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A PRIORI BOUNDS FOR GLOBAL SOLUTIONS

OF A SEMILINEAR PARABOLIC PROBLEM

P. QUITTNER

Introduction

Consider the problem

(P)


ut = ∆u+ |u|p−1u, x ∈ Ω, t ∈ (0,∞),

u = 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a smoothly bounded domain in Rn, n ≥ 2 and 1 < p < pS := n+2
n−2

(pS =∞ if n = 2). It is known that global solutions of this problem are bounded
(see [CL] or [FL]). Moreover, the corresponding bound is known to depend only
on some suitable norm of the initial condition u0 provided u0 ≥ 0 (cf. [G]) or
p < pCL (cf. [CL]), where

pCL =
3n+ 8
3n− 4

< pS .

The main purpose of this paper is to improve the result of Cazenave and Lions in
[CL] by proving the same a priori bound for p < pS .

The proof of our result is based on the original proof of Cazenave and Lions
combined with a bootstrap argument and maximal regularity estimates. If n > 3
then we are able to prove our result also by another method which does not use
the property of maximal regularity. Consequently, the second method can be
generalized also to problems where the maximal regularity is not known (or does
not hold).

The a priori bounds that we study seem to play a crucial role in several appli-
cations. Let us mention two of them. The first one is concerned with the study of
blow-up rates of solutions of some classes of parabolic problems; in this context,
the exponent pCL appears in [GK], [FM], [M], for example. The second appli-
cation consists in the dynamical proof of existence of sign changing stationary
solutions (see [Q2]).
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A priori estimates for global solutions of problem (P) were first shown in [NST]
for Ω convex, u0 ≥ 0 and p < (n + 2)/n. In this paper, the corresponding bound
does not depend even on the norm of the initial condition. Such an estimate cannot
be obtained for signed solutions since problem (P) possesses stationary solutions
whose norms (and energies) are arbitrarily large.

If we consider the set D of all initial conditions u0 (in an appropriate function
space) for which the solution u of (P) exists globally and tends to zero as t→∞,
then the ω-limit set of any bounded solution starting on the boundary of D consists
of nontrivial stationary solutions of (P). Since there are no positive stationary
solutions for p ≥ pS , the a priori estimates for global (positive) solutions of (P)
cannot be true in this case.

Main Result

We denote by ‖·‖q, ‖·‖k,q or ‖·‖Ck the usual norms in Lq(Ω), W k
q (Ω) or Ck(Ω̄),

respectively. We shall often use the fact that ‖u‖1,2 ≤ C‖∇u‖2 for u ∈ X := {v ∈
W 1

2 (Ω) : v = 0 on ∂Ω}. We also denote by A the operator −∆ with homogeneous
Dirichlet boundary conditions on ∂Ω. It is well known that A considered as an
operator in Lq(Ω) has bounded imaginary powers for any 1 < q <∞.

By a global solution of (P) we mean a function u ∈ C
(
[0,∞), X

)
which is a

classical solution of (P) for t > 0 and fulfills u(0) = u0. The variation-of-constants
formula and standard bootstrap arguments show that the following Lemma holds.

Lemma. (i) For any C > 0 there exists δ > 0 such that any solution u satis-
fying ‖u(t0)‖1,2 ≤ C fulfills ‖u(t)‖1,2 ≤ 2C for any t ∈ [t0, t0 + δ].

(ii) For any C, δ > 0 there exists C̃ > 0 such that any solution u satisfying
‖u(t)‖1,2 ≤ C on [t0, t0 + δ] fulfills ‖u(t)‖C2 ≤ C̃ for any t ∈ [t0 + δ/2, t0 + δ].

The main result of this paper is the following

Theorem. Let p < pS and δ0, C0 > 0. Then there exists a constant C > 0 (de-
pending only on p, δ0, C0) with the following property: If u(t, u0) is a global solution
with the initial condition u0 ∈ X satisfying ‖u0‖1,2 ≤ C0 then ‖u(t, u0)‖C1 ≤ C

for any t ≥ δ0.

Remark 1. Instead of initial conditions u0 in X we could consider initial
functions in Lq(Ω) and require ‖u0‖q ≤ C0, where q > (p − 1)n/2. This follows
from [BC].

Proof of Theorem. By δ < δ0 and C we shall denote various constants which
may vary from step to step and which may depend on δ0, C0 but which are
independent of u0.

Fix u0 with ‖u0‖1,2 ≤ C0 and assume that the corresponding solution u(t) =
u(t, u0) exists globally. Then u(t) ∈ C2(Ω̄) for t > 0 and supt≥δ ‖u(t)‖C2 < ∞
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(see [CL, Proposition 6]). Denote

E(u) =
1
2

∫
Ω

|∇u|2 dx− 1
p+ 1

∫
Ω

|u|p+1 dx.

It is well known that

(1)
d

dt
E
(
u(t)

)
= −

∫
Ω

u2
t (t) dx, t > 0.

Consequently, E
(
u(t)

)
≤ E(u0) ≤ C.

Multiplying the equation ut = ∆u + |u|p−1u by u, integrating by parts and
using Hölder inequality we obtain

1
2
d

dt

∫
Ω

u2(t) dx =
∫

Ω

u(t)ut(t) dx = −
∫

Ω

|∇u(t)|2 dx+
∫

Ω

|u(t)|p+1 dx

= −2E
(
u(t)

)
+
p− 1
p+ 1

∫
Ω

|u(t)|p+1 dx(2)

≥ −2E
(
u(t0)

)
+ c
(∫

Ω

|u(t)|2 dx
)(p+1)/2

, for any t ≥ t0,

where c is a positive constant. This estimate implies both E
(
u(t)

)
≥ 0 and

(3) sup
t≥0
‖u(t)‖2 < C

(otherwise u has to blow up in finite time in L2(Ω)-norm). Now the estimate
0 ≤ E

(
u(t)

)
≤ C can be written in the form

(4) 0 ≤ 1
2

∫
Ω

|∇u(t)|2 dx− 1
p+ 1

∫
Ω

|u(t)|p+1 dx ≤ C

and, due to (1), we have also

(5)
∫ ∞

0

‖ut(t)‖22 dt < C.

Similarly as in (2) we obtain also∫
Ω

u(t)ut(t) dx = −(p+ 1)E
(
u(t)

)
+
p− 1

2

∫
Ω

|∇u(t)|2 dx.

which implies

(6) ‖u(t)‖21,2 ≤ C
(
1 + ‖u(t)ut(t)‖1

)
for t > 0.



198 P. QUITTNER

Now Hölder inequality yields

‖u(t)ut(t)‖1 ≤ ‖u(t)‖2‖ut(t)‖2,

so that (6) and (3) guarantee ‖u(t)‖41,2 ≤ C
(
1 + ‖ut(t)‖22

)
. Using (5) we arrive at

(7) sup
t≥δ

∫ t+1

t

‖u(s)‖2q1,2 ds < C

for q = 2 (and δ = 0). This estimate and (4) show also

(8) sup
t≥δ

∫ t+1

t

‖u(s)‖(p+1)q
p+1 ds < C.

Now (5), (7) and the imbedding W 1
2 (Ω) ↪→ L2∗(Ω) (where 2∗ = 2n/(n − 2) if

n > 2, 2∗ > 1 is arbitrary if n = 2) yield

(9) sup
t≥δ

∫ t+1

t

(
‖ut(s)‖22 + ‖u(s)‖2q2∗

)
ds < C.

The interpolation theorem in [CL, Appendice] (cf. also the proof of Proposition 2
in [CL]) and (9) imply

(10) sup
t≥δ
‖u(t)‖λ < C

for any λ < 2∗(2q + 2)/(2q + 2∗), hence for any

(11) λ < λ1(q) :=
2n(q + 1)

q(n− 2) + n
.

Similarly, estimates (5), (8) and the interpolation theorem mentioned above imply
(10) for any

(12) λ < λ2(q) :=
(p+ 1)q + 2

q + 1
= p+ 1− p− 1

q + 1
.

Put
λ(q) = max{λ1(q), λ2(q)}.

Then (10) is true for any λ < λ(q). Notice that the function q 7→ λ(q) is (strictly)
increasing and λ(q)→ pS + 1 as q →∞.

It is well known (see [A2, Theorem 15.2] and [Q1], for example) that (10)
implies a bound for ‖u(t)‖1,2 (and, consequently, for ‖u(t)‖C1) provided p < 1+ 2λ

n ,
i.e. if

(13) p < 1 +
2λ1(q)
n

or p < 1 +
2λ2(q)
n

.
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Notice that each of the conditions in (13) is equivalent to

(14) p < p(q) :=
(n+ 2)q + n+ 4

(n− 2)q + n
,

where the function q 7→ p(q) is increasing and p(q) → pS as q → ∞. Note also
that in our case q = 2 and p(2) = pCL.

Our aim is to improve the step (6)=⇒(7). Using a priori bounds for u(t) in Lλ
with λ > 2 (instead of (3)), we obtain bound (7) with larger values of q and this
will increase the upper bounds λ(q) and p(q).

From now on, we shall proceed by two different methods. In the first one, we
shall use maximal regularity estimates. Then we shall reprove our main result (for
n > 3) by another method which does not require the maximal regularity property.

Proof based on maximal regularity
In the proof, we shall use a bootstrap argument. We know (7) for q = 2. We

shall show that the validity of (7) for some q ≥ 2 implies (7) for some q̃ > q.
Moreover, the difference q̃ − q will be bounded below by a positive constant, so
that, after finitely many steps, we end up with some q̂ for which p(q̂) > p. As
already mentioned above, this will prove the assertion.

Hence, let (7) be true for some q ≥ 2. Then (10) is true for λ < λ2(q). Choose
λ ∈

(
2, λ2(q)

)
. Then λ < p+ 1. Denote

θ =
p+ 1
p− 1

λ− 2
λ

, λ′ =
λ

λ− 1
and p1 =

p+ 1
p

.

Then θ ∈ (0, 1) and using (6), Hölder inequality, (10) and interpolation, we obtain

‖u(t)‖21,2 ≤ C
(
1 + ‖u(t)ut(t)‖1

)
≤ C

(
1 + ‖ut(t)‖λ′

)
(15)

≤ C
(
1 + ‖ut(t)‖θp1

‖ut(t)‖1−θ2

)
,

since θ
p1

+ 1−θ
2 = 1

λ′ .

Inequality (7) implies supt≥δ
∫ t+δ
t
‖u(s)‖2q1,2 < C, so that

sup
t≥δ

inf
s∈(t,t+δ)

‖u(s)‖1,2 < C

(with a new constant C depending on δ) and, consequently, enlarging δ and C and
using Lemma we get

sup
t≥δ

inf
s∈(t,t+δ)

‖u(s)‖C2 < C.

Fix t ≥ 2δ and let τ ∈ (t− δ, t) be such that

(16) ‖u(τ)‖C2 < C.



200 P. QUITTNER

We have 1 − θ = 2
p−1

(
p+1
λ − 1

)
< 2

q for λ sufficiently close to λ2(q) since the
last inequality is satisfied for λ = λ2(q). Now choose q̃ > q such that

β :=
2

(1− θ)q̃
> 1

and notice that θq̃β′ > 1 where β′ = β/(β − 1). We raise (15) to the power q̃,
integrate it from τ to (t+1), use Hölder inequality, (5), maximal Sobolev regularity
(see [A1, Theorem III.4.10.7]), (16) and (4) to get∫ t+1

τ

‖u(s)‖2q̃1,2 ≤ C
(

1 +
∫ t+1

τ

‖ut(s)‖θq̃p1
‖ut(s)‖(1−θ)q̃2 ds

)
≤ C

(
1 +

(∫ t+1

τ

‖ut(s)‖θq̃β
′

p1
ds
)1/β′ (∫ t+1

τ

‖ut(s)‖22 ds
)1/β

︸ ︷︷ ︸
≤C

)

≤ C
(

1 +
(∫ t+1

τ

‖|u(s)|p‖θq̃β
′

p1
ds
)1/β′

+ ‖u(τ)‖θq̃C2

)
≤ C

(
1 +

(∫ t+1

τ

‖u(s)‖pθq̃β
′

p+1 ds
)1/β′)

≤ C
(

1 +
(∫ t+1

τ

‖u(s)‖2pθq̃β
′/(p+1)

1,2 ds
)1/β′)

.

Now we see that the last estimate implies (7) with q̃ instead of q provided 2pθq̃β′

p+1 ≤
2q̃, that is if θβ′ ≤ p1. This condition is equivalent to

(17) p ≤ λ(q̃ − 1)− q̃
q̃ − 2

.

Considering q̃ → q+ and λ→ λ2(q)− we see that it is sufficient to verify

p(q − 2) < λ2(q)(q − 1)− q,

which is equivalent to (p − 1)2q > 0. Consequently, the sufficient condition for
bootstrap is satisfied and we are done (the uniform lower estimate for q̃−q follows
by an obvious contradiction argument).

Proof without maximal regularity (n > 3)
In this proof, we shall use a bootstrap argument again. First denote

(18) C∞ = max{1, sup
t≥δ
‖u(t)‖C1}

and notice that C∞ depends on u0.
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In the bootstrap step, we shall assume

(19) sup
t≥δ
‖u(t)‖λ < Cλ

(where Cλ may depend on u0, Cλ ≥ 1, λ < p+ 1) and we shall show

(20) sup
t≥δ
‖u(t)‖λ̃ < CC

(p+1)/2
λ Cεp/2∞ ,

where ε > 0 can be chosen arbitrarily small, λ̃ > λ, λ̃ − λ is bounded below by
a positive constant (which does not depend on ε) and C = C(ε). Together with
initial estimate (10) for λ < λ(2), this will imply

(21) sup
t≥δ
‖u(t)‖Λ < CCεM1

∞ ,

where Λ ≥ p + 1, M1 = p
2

∑k
i=0

(
p+1

2

)i and k is the number of bootstrap steps
needed to get from initial λ to Λ (the number k does not depend on the value
of ε). Due to (4), this implies the same bound for u(t) in W 1

2 and, finally, standard
bootstrap procedure yields

(22) sup
t≥δ
‖u(t)‖C1 ≤ CCεM1M2

∞ ,

where M2 is some constant depending on p and the number of bootstrap steps in
the second bootstrap procedure. Although the value of δ in (22) may differ from
that in (18), the uniform boundedness of ‖u(t)‖C1 on intervals of the type [δ1, δ2]
(cf. Lemma) together with (18), (22) and the choice ε < 1/(M1M2) imply our
assertion.

Hence assume (19) for some λ < p + 1. Since n > 3 implies λ(2) ≥ λ1(2) =
6n

3n−4 ≥ pS > p, we may assume λ > p. Put

(23) ν =
λ

p
− 1, θ =

1 + ν

1− ν
λ− 2
λ

, λ′ =
λ

λ− 1
.

Then ν ≤ 1/(λ− 1), θ ∈ (0, 1) and using (6), Hölder inequality, (19) and interpo-
lation, we obtain (cf. (15))

‖u(t)‖21,2 ≤ C
(
1 + ‖u(t)ut(t)‖1

)
≤ CCλ

(
1 + ‖ut(t)‖λ′

)
(24)

≤ CCλ
(
1 + ‖ut(t)‖θ1+ν‖ut(t)‖1−θ2

)
.

An obvious estimate based on the variation of constants formula implies

‖u(t)‖2,1+ν ≤ C‖u(δ)‖2,1+ν + C

∫ t

δ

e−ω(t−τ)

(t− τ)1−ε/2 ‖|u(s)|p‖ε,1+ν ds
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for some ω > 0 and any t > δ. Since ‖u(δ)‖2,1+ν ≤ C, we obtain

(25) ‖u(t)‖2,1+ν ≤ C
(
1 + max

s≥δ
‖|u(s)|p‖ε,1+ν

)
.

Now using interpolation, assumption (19) and p(1 + ν) = λ, we obtain

‖|u(s)|p‖ε,1+ν ≤ ‖|u(s)|p‖1−ε1+ν‖|u(s)|p‖ε1,1+ν(26)

≤ C‖u(s)‖(1−ε)pλ ‖|u(s)|p‖εC1 ≤ CCpλC
εp
∞ .

The equation ut = ∆u+ u|u|p−1 together estimates (25) and (26) imply

(27) ‖ut(t)‖1+ν ≤ ‖u(t)‖2,1+ν + ‖|u(t)|p‖1+ν ≤ CCpλC
εp
∞ .

Put

(28) q = q(λ) :=
2

1− θ
=

(1− ν)λ
1 + ν − νλ

=
2p− λ
p+ 1− λ

.

Raising (24) to the power q and using (27) and (5), we obtain the following estimate∫ t+1

t

‖u(s)‖2q1,2 ds ≤ CC
q
λ

(
1 + sup

t≤s≤t+1
‖ut(s)‖θq1+ν

∫ t+1

t

‖u(s)‖22 ds
)

≤ CCq+pθqλ Cεpθq∞ ≤ CCq(p+1)
λ Cεpq∞ .

The last estimate and the interpolation theorem in [CL, Appendice] imply (20)
provided λ̃ < λ(q). Moreover, the definition of λ2(q) in (12) and (28) show that
λ(q) ≥ λ2(q) > λ. This shows that the bootstrap is always possible.

The estimate for λ̃− λ from below follows again by a contradiction argument:
let {λ(k)} be an increasing sequence, λ(k) < p + 1, define q(k) = q(λ(k)) by (28)
and assume λ(q(k)) − λ(k) → 0. Denote λ∞ := limk→∞ λ(k) ≤ p + 1. If λ∞ <

p + 1 then the continuity of the functions λ 7→ q(λ) and q 7→ λ(q) together with
λ
(
q(λ∞)

)
> λ∞ yields a contradiction. If λ∞ = p + 1 then q(k) → ∞ and

λ(q(k)) → pS + 1 > p + 1 which yields a contradiction again. This concludes the
proof. �

Remark 2. The proof without maximal regularity can be repeated also for
n = 3. Anyhow, in this case we have to restrict ourselves to p < λ(2), that is
p < 4. Since 4 > pCL, the method still yields an improvement of the result of
Cazenave and Lions.

Remark 3. If we used estimate (10) only for λ < λ1(q) in the boostrap pro-
cedures above then we would need the following additional condition on p:

(29) p < p∗ :=
9n2 − 4n+ 16

√
n(n− 1)

(3n− 4)2

in order to quarantee q̃ > q or λ̃ > λ for any q or λ, respectively.
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