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OF A GENERALIZED SASAKIAN SPACE FORM
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ABSTRACT. In the present paper, we have studied M-projectively flat generalized Sasakian space
form, n-Einstein generalized Sasakian space form and irrotational M-projective curvature tensor on
a Sasakian space form.

1. INTRODUCTION

A Riemannian manifold with constant sectional curvature C is known as real-space-form and its
curvature tensor is given by

R(X,Y)Z = C{g(Y,2)X — g(X, Z)Y}.

A Sasakian manifold (M, ¢, &, n, g) is said to be a Sasakian space form [3], if all the ¢-sectional
curvatures K (X A¢pX) are equal to a constant C', where K (X A¢X) denotes the sectional curvature
of the section spanned by the unit vector field X, orthogonal to & and ¢X. In such a case, the

Received July 11, 2012.

2010 Mathematics Subject Classification. Primary 53D10, 53D15, 53C25.

Key words and phrases. generalized Sasakian space form, M-projective curvature tensor, n-Einstein manifold, irro-
tational M-projective curvature tensor.



Riemannian curvature tensor of M is given by

R(X,Y)Z = %@(K 2)X - 9(X,2)Y}
(1.1) + %{Q(X, dZ)pY — g(Y,02)pX + 29(X, ¢Y)pZ}
c-1

+ = X)n(2)Y —n(Y)n(2)X
+9(X, Z)n(Y)§ — g(Y, Z)n(X)E}-
As a natural generalization of these manifolds, P. Alegre, D.E. Blair and A. Carriazo [3], [1]
introduced the notion of generalized Sasakian space form.
Sasakian space form and Generalized Sasakian space form have been studied by several authors,
viz., [3], [2], [6], [14], [10].
In 1971, G. P. Pokhariyal and R. S. Mishra [13] defined a tensor field W* on a Riemannian
manifold as

W*(X,Y)Z = R(X,Y)Z — ﬁ[S(Y, 2)X — S(X,2)Y
+9(Y, Z2)QX — g(X, Z2)QY]

(1.2)

Such a tensor field W* is known as M-projective curvature tensor.

The properties of the M-projective curvature tensor in Sasakian and Kaehler manifold were
studied by R. H. Ojha [11] [12]. He showed that it bridges the gap between the conformal curva-
ture tensor, coharmonic curvature tensor and concircular curvature tensor. S. K. Chaubey and R.
H. Ojha [8] studied the properties of the M-projective curvature tensor in Riemannian and Ken-
motsu manifold. S. K. Chaubey [9] also studied the properties of M-projective curvature tensor
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in LP-Sasakian manifold. C. S. Bagewadi, E. Girish Kumar and Venkatesha [4] studied irrota-
tional D-conformal curvature tensor in Kenmotsu and trans-Sasakian manifolds. C.S. Bagewadi,
Venkatesha and N.S. Basavarajappa [5] proved that if pseudo projective curvature tensor in a
LP-Sasakian manifold is irrotational, then the manifold is Einstein. Motivated by these ideas, in
the present paper, we made an attempt to study the properties of M-projective curvature tensor
in generalized Sasakian space form. The present paper is organized as follows.

In Section 2, we review some preliminary results. In Section 3, we study M-projectively flat
generalized Sasakian space form and obtain necessary and sufficient conditions for a generalized
Sasakian space form to be M-projectively flat. And in Section 4, we study 7n-Einstein generalized
Sasakian space form satisfying W*(¢, X) - R = 0. Finally in Section 5, we prove that M-projective
curvature tensor in an 7-Einstein generalized Sasakian space form is irrotational if and only if
fs = ey

2. PRELIMINARIES

An odd-dimensional Riemannian manifold (M, g) is called an almost contact manifold if there
exists a (1,1) tensor field ¢, a vector field £ and a 1-form 1 on M, such that

(2.1) P*(X) = =X +n(X)g,

(2.2) n(¢X) =0,

(2.3) 9(¢X, Y ) = g(X,Y) — n(X)n(Y),

(2.4) #6=0, 7€ =0, g(X,§=nX),

for any vector fields X,Y on M.
If in addition, £ is a Killing vector field, then M is said to be a K-contact manifold. It is well
known that a contact metric manifold is a K-contact manifold if and only if

(2.5) (Vx§) = —o(X)



for any vector field X on M.
On the other hand, the almost contact metric structure on M is said to be normal if [¢, ¢](X,Y) =
—2dn(X,Y)¢ for any X, Y, where [¢, ¢] denotes the Nijenhuis tensor of ¢ given by

[0, ¢1(X,Y) = ¢*[X, Y] + [¢X, ¢Y] — ¢[¢X, Y] — 4[X, ¢Y].

A normal contact metric manifold is called a Sasakian manifold. It can be proved that Sasakian
manifold is K-contact, and that an almost contact metric manifold is Sasakian if and only if

(2.6) (Vxo)(Y) = g(X,Y)§ —n(Y)X.

Given an almost contact metric manifold (M, ¢, &, 1, g), we say that M is an generalized Sasakian
space form if there exists three functions f1, fo and f3 on M such that

R(X,Y)Z = fi{g(Y,2)X — g(X, Z2)Y}
+ fo{9(X,92)9Y — g(Y, $Z)$pX + 29(X, ¢Y)pZ}
+ f3s{n(X)n(2)Y —n(Y)n(Z2)X
+9(X, Z)n(Y)§ — g(Y, Z)n(X)E}

2.7)

for any vector fields X,Y,Z on M, where R denotes the curvature tensor of M. This kind of
manifold appears as a natural generalization of the well-known Sasakian space form M (C), which
can be obtained as particular cases of generalized Sasakian space form by taking f; = % and

fo=fs =<2



Further in a (2n + 1)-dimensional generalized Sasakian space form, we have [1]

(2.8) QX = (2nf1 +3f2 — f3)X — (3f2 + (2n — 1) f3)n(X)§,

(2.9) S(X,Y) = (@2nfi+3f2— f3)9(X,Y) = Bf2 + (2n — 1) f3)n(X)n(Y),
(2.10) r=2n(2n+1)f1 +6nfs —4nfs,

(2.11) R(X,Y)¢ = (fi — f5)In(Y)X — n(X)Y],

(2.12) R(&X)Y = (f1 — f3)lg(X,Y)§ —n(Y)X],

(2.13) n(R(X,Y)Z) = (f1 = fs)lg(Y, Z)n(X) — g(X, Z)n(Y)],

(2.14) S(X,€) = 2n(f1 — f3)n(X).

3. M-PROJECTIVELY FLAT GENERALIZED SASAKIAN SPACE FORM

For a (2n+1)-dimensional (n > 1) M-projectively flat generalized Sasakian space form, from (1.2),

we have
(3.1) R(X,Y)Z = %[S(Y, Z)X — 8(X,2)Y +g(Y, Z)QX — g(X, Z)QY].
e In view of (2.8) and (2.9), the equation (3.1) takes the form
Full Screer R(X,Y)Z = 1-[2@nfi +3f — fs){g(V, )X — (X, Z)Y}
Close (3-2) — (3f2+ @n = Dfs) n(¥V)n(2)X — n(X)n(2)Y

+9(Y, Z)n(X)§ — g(X, Z)n(Y)E}].

Quit




Using (2.7), the equation (3.2) reduces to
fi{g(Y,2)X —g(X, 2)Y}
+ f2{9(X,02)9Y — g(Y, ¢Z)¢X +29(X, ¢Y)9Z}
+ f3{n(XOn(2)Y —n(Y)n(2)X} + 9(X, Z)n(Y)§ — g(Y, Z)n(X)E}
= [200fi +3f — )oY, 2)X — g(X, 2)Y)
= Bfa+ (2n =1 fs){n(Y)n(2)X
—n(X)n(2)Y +g(Y, 2)n(X)¢§ — g(X, Z)n(Y)E}].
Replacing Z by ¢Z in (3.3), we obtain
fi{g(Y,02)X — g(X,02)Y}
+ fo{g(X, 9 Z)0Y — (Y, 9*Z2)$X + 29(X, Y ) Z}
(3.4) + f3{9(X, 0Z)n(Y)§ — (Y, 9Z)n(X)&}

= - 20nf: + 362 ) {9(¥,02)X — g(X,62)Y)
= (3f24+ 2n— 1) f3){g(Y,0Z)n(X)¢ — 9(X, 6 Z)n(Y)E}].
Putting X = ¢ in (3.4), we get
Anfrg(Y,9Z)€ — Anfsg(Y, 9 Z)§
= [dnfi +3fo — (1 +2n) f3]g(Y, ¢ Z)¢.
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o (3. (1 — 2n)fs — 3£alg(Y, Z)¢ = 0.




Since g(Y, ¢Z) # 0, it follows from (3.6) that

3
(3.7) o= Ty

Conversely, suppose that

__3f
fa = (1—2n)

holds. Then in view of (2.7) and (2.9), we can write the equation (1.2) as

W*(X,Y, Z,W) = f2{g(X,0Z)g(6Y, W) — g(Y,$Z)g(pX, W)
(3.8) +29(X, 8Y)g(¢pZ, W)} + fa{n(X)n(Z2)g(Y, W)
—n(Y)n(2)g(X, W) + g(X, Z)n(Y )n(W)

=9, Z)n(X)n(W) + g(Y, 2)g(X, W) — g(X, Z)g(Y, W)},

where W*(X,Y, Z,W) = g(W*(X,Y)Z,W).
Go back Replacing X by ¢X and Y by ¢Y in (3.8), we get

Full Screen

WH(¢X, Y, Z,W) = folg(¢X,02)g(6°Y, W) — (oY, ¢Z)g(6* X, W)

+29(¢X, 6°Y)g(¢Z, W)} + f3{9(¢Y, Z)g(¢X, W)

Close (39)

Quit




Putting Y = W = e; where {e;}, is an orthonormal basis of the tangent space at each point of the
manifold, and taking summation over ¢ (1 < ¢ < 2n+ 1), we get

2n+1
> WX, dei, Z,es) = fo{ —9(0X, $2)g(des, de:)
(3.10) =l o v
+ 9(6°Z,°X) + 29(6X, $°2)}
— f39(¢Z, $X).
Putting X = Z = e;, where ¢;, is an orthonormal basis of the tangent space at each point of the
manifold, and taking summation over ¢ (1 < i < 2n + 1), we get after simplification that fo = 0.
But then f3 =0 by (3.7).
Therefore,
(3.11) R(X,Y)Z = filg(Y, Z)X — g(X, Z)Y].
The above equation gives
(3.12) S(X,Y) =2nf19(X,Y).
Hence in view of (1.2), we have W*(X,Y)Z = 0. This leads us to state the following.

Theorem 3.1. A (2n+1)-dimensional (n > 1) generalized Sasakian space form is M -projectively

flat if and only if f3 = 13_f22n

But in [14], the author proved that if a (2n+ 1)-dimensional (n > 1) generalized Sasakian space

form is Ricci semisymmetric, then f3 = 13_’;2”.

Hence we conclude the following.

Corollary 3.1. If a (2n + 1)-dimensional (n > 1) generalized Sasakian space form is Ricci
semisymmetric, then it is M-projectively flat.



4. AN 7-EINSTEIN GENERALIZED SASAKIAN SPACE FORM SATISFYING W*({, X)R =0

In view of (2.4), (2.8), (2.9) and (2.12), (1.2) becomes

(4.1) W* (£, X)Y = 41

n

[(1—2n)fs - 3fo{g(X,Y)E —n(Y)X}.
Now we have
- R(Y,W*(§, X)Z)U — R(Y, Z)W* (£, X)U.
But as we assume W*(§, X)R = 0, (4.2) takes the form
W*(&, X)R(Y, 2)U — ROW* (€, X)Y, Z)U
— R(Y,W*(§,X)Z)U — R(Y, Z)W*(§, X)U = 0.
Using (2.4), (2.11), (2.12), (2.13) and (4.1) in (4.3), we get

(4.2)

(4.3)

10— 20)fs — 3RIR(X.Y, 2,U)6 + n(Y)R(X, 2)U

+n(Z2)R(Y, X)U +n(U)R(Y, 2)X — (f1 — f3){9(Z,U)n(Y)X
) — gV, Un(2)X + 9(X,Y)g(2,U)¢ — g(X, Y )n(U)Z
Go back
—9(X, Z)g(Y,U) + 9(X, Z)n(U)Y + g(X,U)n(Z2)Y
Full Screen = g()(7 U)’I’](Y)Z}] =0,
Close where
(4.5) R(X,Y,Z,U) = g(X,R(Y, Z)U).

Quit
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Taking inner product of (4.4) with respect to the Riemannian metric g and then using (2.4) and
(2.13), we have

(16) %[(1 —2n) f3 = 3f][R(X,Y, Z,U) — (f1 — fs){9(X,Y)g(Z,U)

—9(X, Z2)g(Y,U)}] = 0.

Then p

3f2

fs= (1—2n)

or
(47) R(X,Y,Z,U) = (fi - fs){9(X.Y)9(2,U) — 9(X, Z)g(Y, U)}.
Using (2.4) and (4.5) in (4.7), we get
(4.8) RY,Z)U = (fi—f3){9(Z,U)Y —g(Y,U)Z}.
Contracting (4.8) with respect to the vector field Y, we find
(4.9) S(2,U) =2n(f1 — f3)9(Z,U).
Therefore,
(4.10) QZ =2m(2n + 1)(fi — f3)Z.
Hence,
(4.11) r=2n2n+1)(f1 — f3) and so  f3= 3/2

(1—2n)

Thus, we state following theorem.



Theorem 4.1. A (2n + 1)-dimensional (n > 1) n-Einstein generalized Sasakian space form
satisfies the condition W*(&, X)R = 0 if and only if f5 = (1—3_2%)

In the light of Theorems 3.1 and 4.1, we state next collorary.

Corollary 4.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space form satisfies the
condition W*(&, X)R = 0 if and only if it is M-projectively flat.

5. THE IRROTATIONAL M-PROJECTIVE CURVATURE TENSOR
Definition 5.1. The rotation (curl) of M-projective curvature tensor W* on a Riemannian
manifold is given by [1]
(5.1) RotW* = (VgW*) (X, Y)Z + (VxW*)(U,Y)Z
+ (Vy W)X, U)Z — (VW) (X,Y)U.
By virtue of second Bianchi identity, we have
(VoW (X, Y)Z + (VxW*)(U,Y)Z + (VyW*)(X,U)Z = 0.
Therefore, (5.1) becomes
(5.2) RotW* = — (VW) (X,Y)U.
If the M-projective curvature tensor is irrotational, then curlW* = 0, and so by (5.2) we get
(VW) (X, Y)U = 0.
Thus,
(VW)X YU = W*(VzX,Y)U +W*(X,VzY)U

(5:3) +W*(X,Y)VU.



Replacing U = ¢ in (5.3), we have

(VW) (X, Y)E = WH(VzX,Y)E+WH(X,VzY)E
+W*(X,Y)V4E.

Now, substituting Z = £ in (1.2) and then using (2.4), (2.8), (2.11) and (2.14), we obtain

(5.4)

(5.5) (VzW*)(X, V) = k[n(Y)X —n(X)Y],
where

(56) k= o[- 2m)fs — 35

Using (5.5) in (5.4), we obtain

(5.7) WH(X,Y)6Z = Klg(Z,6X)Y — g(Z,6Y)X].
Replacing Z by ¢Z in (5.7) and simplifying by using (2.1) and (2.3), we get
(5.8) W*(X,Y)Z = k[g(Z,Y)X — 9(Z, X)Y].

Also equations (1.2) and (5.8) give

1
+9(Y, 2)QX — g(X, 2)QY].
Contracting the above equation with respect to the vector X and then using (5.6), we find
(5.10) S(Y, Z) = 2n(f1 — f3)9(Y, Z),
which gives

(5.11) r=2n2n+1)(f1 — f3).

(5.9)



In consequence of (1.2), (5.6), (5.8), (5.10) and (5.11) we can find
(5.12) R(X,Y)Z = —(f1 = fs)lg(Y, 2)X — g(X, Z)Y].
Therefore, we can state the following theorem.

Theorem 5.1. The M -projective curvature tensor in an n-Einstein generalized Sasakian space
form is irrotational if and only if f3 = (1—3_2%

Theorem 4.1 together with Theorem 5.1 lead to the following corollaries.

Corollary 5.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space form satisfies the
condition W*(&, X)R = 0 if and only if the M -projective curvature tensor is irrotational.

Corollary 5.2. A (2n+1)-dimensional (n > 1) generalized Sasakian space form is irrotational
if and only if it is M-projectively flat.
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