

ek ∈ A× B such that
ϕi(a, b) = qi(a, b, e1, . . . , ek) .

Since ei ∈ FV(x) × FV(x, y), there are unary terms s1, . . . , sk and binary terms
r1, . . . , rk with ej = [sj(x), rj(x, y)] for j = 1, . . . , k. Hence

[x, x] = q0([0, x], [0, y], [s1(x), r1(x, y)], . . . , [sk(x), rk(x, y)])

qi([0, y],[0, x], [s1(x), r1(x, y)], . . . , [sk(x), rk(x, y)])

= qi+1([0, x], [0, y], [s1(x), r1(x, y)], . . . , [sk(x), rk(x, y)])

[x, y] = qn([0, y], [0, x], [s1(x), r1(x, y)], . . . , [sk, rk(x, y)]).

If we write it componentwise, we obtain the identities of Theorem 3.
Conversely, let A,B ∈ V and θ ∈ ConA × B. Suppose x, y ∈ A and z, v ∈ B

and
〈[0, z], [0, v]〉 ∈ θ .

Applying the identities of Theorem 3, we easily derive 〈[y, z], [y, v]〉 ∈ θ. Analo-
gously it can be shown the second condition of the definition, i.e V has weakly
parallel classes. �

Remark. It is well-known that if a variety V is congruence-permutable then,
instead of the n+1 elements z0, z1, . . . , zn of the foregoing proof, one can take only
one z0 because n = 0 (the reason is that instead of the congruence Θ, only the least
reflexive and compatible relation containing the pair 〈[0, x], [0, y]〉 is considered).

By a quite routine modification of the proof of Theorem 3, we obtain the proof
of the following

Theorem 4. Let V be a congruence-permutable variety with 0. Then V has
weakly parallel classes if and only if there exist a (1 + k)-ary term q and unary
terms s1, . . . , sk and binary terms r1, . . . , rk such that

x = q(0, s1(x), . . . , sk(x))

x = q(x, r1(x, y), . . . , rk(x, y))

y = q(y, r1(x, y), . . . , rk(x, y)) .
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Example 4. Consider a variety V of type (2, 2, 0) where the nullary operation
is 0 and the binary operations are denoted by ∨,∧ and V satisfies the identities:

0 ∨ x = x

x ∨ (x ∧ y) = x

y ∨ (x ∧ y) = y .

We can set s1(x) = x, r1(x, y) = x ∧ y, k = 1, n = 0 and q0(x1, x2, z) = x1 ∨ z.
Then

q0(0, 0, s1(x)) = 0 ∨ x = x

q0(x, y, r1(x, y)) = x ∨ (x ∧ y) = x

q0(y, x, r1(x, y)) = y ∨ (x ∧ y) = y

thus V has weakly parallel classes.

Remark. If some congruence condition is characterized by a Mal’cev condition
then all terms of this Mal’cev condition are idempotent. It has appeared firstly
in [1], that there are Mal’cev conditions characterizing conditions at 0 (alias con-
ditions on 0-classes) which contain non-idempotent terms. Other such Mal’cev
conditions are presented in this paper. All terms p of these conditions satisfies
only p(0, . . . , 0) = 0.
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