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SUMMATION FORMULAE FOR THE LEGENDRE POLYNOMIALS

SUBUHI KHAN and A. A. AL-GONAH

Abstract. In this paper, summation formulae for the 2-variable Legendre polynomials in terms of

certain multi-variable special polynomials are derived. Several summation formulae for the classical
Legendre polynomials are also obtained as applications. Further, Hermite-Legendre polynomials are
introduced and summation formulae for these polynomials are also established.

1. Introduction and preliminaries

We recall that the 2-variable Legendre polynomials (2VLeP) Rn(x, y) are defined by the series [13]

Rn(x, y) = (n!)2
n∑

k=0

(−1)n−kykxn−k

(k!)2[(n− k)!]2
(1.1)

and specified by the following generating function

C0(−yt) C0(xt) =
∞∑

n=0

Rn(x, y)
tn

(n!)2
,(1.2)
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where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi functions Cn(x) are
defined as [20]

Cn(x) =
∞∑

r=0

(−1)rxr

r!(n+ r)!
.(1.3)

The 2VLeP Rn(x, y) are linked to the classical Legendre polynomials Pn(x) [1] by the following
relation

Rn

(
1− x

2
,

1 + x

2

)
= Pn(x).(1.4)

Further, we recall a second form of the 2-variable Legendre polynomials (2VLeP) Sn(x, y) which
are defined by the series [4, p. 158] (see also [9])

Sn(x, y) = n!
n∑

k=0

(−1)kxkyn−2k

(k!)2(n− 2k)!
(1.5)

and specified by the following generating function

exp(yt) C0(xt2) =
∞∑

n=0

Sn(x, y)
tn

n!
.(1.6)

Next, we recall that the higher-order Hermite polynomials, some times called the Kampé de
Fériet or the Gould-Hopper polynomials (GHP) H(m)

n (x, y), are defined as [18, p. 58, (6.2)] (see
also [3])

gm
n (x, y) = H(m)

n (x, y) = n!
[ n

m ]∑
k=0

ykxn−mk

k!(n−mk)!
,(1.7)
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where m is a positive integer. These polynomials are specified by the generating function

exp(xt+ ytm) =
∞∑

n=0

H(m)
n (x, y)

tn

n!
.(1.8)

In particular, we note that

H(1)
n (x, y) = (x+ y)n,(1.9)

H(2)
n (x, y) = Hn(x, y),(1.10)

where Hn(x, y) denotes the 2-variable Hermite-Kampé de Fériet polynomials (2VHKdFP) [2],
defined by the generating function

exp(xt+ yt2) =
∞∑

n=0

Hn(x, y)
tn

n!
.(1.11)

We note the following link between the 2VHKdFP Hn(x, y) and the 2VLeP Sn(x, y) [9, p. 613]

Hn(y,−D−1
x ) = Sn(x, y),(1.12)

where D−1
x denotes the inverse of the derivative operator Dx := ∂

∂x and is defined in such a way
that

D−n
x

{
f(x)

}
=

1
(n− 1)!

∫ x

0

(x− ξ)n−1f(ξ)dξ,(1.13)

so that for f(x) = 1, we have

D−n
x

{
1
}

=
xn

n!
.(1.14)
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In view of equations (1.8) and (1.11), we note the following link

H(2)
n

(
x,−1

2

)
= Hn

(
x,−1

2

)
= Hen(x),(1.15)

where Hen(x) denotes the classical Hermite polynomials [1].
Also, we recall that the 2-variable generalized Laguerre polynomials (2VgLP) mLn(x, y) are

defined by the series [12, p. 213]

mLn(x, y) = n!
[ n

m ]∑
r=0

xryn−mr

(r!)2(n−mr)!
(1.16)

and by the following generating function

exp(yt) C0(−xtm) =
∞∑

n=0

mLn(x, y)
tn

n!
.(1.17)

We note the following link between the 2VgLP mLn(x, y) and the GHP H
(m)
n (x, y) [12, p. 213]

mLn(x, y) = H(m)
n (y,D−1

x ).(1.18)

In particular, we note that

2Ln(−x, y) = Sn(x, y),(1.19)

1Ln(−x, y) = Ln(x, y),(1.20)

where Ln(x, y) denotes the 2-variable Laguerre polynomials (2VLP) [14] (see also [16]), defined
by means of the generating function

exp(yt) C0(xt) =
∞∑

n=0

Ln(x, y)
tn

n!
.(1.21)
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In terms of classical Laguerre polynomials Ln(x) [1], it is easily seen from definition (1.16) and
relation (1.20) that

1Ln(−x, 1) = Ln(x, 1) = Ln(x).(1.22)

Again, we recall that the 2-variable generalized Laguerre type polynomials (2VgLtP) [m]Ln(x, y)
are defined by the series [7, p. 603]

[m]Ln(x, y) = n!
[ n

m ]∑
k=0

yk(−x)n−mk

k![(n−mk)!]2
(1.23)

and by the following generating function

exp(ytm) C0(xt) =
∞∑

n=0

[m]Ln(x, y)
tn

n!
.(1.24)

For m = 2 and x → −x, the polynomials [m]Ln(x, y) reduce to the 2-variable Hermite type
polynomials (2VHtP) Gn(x, y) [9], i.e., we have

[2]Ln(−x, y) = Gn(x, y).(1.25)

In view of equations (1.21) and (1.24), we note the following link

[1]Ln(x, y) = Ln(x, y).(1.26)

Further, we recall that the 3-variable Laguerre-Hermite polynomials (3VLHP) LHn(x, y, z) are
defined by the series [15, p. 241]

LHn(x, y, z) = n!
[ n
2 ]∑

k=0

zkLn−2k(x, y)
k!(n− 2k)!

(1.27)
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and specified by the following generating function

exp(yt+ zt2) C0(xt) =
∞∑

n=0

LHn(x, y, z)
tn

n!
.(1.28)

In particular, we note that

LHn

(
x, y,−1

2

)
= LH

∗
n(x, y),(1.29)

LHn(x, 1,−1) = LHn(x),(1.30)

where LH
∗
n(x, y) denotes the 2-variable Laguerre-Hermite polynomials (2VLHP) [16] and LHn(x)

denotes the Laguerre-Hermite polynomials (LHP) [17], respectively.
Furthermore, we recall that the 3-variable Hermite-Laguerre polynomials (3VHLP) HLn(x, y, z)

are defined by the series [11, p. 58]

HLn(x, y, z) = n!
n∑

k=0

(−1)kzn−kHk(x, y)
(k!)2(n− k)!

(1.31)

and by the following generating function

exp(zt) HC0(x, y; t) =
∞∑

n=0

HLn(x, y, z)
tn

n!
,(1.32)

where HC0(x, y; t) denotes the Hermite-Tricomi functions defined by the following operational
definition [11, p. 58]

HC0(x, y; t) = exp
(
y
∂2

∂x2

){
C0(xt)

}
.(1.33)
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The special polynomials of more than one variable provide new means of analysis for the solutions
of a wide class of partial differential equations often encountered in physical problems. It happens
very often that the solution of a given problem in physics or applied mathematics requires the
evaluation of infinite sums, involving special functions. Problems of this type arise, for example,
in the computation of the higher-order moments of a distribution or in evaluation of transition
matrix elements in quantum mechanics. In [5], Dattoli showed that the summation formulae
of special functions, often encountered in applications ranging from electromagnetic processes to
combinatorics, can be written in terms of Hermite polynomials of more than one variable.

In this paper, we derive the explicit summation formulae for the 2VLeP Rn(x, y) in terms of
the product of certain multi-variable special polynomials. Also, we derive the implicit summation
formula for the 2VLeP Sn(x, y). Summation formulae for the classical Legendre polynomials
Pn(x) are obtained as special cases of the summation formulae for the 2VLeP Rn(x, y). Further,
the Hermite-Legendre polynomials HRn(x, y, z) are introduced and summation formulae for these
polynomials are also obtained.

2. Summation formulae for the 2-variable Legendre polynomials

First, we prove the following explicit summation formula for the 2VLeP Rn(x, y) by using generat-
ing functions (1.8), (1.21) and (1.24) of GHP H

(m)
n (x, y), 2VLP Ln(x, y) and 2VgLtP [m]Ln(x, y),

respectively.
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Theorem 2.1. The following explicit summation formula for the 2VLePRn(x, y) in terms of the
product of GHP H

(m)
n (x, y), 2VgLtP [m]Ln(x, y) and 2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr(−z, w) Ln−k−r(x, y).

(2.1)

Proof. Consider the product of 2VLP generating function (1.21) and 2VgLtP generating func-
tion (1.24) in the following form

exp(yt) C0(xt) exp(wtm) C0(zt)

=
∞∑

n=0

∞∑
r=0

Ln(x, y) [m]Lr(z, w)
tn+r

n!r!
.

(2.2)

Replacing n by n− r in the r.h.s. of equation (2.2) and then using the lemma [20, p. 100]

∞∑
n=0

∞∑
r=0

A(r, n) =
∞∑

n=0

n∑
r=0

A(r, n− r),(2.3)

we find

C0(xt) C0(zt) exp(yt+ wtm)

=
∞∑

n=0

n∑
r=0

(
n

r

)
[m]Lr(z, w) Ln−r(x, y)

tn

n!
,

(2.4)
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which on shifting the exponential to the r.h.s. and then using the generating function (1.8) in the
r.h.s. becomes

C0(xt) C0(zt)

=
∞∑

n=0

∞∑
k=0

n∑
r=0

(
n

r

)
H

(m)
k (−y,−w) [m]Lr(z, w) Ln−r(x, y)

tn+k

n!k!
.

(2.5)

Again, replacing n by n− k in the r.h.s. of equation (2.5), we get

C0(zt) C0(xt)

=
∞∑

n=0

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr(z, w) Ln−k−r(x, y)

tn

n!
.

(2.6)

Finally, using generating function (1.2) in the l.h.s. of equation (2.6) and then equating the
coefficients of like powers of t in the resultant equation, we get assertion (2.1) of Theorem 2.1. �

Remark 2.1. Taking m = 2 in assertion (2.1) of Theorem 2.1 and using relations (1.10) and
(1.25), we deduce the following consequence of Theorem 2.1.

Corollary 2.1. The following summation formula for the 2VLeP Rn(x, y) involving product of
2VHKdFP Hn(x, y), 2VHtP Gn(x, y) and 2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y,−w) Gr(z, w) Ln−k−r(x, y).

(2.7)
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Note. For y = 1, equation (2.7) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−1,−w) Gr(z, w) Ln−k−r(x).

(2.8)

Again, for w = 1
2 , equation (2.7) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−y) Gr

(
z,

1
2

)
Ln−k−r(x, y).

(2.9)

Remark 2.2. Taking m = 1 in assertion (2.1) of Theorem 2.1 and using relations (1.9) and
(1.26), we deduce the following consequence of Theorem 2.1.

Corollary 2.2. The following explicit summation formula for the 2VLeP Rn(x, y) in terms of
product of the 2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−1)k(y + w)k Lr(−z, w) Ln−k−r(x, y).

(2.10)

Note. For w = −y, equation (2.10) yields to the following summation formula

Rn(x, z) = n!
n∑

r=0

(
n

r

)
Lr(−z,−y) Ln−r(x, y),(2.11)



JJ J I II

Go back

Full Screen

Close

Quit

which for y = 1 gives the following summation formula

Rn(x, z) = n!
n∑

r=0

(
n

r

)
Lr(−z,−1) Ln−r(x).(2.12)

Again, for y = w = 1, equation (2.10) yields to the following summation formula:

Rn(x, z) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−2)k Lr(−z) Ln−k−r(x).(2.13)

Remark 2.3. Using generating functions (1.11), (1.21) and (1.28) of 2VHKdFP Hn(x, y),
2VLP Ln(x, y) and 3VLHP LHn(x, y, z) respectively and proceeding on the same lines of proof of
Theorem 2.1, we get the following result.

Theorem 2.2. The following explicit summation formula for the 2VLePRn(x, y) in terms of the
product of 2VHKdFP Hn(x, y), 3VLHP LHn(x, y, z) and 2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − w,−v) LHr(−z, w, v) Ln−k−r(x, y).

(2.14)

Note. For y = 1 and v = − 1
2 , equation (2.14) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk

(
−1− w, 1

2

)
LH
∗
r (−z, w) Ln−k−r(x).

(2.15)
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Again, for y = 1 and v = 1
2 , equation (2.14) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−1− w) LHr

(
−z, w, 1

2

)
Ln−k−r(x).

(2.16)

Further, for w = 1 and v = −1, equation (2.14) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − 1, 1) LHr(−z) Ln−k−r(x, y).

(2.17)

Next, we prove the following result involving the 2VLeP Sn(x, y).

Theorem 2.3. The following implicit summation formula for the 2VLePSn(x, y) holds true

Sk+l(y, w) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+rSk+l−n−r(y, x).(2.18)

Proof. We start by a recently derived summation formula for the 2VHKdFP Hn(x, y) [19,
p. 1539]

Hk+l(w, y) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+rHk+l−n−r(x, y).(2.19)
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Replacing y by −D−1
y in the above equation, we have

Hk+l(w,−D−1
y ) =

k,l∑
n,r=0

(
k

n

)(
l

r

)
(w − x)n+rHk+l−n−r(x,−D−1

y ),(2.20)

which using relation (1.12) gives assertion (2.18) of Theorem 2.3. �

Alternate proof. Replacing y by D−1
y in the following result [19, p. 1538]

H
(m)
k+l (w, y) =

k,l∑
n,r=0

(
k

n

)(
l

r

)
(w − x)n+rH

(m)
k+l−n−r(x, y)(2.21)

and then using link (1.18), we get the following summation formula for 2VgLP mLn(x, y)

mLk+l(y, w) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+r

mLk+l−n−r(y, x).(2.22)

Now, taking m = 2 and replacing y by −y in equation (2.22) and using relation (1.19), we get
assertion (2.18) of Theorem 2.3. �

Remark 2.4. Taking l = 0 in assertion (2.18) of Theorem 2.3, we deduce the following conse-
quence of Theorem 2.3

Corollary 2.3. The following implicit summation formula for the 2VLePSn(x,y) holds true

Sk(y, w) =
k∑

n=0

(
k

n

)
(w − x)n Sk−n(y, x).(2.23)
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3. Applications

In this section, we derive the summation formulae for the classical Legendre polynomials Pn(x) as
applications of the results derived in the previous section.

I. Replacing x by 1−x
2 and z by 1+x

2 in equations (2.1), (2.7), (2.10) and (2.11) and using relation
(1.4), we get the following explicit summation formulae for the classical Legendre polynomials
Pn(x)

Pn(x)(3.1)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr

(
−1− x

2
, w

)
Ln−k−r

(
1− x

2
, y

)
,

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y,−w)Gr

(
1 + x

2
, w

)
Ln−k−r

(
1− x

2
, y

)
,(3.2)

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−1)k(y+w)kLr

(
−1− x

2
, w

)
Ln−k−r

(
1−x

2
, y

)
,(3.3)

Pn(x) = n!
n∑

r=0

(
n

r

)
Lr

(
−1− x

2
,−y

)
Ln−r

(
1− x

2
, y

)
.(3.4)
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Next, taking y = 1 in equations (3.2) and (3.4) and using relation (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−1,−w) Gr

(
1 + x

2
, w

)
Ln−k−r

(
1− x

2

)
,(3.5)

Pn(x) = n!
n∑

r=0

(
n

r

)
Lr

(
−1− x

2
,−1

)
Ln−r

(
1− x

2

)
.(3.6)

Further, taking y = w = 1 in equation (3.3) and using relation (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−2)k Lr

(
−1− x

2

)
Ln−k−r

(
1− x

2

)
.(3.7)

Furthermore, taking w = 1
2 in equation (3.2) and using relation (1.15), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−y) Gr

(
1 + x

2
,

1
2

)
Ln−k−r

(
1− x

2
, y

)
.(3.8)

II. Replacing x by 1−x
2 and z by 1+x

2 in equation (2.14) and using relation (1.4), we get the
following explicit summation formulae for the classical Legendre polynomials Pn(x)

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
× Hk(−y − w,−v) LHr

(
−1− x

2
, w, v

)
Ln−k−r

(
1− x

2
, y

)
.

(3.9)
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Next, taking y = 1 and v = − 1
2 in equation (3.9) and using relations (1.22) and (1.29), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
×Hk

(
−1− w, 1

2

)
LH
∗
r

(
−1− x

2
, w

)
Ln−k−r

(
1− x

2

)
.

(3.10)

Further, taking y = 1 and v = 1
2 in equation (3.9) and using relations (1.15) and (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−1− w) LHr

(
−1−x

2
, w,

1
2

)
Ln−k−r

(
1−x

2

)
.(3.11)

Furthermore, taking w = 1 and v = −1 in equation (3.9) and using relation (1.30), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − 1, 1) LHr

(
−1−x

2

)
Ln−k−r

(
1− x

2
, y

)
.(3.12)

4. Concluding remarks

Operational methods can be used to simplify the derivation of the properties associated with
ordinary and generalized special functions and to define new families of functions. We recall that
the 2VHKdFP Hn(x, y) have the following operational definition

Hn(x, y) = exp
(
y
∂2

∂x2

){
xn
}
.(4.1)
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Now, in view of definition (4.1) the 3VHLP HLn(x, y, z) are specified by the following operational
definition [11, p. 58]

HLn(x, y, z) = exp
(
y
∂2

∂x2

){
Ln(x, z)

}
.(4.2)

In order to introduce Hermite-Legendre polynomials (HLeP) HRn(x, y, z), we replace y by z

in generating function (1.2) and then operate exp
(
y ∂2

∂x2

)
on both sides of the resultant equation.

Now, using operational definition (1.33) in the l.h.s. of the resultant equation, we get the following
generating function of the HLeP HRn(x, y, z)

C0(−zt) HC0(x, y; t) =
∞∑

n=0

HRn(x, y, z)
tn

(n!)2
,(4.3)

where HRn(x, y, z) are defined as

HRn(x, y, z) = exp
(
y
∂2

∂x2

){
Rn(x, z)

}
.(4.4)

It is worthy to note that the method adopted in this paper can be exploited to establish fur-
ther consequences regarding other families of special polynomials. Here, we establish summation
formulae for the HLeP HRn(x, y, z). To this aim, we consider the product of generating functions
(1.24) and (1.32) of the 2VgLtP and 3VHLP respectively, in the following form

exp(zt)HC0(x, y; t) exp(vtm) C0(wt)

=
∞∑

n,r=0

HLn(x, y, z) [m]Lr(w, v)
tn+r

n!r!
.

(4.5)
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Now, following the same lines of proof of Theorem 2.1 and in view of generating function (4.3),
we get the following summation formula for the HLeP HRn(x, y, z)

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−z,−v) [m]Lr(−w, v) HLn−k−r(x, y, z),

(4.6)

which for m = 2 gives the following summation formula

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−z,−v) Gr(−w, v) HLn−k−r(x, y, z).

(4.7)

Again, for m = 1, equation (4.6) yields to the following summation formula

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−z − v)k Lr(−w, v) HLn−k−r(x, y, z).

(4.8)

We remark that the summation formula (4.6) can also be obtained after replacing y by z, z by w
and w by v in assertion (2.1) of Theorem 2.1 and operating exp

(
y ∂2

∂x2

)
on the resultant equation

and then using operational definitions (4.2) and (4.4).
Similarly, by considering the product of generating functions (1.28) and (1.32) of the 2VgLtP

and 3VHLP, respectively, and following the same method, we get another summation formula for
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the HLeP HRn(x, y, z)

HRn(x, y, w) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
×Hk(−z − v,−u) LHr(−w, v, u) HLn−k−r(x, y, z),(4.9)

which can also be obtained after replacing y by z, z by w, w by v and v by u in assertion (2.14)
of Theorem 2.2 and operating exp

(
y ∂2

∂x2

)
on the resultant equation and then using operational

definitions (4.2) and (4.4).
Very recently Dattoli et al. [8] introduced a two-variable extension of the Legendre polynomials

Pn(x, y), defined by the generating function

1√
1 + xt+ yt2

=
∞∑

n=0

Pn(x, y) tn.(4.10)

To give another example of the method adopted in this paper, we derive a summation formula
for the 2-variable Chebyshev polynomials (2VCP) Un(x, y) [6] in terms of the product of the
polynomials Pn(x, y). To this aim, we consider the product of generating function (4.10) in the
following form

1
(1 + xt+ yt2)

=
∞∑

n=0

∞∑
r=0

Pn(x, y)Pr(x, y) tn+r.(4.11)

Replacing x by −2x in equation (4.11) and then replacing n by n−r in the r.h.s. of the resultant
equation, we find

1
(1− 2xt+ yt2)

=
∞∑

n=0

n∑
r=0

Pn−r(−2x, y)Pr(−2x, y) tn.(4.12)
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Now, using the generating function [10, p. 43] (see also [6])

1
(1− 2xt+ yt2)

=
∞∑

n=0

Un(x, y) tn(4.13)

of the 2VCP Un(x, y) in the l.h.s. of equation (4.12), we get the following summation formula

Un(x, y) =
n∑

r=0

Pn−r(−2x, y) Pr(−2x, y).(4.14)

The above examples prove the usefulness of the method adopted in this paper. Further, to bol-
ster up the contention of using operational techniques, certain new families of special polynomials
will be introduced in a forthcoming investigation.
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