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THE UNIVERSALITY OF OSBORN LOOPS

Tèḿıtó. pé. Jáıyéo. lá, John Adéńıran, Adewale S. òlár̀ın

Abstract. Recently, two identities that characterize universal(left and right
universal) Osborn loops were established. In this study, Kinyon’s conjecture that
’every CC-quasigroup is isotopic to an Osborn loop’ is shown to be true for univer-
sal(left and right universal) Osborn loops if and only if every CC-quasigroup obeys
any of the two identities. An Osborn loop is proved to be universal if and only
if any of its f, g-principal isotopes is isomorphic to some principal isotopes of the
loop, left universal if and only if any of its f, g-principal isotopes is isomorphic to a
left principal isotopes of the loop and right universal if and only if any of its f, e-
right principal isotopes is isomorphic to some principal isotopes of the loop. The
existence of a bi-mapping in the Bryant-Schneider group of a left universal Osborn
loop is shown and the consequences of this is discussed for extra loops using some
existing results in literature. It is established that there is no non-trivial: universal
Osborn loop that can form a special class of G-loop or right G-loop (e.g extra loops,
CC-loops or VD-loops) under a tri-mapping, left universal Osborn loop that can
form a special class of G-loop under a bi-mapping and a right universal Osborn loop
that can form a special class of right G-loop under a bi-mapping.

2010 Mathematics Subject Classification: 20N02, 20NO5.

1. Introduction

The isotopic invariance of varieties of quasigroups and loops described by one or
more equivalent identities, especially those that fall in the class of Bol-Moufang type
loops as first named by Fenyves [24] and [23] in the 1960s and later on in this 21st

century by Phillips and Vojtěchovský [41], [42] and [35] have been of interest to
researchers in loop theory in the recent past. Among such is Etta Falconer’s Ph.D
[21] and her paper [22] which investigated isotopy invariants in quasigroups. Loops
such as Bol loops, Moufang loops, central loops and extra loops are the most popular
loops of Bol-Moufang type whose isotopic invariance have been considered. For a
good background in loop theory, see [12],[15],[20],[25],[27],[44].
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Consider (G, ·) and (H, ◦) been two distinct groupoids(quasigroups, loops). Let
A,B and C be three bijective mappings, that map G onto H. The triple α =
(A,B,C) is called an isotopism of (G, ·) onto (H, ◦) if and only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

So, (H, ◦) is called a groupoid(quasigroup, loop) isotope of (G, ·). If C = I, the
identity map on G so that H = G, then the triple α = (A,B, I) is called a princi-
pal isotopism of (G, ·) onto (G, ◦) and (G, ◦) is called a principal isotope of (G, ·).
Eventually, the equation of relationship now becomes

x · y = xA ◦ yB ∀ x, y ∈ G

which is easier to work with. But taken A = Rg and B = Lf where Rx : G→ G is
defined by yRx = y · x and Lx : G → G is defined by yLx = x · y for all x, y ∈ G,
for some f, g ∈ G, the relationship now becomes x · y = xRg ◦ yLf ∀ x, y ∈ G or
x ◦ y = xR−1

g · yL−1
f ∀ x, y ∈ G. With this new form, the triple α = (Rg, Lf , I) is

called an f, g-principal isotopism of (G, ·) onto (G, ◦), f and g are called translation
elements of G or at times written in the pair form (g, f), while (G, ◦) is called an
f, g-principal isotope of (G, ·). The last form of α above gave rise to an important
result in the study of loop isotopes of loops.

Theorem 1 (Bruck [12]) Let (G, ·) and (H, ◦) be two distinct isotopic loops. For
some f, g ∈ G, there exists an f, g-principal isotope (G, ∗) of (G, ·) such that (H, ◦) ∼=
(G, ∗).

With this result, to investigate the isotopic invariance of an isomorphic invariant
property in loops, one simply needs only to check if the property in consideration
is true in all f, g-principal isotopes of the loop. A property is isotopic invariant if
whenever it holds in the domain loop i.e (G, ·) then it must hold in the co-domain
loop i.e (H, ◦) which is an isotope of the formal. In such a situation, the property in
consideration is said to be a universal property hence the loop is called a universal
loop relative to the property in consideration as often used by Nagy and Strambach
[38] in their algebraic and geometric study of the universality of some types of loops.
For instance, if every isotope of a ”certain” loop is a ”certain” loop, then the former
is called a universal ”certain” loop. So, we can now restate Theorem 1 as :

Theorem 2 Let (G, ·) be a ”certain” loop where ”certain” is an isomorphic invari-
ant property. (G, ·) is a universal ”certain” loop if and only if every f, g-principal
isotope (G, ∗) of (G, ·) has the ”certain” loop property.
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From the earlier discussions, if (H, ◦) = (G, ·) then the triple α = (A,B,C) is
called an autotopism where A,B,C ∈ SYM(G, ·), the set of all bijections on (G, ·)
called the symmetric group of (G, ·). Such triples form a group AUT (G, ·) called the
autotopism group of (G, ·). Furthermore, if A = B = C, then A ∈ AUM(G, ·) =
AUM(G), the automorphism group of G.

Bol-Moufang type of quasigroups(loops) are not the only quasigroups(loops) that
are isomorphic invariant and whose universality have been considered. Some others
are weak inverse property loops(WIPLs) and cross inverse property loops(CIPLs).
The universality of WIPLs and CIPLs have been addressed by OSborn [39] and
Artzy [2] respectively. In 1970, Basarab [5] later continued the work of Osborn of
1961 on universal WIPLs by studying isotopes of WIPLs that are also WIPLs after
he had studied a class of WIPLs([3]) in 1967. Osborn [39], while investigating the
universality of WIPLs discovered that a universal WIPL (G, ·) obeys the identity

yx · (zEy · y) = (y · xz) · y ∀ x, y, z ∈ G (1)

where Ey = LyLyλ = R−1
yρ R−1

y = LyRyL
−1
y R−1

y . Eight years after Osborn’s [39]
1960 work on WIPL, in 1968, Huthnance Jr. [26] studied the theory of generalized
Moufang loops. He named a loop that obeys (1) a generalized Moufang loop and
later on in the same thesis, he called them M-loops. On the other hand, he called a
universal WIPL an Osborn loop and this same definition was adopted by Chiboka
[16]. Basarab dubbed a loop (G, ·) satisfying the identity:

x(yz · x) = (x · yEx) · zx ∀ x, y, z ∈ G (2)

an Osborn loop where Ex = RxRxρ = (LxLxλ)−1 = RxLxR
−1
x L−1

x . It will look
confusing if both Basarab’s and Huthnance’s definitions of an Osborn loop are
both adopted because an Osborn loop of Basarab is not necessarily a universal
WIPL(Osborn loop of Huthnance). So in this work, Huthnance’s definition of an
Osborn loop will be dropped while we shall stick to that of Basarab which was ac-
tually adopted by Kinyon [32] and the open problem we intend to solve is relative
to Basarab’s definition of an Osborn loop and not that of Huthnance. Huthnance
[26] was able to deduce some properties of Ex relative to (1). Ex = Exλ = Exρ . So,
since Ex = RxRxρ , then Ex = Exλ = RxλRx and Ex = (LxρLx)−1. So, we now have
two identities equivalent to identities (1) and (2) defining an Osborn loop.

OS0 : x(yz · x) = x(yxλ · x) · zx (3)

OS1 : x(yz · x) = x(yx · xρ) · zx (4)
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Although Basarab [8] and [11] considered universal Osborn loops but the universality
of Osborn loops was raised as an open problem by Michael Kinyon in 2005 at a
conference tagged ”Milehigh Conference on Loops, Quasigroups and Non-associative
Systems” held at the University of Denver, where he presented a talk titled ”A Survey
of Osborn Loops”. He also stated a conjecture.

Kinyon’s Conjecture: Every CC-quasigroup is isotopic to an Osborn. And he
mentioned that CC-quasigroups include CC-loops, quasigroups that are isotopic
to groups and trimedial quasigroups. Trimedial quasigroups have been shown to be
isotopic to commutative Moufang loops in Kepka [31]. In Jaiyéo. lá and Adéńıran [28],
two identities that characterize universal(left and right universal) Osborn loops were
established while in Jaiyéo. lá and Adéńıran [29], it is established that not all Osborn
loops are universal. In this study, Kinyon’s conjecture that ’every CC-quasigroup is
isotopic to an Osborn loop’ is shown to be true for universal(left and right universal)
Osborn loops if and only if every CC-quasigroup obeys any of the two identities. An
Osborn loop is proved to be universal if and only if any of its f, g-principal isotopes
is isomorphic to some principal isotopes of the loop, left universal if and only if any
of its f, g-principal isotopes is isomorphic to a left principal isotopes of the loop and
right universal if and only if any of its f, e-right principal isotopes is isomorphic to
some principal isotopes of the loop. The existence of a bi-mapping in the Bryant-
Schneider group of a left universal Osborn loop is shown and the consequences of this
is discussed for extra loops using some existing results in literature. It is established
that there is no non-trivial: universal Osborn loop that can form a special class of
G-loop or right G-loop (e.g extra loops, CC-loops or VD-loops) under a tri-mapping,
left universal Osborn loop that can form a special class of G-loop under a bi-mapping
and a right universal Osborn loop that can form a special class of right G-loop under
a bi-mapping.

2. Preliminaries

Let G be a non-empty set. Define a binary operation (·) on G. If x · y ∈ G for
all x, y ∈ G, then the pair (G, ·) is called a groupoid or Magma. If the system of
equations:

a · x = b and y · a = b

have unique solutions in G for x and y respectively, then (G, ·) is called a quasigroup.
A quasigroup is therefore an algebra having a binary multiplication x · y usually
written xy which satisfies the conditions that for any a, b in the quasigroup the
equations

a · x = b and y · a = b
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have unique solutions for x and y lying in the quasigroup. If there exists a unique
element e ∈ G called the identity element such that for all x ∈ G, x · e = e · x = x,
(G, ·) is called a loop. We write xy instead of x · y, and stipulate that · has lower
priority than juxtaposition among factors to be multiplied. For instance, x · yz
stands for x(yz). Let x be a fixed element in a groupoid (G, ·). The left and right
translation maps of G, Lx and Rx respectively can be defined by

yLx = x · y and yRx = y · x.

It can now be seen that a groupoid (G, ·) is a quasigroup if it’s left and right trans-
lation mappings are bijections or permutations. Since the left and right translation
mappings of a loop are bijective, then the inverse mappings L−1

x and R−1
x exist. Let

x\y = yL−1
x = yLx and x/y = xR−1

y = xRy

and note that

x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.

Hence, (G, \) and (G, /) are also quasigroups. Using the operations (\) and (/), the
definition of a loop can be stated as follows.

Definition 1 A loop (G, ·, /, \, e) is a set G together with three binary operations
(·), (/), (\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ G,

(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ G and

(iii) x\x = y/y or e · x = e for all x, y ∈ G.

We also stipulate that (/) and (\) have higher priority than (·) among factors to
be multiplied. For instance, x · y/z and x · y\z stand for x(y/z) and x · (y\z)
respectively. In a loop (G, ·) with identity element e, the left inverse element of
x ∈ G is the element xλ ∈ G such that

xλ · x = e

while the right inverse element of x ∈ G is the element xρ ∈ G such that

x · xρ = e

The identities describing the most popularly known varieties of Osborn loops such
as CC-loops, Moufang loops, VD-loops and universal WIPLs are given in Defini-
tion 2.4 of Jaiyéo. lá and Adéńıran [28]. All these four varieties of Osborn loops are
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universal. CC-loops, and VD-loops are G-loops. G-loops are loops that are isomor-
phic to all their loop isotopes. Kunen [37] has studied them. A conjugacy closed
quasigroup(CC-quasigroup) is a quasigroup that obeys the identities

x · (yz) = {[x · (y · (x\x))]/x} · (xz) and (zy) · x = (zx) · {x\[((x/x) · y) · x]}.

For the definitions of left isotopes, right isotopes, left principal isotopes and right
principal isotopes, see Definition 2.7 of Jaiyéo. lá and Adéńıran [28]

Theorem 3 Let (G, ·) and (H, ◦) be two distinct left(right) isotopic loops with the
former having an identity element e. For some g(f) ∈ G, there exists an e, g(f, e)-
principal isotope (G, ∗) of (G, ·) such that (H, ◦) ∼= (G, ∗).

A loop is a left(right) universal ”certain” loop if and only if all its e, g(f, e)-left(right)
principal isotopes are ”certain” loops. A loop is called a right G-loop(Gρ-loop) if and
only if it is isomorphic to all its f, e-right principal loop isotopes. A loop is called a
left G-loop(Gλ-loop) if and only if it is isomorphic to all its e, g-left principal loop
isotopes. A loop is a G-loop if and only if it is a Gρ-loop and a Gλ-loop. Kunen
[37] demonstrated the use of Gρ-loops and Gλ-loops. We shall treat the G-loops
and Gρ-loops of some universal and right universal Osborn loops(respectively) in
the following manner.

Definition 2 Let (L, ·, \, /) be an Osborn loop with a mapping Θ ∈ SYM(L, ·).
Suppose Θ is an element of the multiplication groupMult(L) of L such that Θ(x, y, z),
i.e Θ is the product of right, left translation mappings Rα(x,y,z), Lβ(x,y,z) and their
inverses Rα(x,y,z),Lβ(x,y,z) such that α(x, y, z) and β(x, y, z) are words in L in terms
of arbitrary elements x, y, z ∈ L with a minimum of length one. Then Θ is called a
tri-mapping of L.

1. L is called a G(Θ3)-loop if it is a G-loop such that there exists a tri-mapping
Θ which is the isomorphism from L to all its f, g-principal isotopes.

2. L is called a Gρ(Θ2)-loop if it is a Gρ-loop such that there exists a bi-mapping
Θ which is the isomorphism from L to all its f, e-principal isotopes.

Remark 1 Some popular examples of bi-mappings are the right and left inner map-
pings R(x, y) and L(x, y) respectively. The middle inner mapping T (x) is a familiar
mono-mapping. Tri-mappings, tetra-mappings e.t.c can be obtained by multiplying
bi-mappings and mono-mappings. A demonstration of this can be seen in Bruck and
Paige [13] and Kinyon et. al. [34]. In fact, according to Kinyon et. al. [33], in
a CC-loop, R(x, y) and L(u, v) all commute with each other. So, it is sensible to
consider tetra-mappings in some universal Osborn loops.
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Theorem 4 Let (G, ·) be a ”certain” loop where ”certain” is an isomorphic in-
variant property. (G, ·) is a left(right) universal ”certain” loop if and only if every
e, g(f, e)-principal isotope (G, ∗) of (G, ·) has the ”certain” loop property.

Theorem 5 (Chiboka and Solarin [18], Kunen [36]) Let (G, ·) be a loop.

1. G is called a Gρ-loop if and only if there exists θ ∈ SYM(G, ·) such that
(θ, θL−1

y , θ) ∈ AUT (G, ·) ∀ y ∈ G.

2. G is called a Gλ-loop if and only if there exists θ ∈ SYM(G, ·) such that
(θR−1

x , θ, θ) ∈ AUT (G, ·) ∀ x ∈ G.

3. G is called a G-loop if and only if there exists θ ∈ SYM(G, ·) such that
(θR−1

x , θL−1
y , θ) ∈ AUT (G, ·) ∀ x, y ∈ G.

Definition 3 (Robinson [43]) Let (G, ·) be a loop.

1. A mapping θ ∈ SYM(G, ·) is a right special map for G means that there exist
f ∈ G so that (θ, θL−1

f , θ) ∈ AUT (G, ·).

2. A mapping θ ∈ SYM(G, ·) is a left special map for G means that there exist
g ∈ G so that (θR−1

g , θ, θ) ∈ AUT (G, ·).

3. A mapping θ ∈ SYM(G, ·) is a special map for G means that there exist
f, g ∈ G so that (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·).

From Definition 3, it can be observed that θ is a left or right special map for a loop
(G, ·) with identity element e if and only if θ is an isomorphism of (G, ·) onto some
e, g- or f, e- principal isotope (G, ◦) of (G, ·). More so, θ is a special map for a loop
(G, ·) if and only if θ is an isomorphism of (G, ·) onto some f, g-principal isotope
(G, ◦) of (G, ·). Robinson [43] went further to show that if

BS(G, ·) = {θ ∈ SYM(G, ·) : ∃ f, g ∈ G 3 (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all special maps in a loop, then BS(G, ·) ≤ SYM(G, ·) called the
Bryant-Schneider group of the loop (G, ·) because its importance and motivation
stem from the work of Bryant and Schneider [14]. Since the advent of the Bryant-
Schneider group, some studies by Adeniran [1] and Chiboka [17] have been done on
it relative to CC-loops and extra loops. Let

BSλ(G, ·) = {θ ∈ SYM(G, ·) : ∃ g ∈ G 3 (θR−1
g , θ, θ) ∈ AUT (G, ·)}
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i.e the set of all left special maps in a loop, then BSλ(G, ·) ≤ BS(G, ·) called the
left Bryant-Schneider group of the loop (G, ·) and

BSρ(G, ·) = {θ ∈ SYM(G, ·) : ∃ f ∈ G 3 (θ, θL−1
f , θ) ∈ AUT (G, ·)}

i.e the set of all right special maps in a loop, then BSρ(G, ·) ≤ BS(G, ·) called the
right Bryant-Schneider group of the loop (G, ·). We shall make a judicious use of
these three groups as earlier predicted by Robinson [43]. We shall be making a
judicious use of the following recently proven results of Jaiyéo. lá and Adéńıran [28].

Theorem 6 A loop (Q, ·, \, /) is a universal Osborn loop if and only if it obeys the
identity

x · u\{(yz)/v · [u\(xv)]} = (x · u\{[y(u\([(uv)/(u\(xv))]v))]/v · [u\(xv)]})/v · u\[((uz)/v)(u\(xv))]︸ ︷︷ ︸
OS′

0

or

x · u\{(yz)/v · [u\(xv)]} = {x · u\{[y(u\(xv))]/v · [x\(uv)]}}/v · u\[((uz)/v)(u\(xv))].︸ ︷︷ ︸
OS′1

Lemma 1 Let Q be a loop with multiplication group Mult(Q). Q is a universal Os-
born loop if and only if the triple

(
α(x, u, v), β(x, u, v), γ(x, u, v)

)
∈ AUT (Q) or the

triple
(
R[u\(xv)]RvR[x\(uv)]R[u\(xv)]Rvγ(x, u, v)Rv, β(x, u, v), γ(x, u, v)

)
∈ AUT (Q)

for all x, u, v ∈ Q where α(x, u, v) = R
(u\([(uv)/(u\(xv))]v))

RvR[u\(xv)]LuLxRv, β(x, u, v) =
LuRvR[u\(xv)]Lu and γ(x, u, v) = RvR[u\(xv)]LuLx are elements of Mult(Q).

Theorem 7 Let Q be a loop with multiplication group Mult(Q). If Q is a univer-
sal Osborn loop, then the triple

(
γ(x, u, v)R

(u\[(u/v)(u\(xv))])
, β(x, u, v), γ(x, u, v)

)
∈

AUT (Q) for all x, u, v ∈ Q where α(x, u, v) = R
(u\([(uv)/(u\(xv))]v))

RvR[u\(xv)]LuLxRv,
β(x, u, v) = LuRvR[u\(xv)]Lu and γ(x, u, v) = RvR[u\(xv)]LuLx are elements ofMult(Q).

Theorem 8 A loop (Q, ·, \, /) is a left universal Osborn loop if and only if it obeys
the identity

x · [(y · zv)/v · (xv)] = (x · {[y([v/(xv)]v)]/v · (xv)})/v · [z · xv]︸ ︷︷ ︸
OSλ

0

or

x · [(y · zv)/v · (xv)] = {(x · [(y · xv)/v · (x\v)]}/v · [z(xv)].︸ ︷︷ ︸
OSλ

1
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Lemma 2 Let Q be a loop with multiplication group Mult(Q). Q is a left uni-
versal Osborn loop if and only if the triple

(
α(x, v), β(x, v), γ(x, v)

)
∈ AUT (Q) or(

R[xv]RvR[x\v]R[xv]Rvγ(x, v)Rv, β(x, v), γ(x, v)
)
∈ AUT (Q) for all x, v ∈ Q where

α(x, v) = R([v/(xv)]v)RvR[xv]LxRv, β(x, v) = RvR[xv] and γ(x, v) = RvR[xv]Lx are
elements of Mult(Q).

Theorem 9 Let Q be a loop with multiplication group Mult(Q). If Q is a left uni-
versal Osborn loop, then the triple

(
γ(x, v)R[vλ·xv], β(x, v), γ(x, v)

)
∈ AUT (Q) for

all x, v ∈ Q where α(x, v) = R([v/(xv)]v)RvR(xv)LxRv, β(x, v) = RvR(xv) and γ(x, v) =
RvR(xv)Lx are elements of Mult(Q).

Theorem 10 A loop (Q, ·, \, /) is a right universal Osborn loop if and only if it
obeys the identity

(ux) · u\{yz · x} = ((ux) · u\{[y(u\[u/x])] · x}) · u\[(uz)x].︸ ︷︷ ︸
OSρ

0

or

(ux) · u\{(yz) · x} = {(ux) · u\[yx · (ux)\u]} · u\[(uz)x].︸ ︷︷ ︸
OSρ

1

Lemma 3 Let Q be a loop with multiplication group Mult(Q). Q is a right universal
Osborn loop if and only if the triple

(
α(x, u), β(x, u), γ(x, u)

)
∈ AUT (Q) or the

triple
(
R[u\x]R[x\u]R[u\x]γ(x, u), β(x, u), γ(x, u)

)
∈ AUT (Q) for all x, u ∈ Q where

α(x, u) = R(u\[u/(u\x)])R[u\x]LuLx, β(x, u) = LuR[u\x]Lu and γ(x, u) = R[u\x]LuLx
are elements of Mult(Q).

Theorem 11 Let Q be a loop with multiplication group Mult(Q). If Q is a right
universal Osborn loop, then the triple

(
γ(x, u)R(u\x), β(x, u), γ(x, u)

)
∈ AUT (Q) for

all x, u ∈ Q where α(x, u) = R(u\[u/(u\x)])R[u\x]LuLx, β(x, u) = LuR[u\x)]Lu and γ(x, u) =
R[u\x]LuLx are elements of Mult(Q).

3. Main Results

Lemma 4 A quasigroup is isotopic to a universal Osborn loop if and only if it obeys
the identity OS′

0 or OS′
1.

Proof Let Q be a quasigroup that is isotopic to a universal Osborn loop L i.e every
loop isotope G of L is an Osborn loop. Then, the isotopisms Q −→ L and L −→ G
imply the isotopism Q −→ G. Let H be any loop isotope of Q, then H −→ G is
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an isotopism and so H −→ L is an isotopism, hence, H is an Osborn loop. Let
H = (Q,N) be a principal loop isotope of (Q, ·) such that

xNy = xR−1
v · yL−1

u = (x/v) · (u\y) ∀ u, v ∈ Q.

Then, thinking in line with the proof of Theorem 6, H obeys identity OS0 or OS1 if
and only if Q obeys identity OS′

0 or OS′
1. The proof of the conversely is as follows.

If Q obeys identity OS′
0 or OS′

1, then every f, g-principal loop isotope of Q is an
Osborn loop, hence, all loop isotopes of Q are Osborn loops. Let L be a loop isotope
of Q with arbitrary loop isotope L′. So L′ is a loop isotope of Q, hence L′ is an
Osborn loop. Therefore, Q is isotopic to a universal Osborn loop.

Corollary 1 A quasigroup is isotopic to a Moufang loop or CC-loop or VD-loop or
universal WIPL implies it obeys the identity OS′

0 or OS′
1.

Remark 2 Not all CC-quasigroups are isotopic to groups or Moufang loops or VD-
loops.

Theorem 12 An Osborn loop is universal if and only if any of its x, v-principal
isotopes is isomorphic to some particular principal isotopes.

Proof Let (Q, ·, \, /) be a universal Osborn loop. We shall use Lemma 1. The triple(
α(x, u, v), β(x, u, v), γ(x, u, v)

)
=

(
R

(u\([(uv)/(u\(xv))]v))
γRv, LuγLx, γ

)
can be written as the following compositions

(
R

(u\([(uv)/(u\(xv))]v))
, Lu, I

)
(γ, γ, γ)(Rv,Lx, I).

Let (Q, ◦) be an arbitrary x, v-principal isotope of (Q, ·) and (Q, ∗) a particular prin-
cipal isotope of (Q, ·). Let φ(x, u, v) = (u\([(uv)/(u\(xv))]v)), then the composition
above can be expressed as:

(Q, ·)
(Rφ(x,u,v),Lu,I)
−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−→
isomorphism

(Q, ◦) (Rv ,Lx,I)−−−−−−−−−−−→
principal isotopism

(Q, ·).

This means that any x, v-principal isotope (Q, ◦) of (Q, ·) is isomorphic to some
particular principal isotope (Q, ∗) of (Q, ·).

Theorem 13 An Osborn loop is universal if and only if the existence of the principal
autotopism (Rφ(x,u,v), Lu, I), φ(x, u, v) = (u\([(uv)/(u\(xv))]v)) in the loop implies
the triple

(
γ(x, u, v)Rv, γ(x, u, v)Lx, γ(x, u, v)

)
, where γ(x, u, v) = RvR[u\(xv)]LuLx

is an autotopism in the loop, and vice versa.
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Proof The proof is in line with Theorem 12 with a slight adjustment to the compo-
sition of the triple(

α(x, u, v), β(x, u, v), γ(x, u, v)
)

=
(
R

(u\([(uv)/(u\(xv))]v))
γRv, LuγLx, γ

)
which can be re-written as the following compositions

(
R

(u\([(uv)/(u\(xv))]v))
, Lu, I

)
(γRv, γLx, γ).

Hence, the conclusion follows.

Theorem 14 If an Osborn loop is universal then, any of its u, e-right principal
isotopes is isomorphic to some principal isotopes.

Proof By Theorem 7, if Q is a universal Osborn loop, then(
γ(x, u, v)R

(u\[(u/v)(u\(xv))])
, β(x, u, v), γ(x, u, v)

)
=(

γ(x, u, v)R
(u\[(u/v)(u\(xv))])

, LuγLx, γ(x, u, v)
)
∈ AUT (Q)

for all x, u, v ∈ Q. Writing(
γ(x, u, v)R

(u\[(u/v)(u\(xv))])
, LuγLx, γ(x, u, v)

)
= (I, Lu, I)

(
γ(x, u, v), γ(x, u, v), γ(x, u, v)

)
(
R

(u\[(u/v)(u\(xv))])
,Lx, I

)
∈ AUT (Q)

such that

(Q, ·) (I,Lu,I)−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−→
isomorphism

(Q, ◦)

(
R

(u\[(u/v)(u\(xv))])
,Lx,I

)
−−−−−−−−−−−−−−−−−→

principal isotopism
(Q, ·)

where (Q, ∗) is a u, e-right principal isotope of (Q, ·) and (Q, ◦) are some particular
principal isotope of (Q, ·), the conclusion of the theorem follows.

Theorem 15 If an Osborn loop is universal then, the existence of the principal
autotopism (Rψ(x,u,v), Lx, I), ψ(x, u, v) = (u\[(u/v)(u\(xv))]) in the loop implies the
triple

(
γ(x, u, v)−1, γ(x, u, v)−1Lu, γ(x, u, v)−1

)
, where γ(x, u, v) = RvR[u\(xv)]LuLx

is an autotopism in the loop, and vice versa.

Proof The proof is in line with Theorem 14 with a slight adjustment to the com-
position by simply considering the inverse composition and reasoning like we did in
Theorem 13.
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Theorem 16 There does not exist a non-trivial universal Osborn loop that is a
G(γ3)-loop or a Gρ(γ−1

3 )-loop with the tri-mapping γ(x, u, v) = RvR[u\(xv)]LuLx.

Proof

(a) We shall show that ifQ = (Q, ·, \, /) is an Osborn loop such that the tri-mapping
γ(x, u, v) = RvR[u\(xv)]LuLx. Then, Q is a universal Osborn loop if and only
if Q is a G(γ3)-loop implies it obeys the identity

y(u\([(uv)/(u\(xv))]v)) · uz = yz ∀ x, y, z, u, v ∈ Q (5)

and vice versa.

The proof of this statement is based on Theorem 1 and is achieved by using
the compositions

(
R

(u\([(uv)/(u\(xv))]v))
, Lu, I

)
(γRv, γLx, γ) of Theorem 13 and

hence following Theorem 5, it is a G-loop, and in particular a G(γ3)-loop which
implies it obeys identity (5) and vice versa.

(b) We shall also show that if Q = (Q, ·, \, /) is an Osborn loop such that the tri-
mapping γ(x, u, v) = RvR[u\(xv)]LuLx and Q is a universal Osborn loop then,
Q is a Gρ(γ−1

3 )-loop implies it obeys the identity

y(u\[(u/v)(u\(xv))]) · xz = yz ∀ x, y, z, u, v ∈ Q (6)

and vice versa.

The proof of this statement is based on the composition used in Theorem 15.
The reasoning used is similar to that in (a).

According to (a) or (b), if Q is a G(γ3)-loop or Gρ(γ−1
3 ) then it obeys identity

(5) or (6). Put y = z = v = u = e in identity (5) or (6), then x = e. Which is a
contradiction.

Remark 3 There is no non-trivial group or Moufang loop or universal WIPL or
VD-loop or CC-loop that is a G(γ3)-loop or Gρ(γ−1

3 ) when γ(x, u, v) = RvR[u\(xv)]LuLx

Lemma 5 A quasigroup is left isotopic to a left universal Osborn loop if and only
if it obeys the identity OSλ0 or OSλ1 .

Proof The method of the proof of this lemma is similar to the method used to prove
Lemma 4 by using Theorem 3 and Theorem 4.

Corollary 2 A quasigroup is left isotopic to a Moufang loop or CC-loop or VD-loop
or universal WIPL implies it obeys the identity OSλ0 or OSλ1 .
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Remark 4 Not all CC-quasigroups are left isotopic to groups or Moufang loops or
VD-loops.

Theorem 17 An Osborn loop is left universal if and only if any of its v, x-principal
isotopes is isomorphic to a left principal isotope.

Proof Let (Q, ·, \, /) be a left universal Osborn loop. We shall use Lemma 2. The
triple (

α(x, v), β(x, v), γ(x, v)
)

=
(
R([v/(xv)]v)γRv, γLx, γ

)
can be written as the following compositions

(
R([v/(xv)]v), I, I

)
(γ, γ, γ)(Rv,Lx, I).

Let (Q, ◦) be a x, v-principal isotope of (Q, ·) and (Q, ∗) a left principal isotope of
(Q, ·). Let φ(x, v) = ([v/(xv)]v), then the composition above can be expressed as:

(Q, ·)
(Rφ(x,v),I,I)−−−−−−−−−−−−−−→

left principal isotopism
(Q, ∗) (γ,γ,γ)−−−−−−−→

isomorphism
(Q, ◦) (Rv ,Lx,I)−−−−−−−−−−−→

principal isotopism
(Q, ·).

This means that a x, v-principal isotope (Q, ◦) of (Q, ·) is isomorphic to a left prin-
cipal isotope (Q, ∗) of (Q, ·).

Theorem 18 An Osborn loop is left universal if and only if the existence of the
principal autotopism (Rφ(x,v), I, I), φ(x, v) = ([v/(xv)]v) in the loop implies the
triple

(
γ(x, v)Rv, γ(x, v)Lx, γ(x, v)

)
, where γ(x, v) = RvR(xv)Lx is an autotopism in

the loop and vice versa.

Proof The proof is in line with Theorem 17 with a slight adjustment to the compo-
sition of the triple(

α(x, v), β(x, v), γ(x, v)
)

=
(
R([v/(xv)]v)γRv, γLx, γ

)
which can be re-written as the following compositions

(
R([v/(xv)]v), I, I

)
(γRv, γLx, γ).

Hence, the conclusion follows.

Theorem 19 If an Osborn loop is left universal then, the mapping γ(x, v) = RvR[xv]Lx
is an element of the Bryant Schneider group of the loop for all elements x, v in the
loop.

Proof By Theorem 9, if Q is a left universal Osborn loop, then(
γ(x, v)R(vλ·xv), β(x, v), γ(x, v)

)
=

(
γ(x, v)R(vλ·xv), γ(x, v)Lx, γ(x, v)

)
∈ AUT (Q)

for all x, u, v ∈ Q. Hence, γ(x, v) ∈ BS(Q).
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Lemma 6 If an Osborn loop Q is left universal then, the mapping γ(x, v) = RvR[xv]Lx ∈
AUM(Q) if and only if Q obeys the identity (vλ ·xv)y ·xz = yz for all x, v, y, z ∈ Q.
Hence, Q is an abelian group.

Proof By Theorem 9, if Q is a left universal Osborn loop, then(
γ(x, v)R(vλ·xv), β(x, v), γ(x, v)

)
=

(
γ(x, v)R(vλ·xv), γ(x, v)Lx, γ(x, v)

)
∈ AUT (Q)

for all x, u, v ∈ Q. By breaking this triple appropriately into two, the claim follows.
In the equation (vλ · xv)y · xz = yz, if v = y = z = e, then x2 = e which means Q is
an Osborn loop of exponent 2, thence, an abelian group following Basarab [8].

Theorem 20 There does not exist a non-trivial left universal Osborn loop that is a
G(γ2)-loop with bi-mapping γ(x, v) = RvR[xv]Lx.

Proof It can be shown that if Q = (Q, ·, \, /) is an Osborn loop such that the bi-
mapping γ(x, v) = RvR[xv]Lx. Q is a left universal Osborn loop if and only if Q is
a G(γ2)-loop implies it obeys the identity

y([v/(xv)]v) · z = yz ∀ x, y, z, v ∈ Q (7)

and vice versa. The proof is based on Theorem 2 and is achieved by using the com-
positions

(
R([v/(xv)]v), I, I

)
(γRv, γLx, γ) of Theorem 18 and hence following Theo-

rem 5, it is a G-loop, and in particular a G(γ2)-loop which implies it obeys identity
(7) and vice versa. From the statement above, if Q is a G(γ2)-loop then it obeys
identity (7). Put y = z = v = e in identity (7), then x = e. Which is a contradiction.

Remark 5 There is no non-trivial group or Moufang loop or universal WIPL or
VD-loop or CC-loop that is a G(γ2)-loop when γ(x, v) = RvR[xv]Lx.

Lemma 7 A quasigroup is right isotopic to a right universal Osborn loop if and
only if it obeys the identity OSρ0 or OSρ1.

Proof The method of the proof of this lemma is similar to the method used to prove
Lemma 4 by using Theorem 3 and Theorem 4.

Corollary 3 A quasigroup is right isotopic to a Moufang loop or CC-loop or VD-
loop or universal WIPL if and only if it obeys the identity OSρ0 or OSρ1.

Remark 6 Not all CC-quasigroups are right isotopic to groups or Moufang loops
or VD-loops.
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Theorem 21 An Osborn loop is right universal if and only if any of its x, e-right
principal isotopes is isomorphic to some principal isotopes.

Proof Let (Q, ·, \, /) be a right universal Osborn loop. We shall use Lemma 3. The
triple (

α(x, u), β(x, u), γ(x, u)
)

=
(
R(u\[u/(u\x)])γ, LuγLx, γ

)
can be written as the following compositions

(
R(u\[u/(u\x)]), Lu, I

)
(γ, γ, γ)(I,Lx, I).

Let (Q, ◦) be an arbitrary right principal isotope of (Q, ·) and (Q, ∗) a principal
isotope of (Q, ·). Let φ(x, u) = (u\[u/(u\x)]), then the composition above can be
expressed as:

(Q, ·)
(Rφ(x,u),Lu,I)

−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−→
isomorphism

(Q, ◦) (I,Lx,I)−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ·).

This means that a x, e-right principal isotope (Q, ◦) of (Q, ·) is isomorphic to some
principal isotopes (Q, ∗) of (Q, ·).

Theorem 22 An Osborn loop is right universal if and only if the existence of the
principal autotopism (Rφ(x,u), Lu, I), φ(x, u) = (u\[u/(u\x)]) in the loop implies the
triple (γ, γLx, γ) where γ(x, u) = R[u\x]LuLx is an autotopism in the loop and vice
versa.

Proof The proof is in line with Theorem 21 with a slight adjustment to the compo-
sition of the triple(

α(x, u), β(x, u), γ(x, u)
)

=
(
R(u\[u/(u\x)])γ, LuγLx, γ

)
which can be re-written as the following compositions

(
R(u\[u/(u\x)]), Lu, I

)
(γ, γLx, γ).

Hence, the conclusion follows.

Theorem 23 If an Osborn loop is right universal then, any of its u, e-right principal
isotopes is isomorphic to some principal isotopes.

Proof By Theorem 11, if Q is a right universal Osborn loop, then(
γ(x, u)R(u\x), β(x, u), γ(x, u)

)
=

(
γ(x, u)R(u\x), Luγ(x, u)Lx, γ(x, u)

)
∈ AUT (Q)

for all x, u, v ∈ Q. Writing the last triple as

(I, Lu, I)(γ(x, u), γ(x, u), γ(x, u))
(
R(u\x),Lx, I

)
.
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These compositions mean

(Q, ·) (I,Lu,I)−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−→
isomorphism

(Q, ◦)
(

R(u\x),Lx,I
)

−−−−−−−−−−−→
principal isotopism

(Q, ·)

where (Q, ∗) is a u, e-right principal isotope of (Q, ·) and (Q, ◦) some principal iso-
topes of (Q, ·). Thus, the conclusion of the theorem follows.

Remark 7 Although the statement of Theorem 23 can be deduced from the state-
ment of Theorem 21. But the principal isotopes defer.

Theorem 24 If an Osborn loop is right universal then, the existence of the principal
autotopism (R(u\x), Lx, I) in the loop implies the triple

(
γ(x, u)−1, γ(x, u)−1Lu, γ(x, u)−1

)
where γ(x, u) = R[u\x]LuLx is an autotopism in the loop, and vice versa.

Proof The proof is in line with Theorem 23 with a slight adjustment to the com-
position by simply considering the inverse composition and reasoning like we did in
Theorem 22.

Theorem 25 There does not exist a non-trivial right universal Osborn loop that is
a Gρ(γ2)-loop or Gρ(γ−1

2 )-loop with bi-mapping γ(x, u) = R[u\x]LuLx.

Proof

(a) It can be shown that if Q = (Q, ·, \, /) is an Osborn loop such that the bi-
mapping γ(x, u) = R[u\x]LuLx. Q is a right universal Osborn loop if and only
if Q is a Gρ(γ2)-loop implies it obeys the identity

y(u\[u/(u\x)]) · uz = yz ∀ x, y, z, u,∈ Q (8)

and vice versa. The proof of this statement is based on Theorem 3 and is
achieved by using the compositions

(
R(u\[u/(u\x)]), Lu, I

)
(γ, γLx, γ) of Theo-

rem 22 and hence following Theorem 5, it is a Gρ-loop, and in particular a
Gρ(γ2)-loop which implies it obeys identity (8) and vice versa.

(b) It can be shown that if Q = (Q, ·, \, /) is an Osborn loop such that the bi-
mapping γ(x, u) = R[u\x]LuLx and if Q is a right universal Osborn loop then,
Q is a Gρ(γ−1

2 )-loop implies it obeys the identity

y(u\x) · xz = yz ∀ x, y, z, u,∈ Q (9)

and vice versa. The proof of this statement is based on the composition used
in Theorem 24. The reasoning used is similar to that in (a).
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According to (a) or (b), if Q is a Gρ(γ2)-loop or Gρ(γ−1
2 )-loop then it obeys identity

(8) or (9). Put y = z = u = e or x = y = z = e in identity (8) or (9), then x = e or
u = e. Which is a contradiction.

Remark 8 There is no non-trivial group or Moufang loop or universal WIPL or
VD-loop or CC-loop that is a Gρ(γ2)-loop or Gρ(γ−1

2 )-loop when γ(x, u) = R[u\x]LuLx.

4. Concluding Remarks and Future Studies

Using the bi-mapping γ(x, v) = RvR[xv]Lx of Theorem 19 in some existing results
of Adeniran [2] and Chiboka [17] on the Bryant Schneider groups of left universal
Osborn loops like CC-loops and extra loops respectively, more equations and infor-
mation can be deduced. For example, Theorem 2.2 of Chiboka [17] claims that in
an extra loop (L, ·), corresponding to every mapping θ ∈ BS(L, ·) is a unique pair
of right pseudo-automorphisms. So for the bi-mapping γ(x, v) = RvR[xv]Lx, the
mappings ϑ = RvRxvLxLv−1x−1vx−1 and ϕ = RvRxvLxRv−1x−1vx−1 are right pseudo-
automorphisms with companions c1 = (xv)−1vxv−1xv and c2 = xv−1x−1vx−1 re-
spectively. Also, in Chiboka [19], the author showed that in an extra loop (L, ·),
the middle inner mapping T (x) = RxL

−1
x ∈ BS(L, ·) for all x ∈ L. T (x) is a mono-

mapping but γ(x, v) is a bi-mapping. Multiplying them, more elements of Bryant
Schneider group of an extra loop can be gotten. We need to identify the subgroup(s)
of the multiplications group to which the bi-mappings and tri-mappings(which are
not special mappings) of Theorem 16 and Theorem 25 belong to.
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