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Abstract. We give a pair of well-matched lower and upper bounds for
the expectation of reversal distance under the hypothesis of random gene
order by investigating the expected number of cycles in the breakpoint
graph of linear signed permutations. Sankoff and Haque [9] proved similar
results for circular signed permutations based on approximations based
on a slightly different model; while our approach is discrete. We also
provide an near-tight upper bound for the variance of reversal distance,
which gives information on the distribution of reversal distance.

1 Introduction

In the late 1980s, Jeffrey Palmer[6] and his colleagues compared the mitochon-
drial genomes of cabbage and turnip, which are very closely related. To their
surprise, these genomes, which are almost identical in gene sequences, differ
dramatically in gene order. This discovery and many other studies in the last
decade convincingly proved that genome rearrangements represent a common
mode of molecular evolution.

A framework of possible models to study genome rearrangements is to rep-
resent genomes as signed permutations of genes and compute their distances
based on the minimum number of certain operations (evolutionary events)
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needed to transform one permutation into another. Under these models, the
shorter the distance, the closer the genomes are.

In general, genes are represented as integers from 1 to n, and the genome
is represented by a permutation π: {1, 2, . . . n} 7→ {1, 2, . . . n} by (π1π2 . . . πn),
where πi denotes π(i).

Permutations (more precisely, at this point, the permuted elements) may
get signed, reflecting whether a gene or its mirror image is present. In this
case each entry πi has a positive or negative sign to model the orientation of
genes. We denote the set of all permutations of size n by Sn and the set of all
signed permutations by Sn, respectively. Clearly |Sn| = n! and |Sn| = 2nn!.
We call πiπi+1 . . . πj, where (1 ≤ i ≤ j ≤ n), a segment of the permutation
(π1π2 . . . πn).

An extensively studied operation on genomes is reversal. A reversal is an
operation that reverses the order of the genes on a certain segment of the
permutation of Sn - this operation is usually called unsigned reversal. We avoid
them in this paper. Reversals are also considered acting on Sn, in this case
they are called signed reversals, and they also change the sign of the genes in
the segment which was reversed. (There are other operations considered in the
literature that correspond to evolutionary events, such as transposition, block
interchange, transversal and translocation, see [11].) In 1995, Hannenhalli and
Pevzner [4] discovered an elegant polynomial time algorithm to compute the
signed reversal distance of signed permutations. However, in 1999 Caprara [2]
showed that computing the unsigned reversal distance is NP-hard. Even before
that, in 1996, Bafna and Pevzner [1] gave a 1.5-approximation algorithm to
compute the unsigned reversal distance.

1.1 Reversals

The formal definition for a signed reversal on a signed permutation follows.
A signed permutation is a bijection of the set [−n,n] \ {0} onto itself such
that π(−a) = −π(a) for all a ∈ [−n,n] \ {0} holds. It is easy to see that
these bijections make a group for the composition of bijections as the group
operation. This group is usually known as the group of ”signed permutations”
on [n], or as the hyper-octahedral group of rank n. A signed permutation can
be (uniquely) represented by the sequence of values it assigns to 1, 2, ..., n —
this is how we described them earlier. The signed permutation in the previous
section is the array of images of 1, 2, ..., n under the bijection. We identify the
group with Sn. The identity signed permutation assigns values 1, 2, 3, . . . , n
to 1, 2, 3, . . . , n in this order. We denote the identity of Sn by id. For any
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0 ≤ i < j ≤ n, we define a signed reversal ρi,j as a signed permutation, whose
values on 1, 2, ..., n are 1, 2, ..., (i − 2), (i − 1),−j, ...,−i, (j + 1), (j + 2), ..., n.
Observe that its action is

ρi,j(π) = π ◦ ρi,j,

and the values of this signed permutation on the sequence 1, 2, ..., n are

π1, . . . , πi−1,−πj, . . . ,−πi, πj+1 . . . , πn.

For π1, π2 ∈ Sn, the reversal distance of π1 from π2 is the smallest k such that

π1 = π2 ◦ ρi1,j1 ◦ ρi2,j2 ◦ · · · ◦ ρik,jk , (1.1)

where the ρ’s are reversals. As reversals have order two, the reversal distance
is symmetric. We define the reversal distance of a signed permutation π to be
the reversal distance of π and the identity id, and denote it by d(π).

We are interested in the expected reversal distance of two random signed
permutations selected from the uniform distribution, π1 and π2. It follows
from (1.1), that the reversal distance of π1 and π2 is the same as the reversal
distance of π−1

2 ◦ π1 and id. Furthermore, π−1
2 ◦ π1 is equidistributed with

π1 and π2. Therefore it is sufficient to compute or estimate the expected
reversal distance of a random signed permutation selected from the uniform
distribution.

1.2 Breakpoint graph

An efficient tool, widely applied in the research of genome rearrangement is
the breakpoint graph.

We define the breakpoint graph G(π), together with its layout, for a signed
permutation π = (π1π2 . . . πn) as follows. If the entry πi has positive sign,
replace it by two vertices πl

i, π
r
i in this order, and if the entry is negative,

by πr
i , π

l
i. Put these vertices in the order of π with two endpoints, 0r on the

extreme left and (n + 1)l on the extreme right added—these vertices do not
have a left (resp. right) companion. Connect any two vertices, which are
consecutive in the layout (other than πl

i and πr
i from the same πi) by a black

edge, and connect ir and (i+ 1)l by a gray edge for 0 ≤ i ≤ n.
For convenience we call x the value of the vertex xa, and a, which can be l

or r, the direction of xa. We call the vertices with the same value conjugates.
For instance, the value of 3r is 3, its direction is r, and it is the conjugate of
3l, a relationship that we denote by 3r = 3l. We define the sign-function s on
{l, r} such that s(l) = 1 and s(r) = −1. We will call the pair of vertices ir and
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Figure 1: The breakpoint graph of π=(1,−3,−5,−2,4), straight lines are black
edges and curved arcs are gray edges.

(i+ 1)l, the mates of each other. For convenience, we denote the set of black
edges of G(π) by B(π), and the vertex set {0r, 1l, 1r, . . . , nl, nr, (n+ 1)l} by Vn

.
Each vertex is adjacent to exactly one black and one gray edge, so there is

a unique decomposition of G(π) into disjoint cycles of alternating edge colors.
By the length of a cycle we mean the number of black edges it contains. We
say that two gray edges g1 and g2 cross, if g1 links vertices a and c, g2 links
vertices b and d, but these vertices are ordered a, b, c, d in G(π). If g1 and
g2 are crossing gray edges, and the cycle Ci contains the edge gi for i = 1, 2,
then we say that the two cycles, are connected. There is a finest equivalence
relation on the set of cycles of G(π), in which pairs of connected cycles fall in
one class. A component of G(π) is a class of this equivalence relation.

Using the breakpoint graph, Hannenhalli and Pevzner showed that the min-
imum number of reversals necessary to transform a signed permutation π to
id is:

d(π) = n+ 1− c(π) + h(π) + fr(π), (1.2)

where c(π) is the number of cycles in the breakpoint graph, h(π) is the number
of hurdles, which are some special components, and fr(π) takes value 1 or 0
based on whether G is a fortress. Caprara[3] showed that the probability of a
random signed permutation of length n containing a hurdle is Θ(n−2) and the
probability of a random signed permutation of length n including a fortress
is Θ(n−15). Recently Swenson et al. [10] simplified Caprara’s proof. Based
on two facts above, in approximations for d(π), the terms h(π) and fr(π) are
often dropped. Hence we can easily find approximation for the distribution of
reversal distance, if we find approximation to the distribution of the number
of cycles in the breakpoint graph.
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The permutations (unsigned or signed) that we discussed so far, are referred
to as linear permutations, in order to distinguish them from the circular permu-
tations which are arrangements of {1, 2, . . . , n} (or of {±1,±2, . . . ,±n}) along
a cycle. Mathematically, the circular permutations are just the equivalence
classes of linear permutations under rotation. The total number of circular
unsigned permutations is (n − 1)! and the total number of circular signed
permutations is 2n−1(n − 1)!. As genomes or chromosomes can be linear or
circular, the circular analogues of all concepts that we discussed so far are
also relevant for bioinformatics. There exist concepts of reversals on circular
permutations and breakpoint graphs of circular permutations, signed or un-
signed. Hannenhalli and Pevzner [4] also computed that reversal distance of
a circular permutation π of size n from the id, an analogue of (1.2).

Sankoff and Haque [9] investigated the distribution of reversal distance
among two randomly and uniformly selected circular signed permutations.
They derived the expected number of cycles in the graph obtained by two
random matchings on 2n vertices and claimed it approximately equals to the
expected number of the cycles in the breakpoint graph of two random circular
signed permutations. The precision of this approximation hinges on results
of Kim and Wormald [5], which works with proof for sufficiently large n only
(see the κ < n/40 condition in [9]). Depending this approximation, Sankoff
and Haque [9] in their further calculations use continuous limit distributions
to approximate the discrete probabilities in question, and put emphasis on
the plotted simulation results as evidence for the result. Personal communi-
cation from Friedberg is cited in [9] as source for an asymptotic formula for
the expected number of cycles in the breakpoint graph of circular (unsigned
or signed) permutations.

It is expected that for linear signed permutations one would get similar
results. Sankoff and Haque [9] claim that their approach extends to linear
signed permutations, but do not give any specifics. The goal of this paper is to
achieve such results, with rigorous and complete proofs, using a more discrete
approach. We will give matching lower and upper bounds for the expected
number of cycles in the breakpoint graph of a randomly and uniformly selected
signed permutation.

We are not aware of any earlier results on the variance of the number of
cycles in the breakpoint graph of a randomly and uniformly selected signed
permutation, either linear or circular. The expectation result is analogous with
the expected number of cycles in an unsigned linear permutation, which is also
logarithmic, but the analogy fails for the variance, which is still logarithmic for
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an unsigned linear permutation [8], but jumps to Θ(log2 n) for signed linear
permutations.

1.3 B-cycle and test graph

Definition 1 We call an alternating edge colored cycle in black and gray on
a subset of the vertex set Vn a B-cycle, if there exists a signed permutation,
whose breakpoint graph has it among its cycles.

We will denote by [] the black edges and by () the gray edges. Notice that
not every alternating colored cycle is a B-cycle. For example [2r, 5l](5r, 6l)

[6l, 1r](1r, 2l)[2l, 5l](5l, 4r)[4r, 3l](3l, 2r) is a alternating colored cycle, but not
a B-cycle, because if it is a B-cycle [2r, 5r] determined 2 is followed by −5 or
5 is followed by −2 in the permutations whose breakpoint graphs contain this
cycle, while [2l, 5l] determined −2 is followed by 5 or −5 is followed by 2. Here
we define another kind of auxiliary graph.

Definition 2 Let E be a partial matching on the vertex set Vn. If for any i,
(il, ir) 6∈ E , 0 < i < n+ 1 and (0r, (n+ 1)l) 6∈ E, then we call E as a standard
partial matching.

Definition 3 Let E be a standard partial matching on the vertex set Vn. The
test graph of E, denoted by T(E) is defined as follows:

• The vertex set is Vn.

• The edge set consists of all the edges in E and the edges 〈il, ir〉 for all
0 < i < n+ 1 and 〈0r, (n+ 1)l〉.

In a test graph, we call the edges in E as real edges denoted by [] and the
edges 〈il, ir〉, 0 < i < n+1 and 〈0r, (n+1)l〉 as imaginary edges. Notice that in
a test graph each vertex is incident to one imaginary edge and at most one real
edge; henceforth the test graph is composed of alternating cycles and paths.
These pathes begin and end with imaginary edges. By the length of a cycle
or a path we will understand the number of real edges in the cycle or path.
We describe below a condition to tell whether a standard partial matching
is a subset of the set of black edges of the breakpoint graph of some signed
permutation.

Theorem 1.1 Let E be a standard partial matching on the vertex set Vn.
Then E is a subset of the black edges of the breakpoint graph of some permu-
tation if and only if the test graph T(E) is cycle-free (consists of paths only),
or is a single cycle of length n+ 1.
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Proof. It is obvious that the test graph T(B(π)) for the set of all black edges of
the breakpoint graph of some permutation π is an alternating cycle of length
n + 1. If E is a subset of B(π), then T(E) is a subgraph of T(B(π)). Since
T(B(π)) is a cycle of length n + 1, its subgraphs have to be itself or a set of
pathes.

If T(E) is a cycle of length n + 1, we begin to read the numbers from 0r

to (n + 1)l along the longer side of this cycle, and take the positive sign to
the number if il proceed ir, 0 < i < n + 1, otherwise the negative sign. Thus
we obtain a signed permutation, such that E is exactly the black edges set of
this signed permutation. If T(E) consists of pathes, we can connect them into
an n + 1- cycle, and from that, like above, we can get a signed permutation.
Clearly, E is a subset of the black edge set of this signed permutation.

2 Expected number of cycles

Selecting a signed permutation randomly and uniformly with probability 1
2nn! ,

the number of cycles in its breakpoint graph, c, will be a random variable and
we are interested in the expectation and variance of this random variable c.

In order to get the expected number of cycles E[c], it is enough to get the
expected number of cycles of fixed lengths and sum them up, according to the
linearity of expectation.

Lemma 1 Let Ot be any B-cycle of length t, where 0 < t < n + 1. The
probability that a randomly and uniformly selected signed permutation contains
Ot is pt =

(n−t)!
2tn! .

Proof. We have to count how many signed permutations contain Ot as a
cycle in their breakpoint graph. Since each cycle is determined by its black
edges, we only have to count the signed permutations whose breakpoint graph
contains the black edges of Ot. Let B(Ot) be the set of black edges of Ot.
Since Ot is a B-cycle of length less than n + 1, from Theorem 1.1, T(B(Ot))

consists of alternating paths. The test graph of the whole black edge set of any
breakpoint graph that contains B(Ot) is a cycle of length n+ 1 that contains
these paths as subgraphs. Just as in the proof of Theorem 1.1, we read the
permutations from these cycles and we will observe that

(A) Let P = 〈xa1
1 , x

a1
1 〉[x

a1
1 , x

a2
2 ] . . . [xak

k , x
ak+1

k+1 ]〈xak+1

k+1 , x
ak+1

k+1 〉 be a path of
length k which does not contain 0r and (n+ 1)l in T(B(Ot)). Then either the
segment (s(a1) · x1, s(a2) · x2 . . . s(ak+1) · xk+1) or the segment (−s(ak+1) ·
xk+1,−s(ak) · xk, . . . − s(a1) · x1) lies in the permutations whose breakpoint
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graphs contain Ot depending on the direction of reading. Here notice the
length of these segments is k+ 1.

For instance the path 〈3l, 3r〉[3r, 5l]〈5l, 5r〉[5r, 7r] 〈7r, 7l〉[7l, 4r]〈4r, 4l〉 is a
path of length 3. A permutation whose breakpoint graph contains the black
edges [3r, 5l], [5r, 7r] and [7l, 4r] must contain the segment (3, 5,−7,−4) or
(4, 7,−5,−3).

(B) Let P = 〈xa1
1 , x

a1
1 〉[x

a1
1 , x

a2
2 ] . . . [xai

i , (n+1)l]〈(n+1)l, 0r〉[0r, x
ai+1

i+1 ]〈xai+1

i+1 ,

x
ai+1

i+1 〉 . . . [x
ak−1

k−1 , x
ak
k ]〈xak

k , x
ak
k 〉 be a path of length k which contains 0r and (n+

1)l in T(B(Ot)), then P determines that all the permutations whose breakpoint
graphs contain Ot must begin with s(ai+1) · xi+1, s(ai+2) · xi+2 . . . s(ak) · xk)

and end with (s(a1) · x1, s(a2) · x2, . . . s(ai) · xi).

For example, the path 〈6l, 6r〉[6r, 4l]〈4l, 4r〉[4r, 8l]〈8l, 0r〉[0r, 3l]〈3l, 3r〉[3r, 2r]

〈2r, 2l〉 implies that the permutation whose breakpoint graph contains these
black edges in the path must begin with (3,−2) and end with (6, 4).

Let li be the number of paths of length i which do not contain vertices 0r

and (n+ 1)l in T(B(Ot)). Here 0 < i < n for a path of length n or n+ 1 must
contain 0r and (n+ 1)l.

Case 1. The length of the path containing 0r and (n + 1)l is 0. In this
case, we have

∑n−1
i=1 i · li = t. From observation (A), each path of length i

determine one segment of length i+ 1 in the permutation . So the number of
permutations whose breakpoint graphs contain Ot is

2n−
∑n−1

i=1 (i+1)li+
∑n−1

i=1 li(n−

n−1∑
i=1

(i+ 1)li +

n−1∑
i=1

li)!,

which turns out to be just 2n−t(n− t)!.
Case 2. The length of the path containing 0r and (n + 1)l is s > 0. In

this Case, we have
∑n−1

i=1 i · li = t − s. From observation (B), the start and
end segments of the permutations of total length s are fixed. So we only
need to consider the number of permutations on the remained n− s numbers.
According to case 1, it should be 2(n−s)−(t−s)((n − s) − (t − s))! which still
equals to 2n−t(n− t)!.

So from Cases 1 and 2, we conclude that for any B-cycle, there are 2n−t(n−

t)! signed permutations containing it. Since |Sn| is 2nn!, we have pt =
2n−t(n−t)!

2nn! =
(n−t)!
2tn! .

The following lemma is a basic fact which will be applied in the coming
computation.
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Lemma 2

log(n+ 1) ≤
n∑

i=1

1

i
≤ logn+ 1.

2.1 Upper bound

Lemma 3 Let ct(π) be the number of different B-cycles of length t which do
not contain 0r and 1l in the breakpoint graphs of permutation. Then

ct <
2t−1n!

t(n− t)!
.

Proof. A B-cycle of length t without 0r and 1l can be written as a circular
sequence of edges as

{[x ′t, x1], (x1, x
′
1), [x

′
1, x2], (x2, x

′
2) . . . , [x

′
t−1, xt], (xt, x

′
t)}

or
{[x1, x

′
t](x

′
t, xt)[xt, x

′
t−1] . . . , (x

′
2, x2), [x2, x

′
1](x

′
1, x1)}

for it is undirected, where xi ∈ {1r, 2l, 2r . . . nl, nr, (n+ 1)l} and x ′i is the mate
of xi. Observe that the vertex set of a B-cycle of length t is just t pairs of mates
and it corresponds to the circular sequence of the second vertex of each black
edge. The first sequence corresponds to the circular t-permutation x1x2 . . . , xt

of the vertices set Vn \ {0r, 1l}, and the other corresponds to {x ′t, x
′
t−1 . . . , x

′
1}.

So each B-cycle corresponds to two circular t-permutations and each circu-
lar t-permutation corresponds to at most one B-cycle. Notice that if a t-
permutation corresponds to a B-cycle, there is no pair of mates both in the
t-permutation. Now lets count the number of such permutations. Let’s select
xi’s one by one to get a linear t-permutation. We have 2n choices for x1,
2n − 2 choices x2 since x ′1 can not be selected . . . 2n − 2t + 2 choices for xt.
Thus we have totally 2tn!

(n−t)! such linear t- permutations i.e 2tn!
t(n−t)! such circular

t-permutation. Hence there are at most 2t−1n!
t(n−t)! cycles of length t for each cycle

corresponding to a pair of circular t-permutations.

Theorem 2.2 Let c(π) be the random variable counting the number of cycles
in the breakpoint graph of a random signed permutation π. Then

E[c] ≤ 1
2

logn+
3

2
.
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Proof. Since 0r and 1l are mates, they are contained in one cycle. Thus we
have

E[c] ≤
n∑

i=1

cipi + 1 ≤
n∑

t=1

2t−1n!

t(n− t)!
· (n− t)!

2tn!
+ 1 =

n∑
t=1

1

2t
+ 1 ≤ 1

2
logn+

3

2
,

where the last inequality is obtained by Lemma 2.

2.2 Lower bound

Definition 4 Let Ot be a B-cycle of length t. Let Ot+1 be a B-cycle of length
t+ 1 on Vn obtained by replacing a black edge of Ot with an alternating path
of two black edges and a gray edge. Then we call Ot the shadow of Ot+1 and
Ot+1 the shade of Ot.

Lemma 4 For any i, 1 < i < n, let ci be the number of different B-cycles of
length i among the breakpoint graphs of all the signed permutations, then we
have

(i+ 1)ci+1 ≥ 2i(n− i)ci.

Proof. We prove it by counting the set of ordered pairs P = {(Oi, Oi+1)|Oi is a
shadow of Oi+1}.

For a given B-cycle of length i+1, we can replace an alternating path of two
black edges and a gray edge by a black edge to get a new cycle which could
be a shadow depending on whether the new cycle is a B-cycle. Since we have
i + 1 ways to select the alternating path of two black edges and a gray edge,
each B-cycle has at most i+ 1 shadows which implies that |P | ≤ (i+ 1)ci+1.

For a given B-cycle Oi of length i, its shades must lie in the set of cycles
which are obtained by replacing one black edge with an alternating path of
two black edges and a gray edge. We denote that set by S(Oi). Next let’s
consider how many of cycles in S(Oi) are B-cycles.

From Theorem1.1, we only need to count how many of the cycles in S(Oi)

with the test graph of their black edges are cycle-free.
Assume that Oi is written as

{[x ′i, x1], (x1, x
′
1), [x

′
1, x2], (x2, x

′
2) . . . , [x

′
i−1, xi], (xi, x

′
i)}.

we replace the black edge [x ′k−1, xk] by the path[xk−1, y](y, y
′)[y ′, xk]. Clearly

y can not be in Oi. What happens to the test graph T(B(Oi)) is the following:
we delete the black edge [x ′k−1, xk] and add two black edges [xk−1, y] and [y ′, xk]
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r r r r r r r r
x ′k−1 xk

A path in T(B(Oi))

r r r r r r rrr
x ′k−1 xky

y ′

r r r r r r rrr
x ′k−1 xk y ′

y

Figure 2: The path after deleting [x ′k−1, xk] and adding [x ′k−1, y] and [xk, y
′]

by selecting a vertex y. Let [x ′k−1, xk] be in a path in T(B(Oi)), only when y
or y ′ is one of the two end points of this path could cause a cycle in the new
test graph (see Fig. 2).

So here the ”y” has at least (2n + 2) − (2i + 2) choices. Hence |P | ≥
i(2n− 2i)ci. Thus we have

i(2n− 2i)ci ≤ |P | ≤ (i+ 1)ci+1.

which implies our lemma.
We know that the number of B-cycles of length one is n + 1. Recursively

using Lemma 4 we get the following corollary:

Corollary 1 Let ct be the number of B-cycles of length t among the breakpoint
graphs of all signed permutations of size n, where 1 < t < n+ 1. Then

ct >
2t−1(n+ 1)(n− 1)!

t(n− t)!
.

Theorem 2.3 Let c(π) be the random variable by the number of cycles in the
breakpoint graph of a random permutation π.Then

E[c] ≥ n+ 1

2n
log(n+ 1).

Proof.

E[c] ≥
n∑

i=1

cipi ≥
n∑

i=1

2t−1(n+ 1)(n− 1)!

t(n− t)!
· (n− t)!

2tn!
≥ n+ 1

2n
log(n+ 1),



16 L.A. Székely and Y.Yang

where the last inequality is obtained by Lemma 2.

3 Variance of the number of cycles

Theorem 3.4 Let c(π) be the random variable counting the number of cy-
cles in the breakpoint graph of of a randomly and uniformly selected signed
permutation π, then

E[c2] ≤ 3
4

log2 n+
5

2
logn+

7

2
.

Proof. Let Xi be the random variable such that Xi(π) = 1 if G(π) contains
the B-cycle oi and Xi(π) = 0 otherwise. Then we have:

• c(π) =
∑

i Xi(π);

• Xi(π)Xj(π) = 1, if G(π) contains the cycles oi and oj, = 0. Furthermore,
if oi ∩ oj 6= ∅, then XiXj = 0.

• E[X2
i (π)] = E[Xi(π)].

Hence

E[c2] = E[
∑

i

Xi

∑
j

Xj] =
∑

i

E[X2
i ] +

∑
i,j,
i 6=j

E[XiXj]

= E[c] +
∑
i,j
i 6=j

E[XiXj] = E[c] +
∑
i,j

oi∩oj=∅

E[XiXj] (3.1)

Let us be given two cycles A and B of length a > 0 and b > 0 with A∩B = ∅.
Then a permutation contains A and B only if it contains the a+b black edges
of them. From the proof of Lemma 1, we have there are 2n−a−b(n − a − b)!

permutations containing cycles A and B provided a+b ≤ n. So the probability
of a random permutation containing the cycles A and B is 2n−a−b(n−a−b)!

2nn! for
2 ≤ a+b ≤ n. When a+b = n+ 1, the breakpoint graph of the permutation
which contains A and B is uniquely determined by the black edges of A and
B. Hence the probability of a permutation containing the cycles A and B is

1
2nn! when a+ b = n+ 1.

Now let us count how many ordered pairs of non-intersecting cycles have
length a > 0 and b > 0. Since each cycle of length t is determined by a pair of
circular t-permutations, the number of ordered pairs of non-intersecting cycles
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which have length a > 0 and b > 0 is bounded by one fourth of the ways of
getting a pair of circular a-permutation and b-permutation. Just as in the
proof of Lemma 3, we could select a circular a-permutation with

(2n+ 2)(2n+ 2− 2) . . . (2n+ 2− (2a− 2))

a
=

2a(n+ 1)!

a(n+ 1− a)!

ways and select a circular b-permutation which is not intersected with the
a-permutation with

(2n+ 2− 2a)(2n+ 2− 2a− 2) . . . (2n+ 2− 2a− (2b− 2))

b
=

2b(n+ 1− a)!

(n+ 1− a− b)!b

ways. Thus totally we have at most

2a(n+ 1)!

a(n+ 1− a)!
· 2b(n+ 1− a)!

(n+ 1− a− b)!b
=

2a+b(n+ 1)!

(n+ 1− a− b)!ab

such pairs. Thus,

∑
i,j

oi∩oj=∅

E[XiXj] ≤
1

4

a+b≤n∑
a,b≥1

2a+b(n+ 1)!

(n+ 1− a− b)!ab

2n−a−b(n− a− b)!

2nn!

+
1

4

a+b=n+1∑
a,b≥1

2a+b(n+ 1)!

(n+ 1− a− b)!ab

1

2nn!

=
1

4

a+b≤n∑
a,b≥1

n+ 1

ab(n+ 1− a− b)
+
1

2

a+b=n+1∑
a,b≥1

n+ 1

ab

=
1

4

n∑
t=2

t−1∑
a=1

n+ 1

a(t− a)(n+ 1− t)
+
1

2

n∑
a=1

(
1

a
+

1

n+ 1− a
)
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=
1

4

n∑
t=2

t−1∑
a=1

(
1

a(t− a)
+

1

a(n+ 1− t)
+

1

(t− a)(n+ 1− t)

)
+

n∑
a=1

1

a

=
1

4

n∑
t=2

(
(
1

t
+

1

n+ 1− t
)

t−1∑
a=1

(
1

a
+

1

t− a
)

)
+

n∑
a=1

1

a

≤
n∑

t=2

1

2

(
log(t− 1) + 1

)(
1

t
+

1

n+ 1− t

)
+(logn+ 1)

=
1

2

n∑
t=2

(
log(t− 1)

t
+

log(t− 1)

n+ 1− t

)
+
1

2

n∑
t=2

(
1

t
+

1

n+ 1− t

)
+(logn+ 1)

≤ 1

2

n∑
t=2

(
log(t− 1)

t− 1
+

log(n− 1)

n+ 1− t

)
+
1

2
(logn+ log(n− 1) + 1)

+(logn+ 1)

≤ 1

2

(
log2 n

2
+ log(n− 1)(log(n− 1) + 1)

)

+
1

2
(logn+ log(n− 1) + 1) + (logn+ 1)

≤ 3

4
log2 n+

5

2
logn+

3

2
.

From (3.1) and Lemma 3, we have

E[c2] ≤ 1
2

logn+
3

2
+
3

4
log2 n+

5

2
logn+

3

2
=
3

4
log2 n+ 3 logn+ 3.

Theorem 3.5 Let c(π) be the random variable that counts the number of
cycles in the breakpoint graph of π, then

Var[c] ≤ 1
2

log2 n+ 3 logn+ 3.

Proof. For Var[c] = E[c2] −E[c]2, substitute the upper bound of E[c2] and the
lower bound of E[c] to obtain
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Var[c] ≤ 3
4

log2 n+ 3 logn+ 3− (
n+ 1

2n
log(n+ 1))2

≤ 3
4

log2 n+ 3 logn+ 3− (
1

2
log(n))2

=
1

2
log2 n+ 3 logn+ 3.

We leave it to reader to verify that the calculations in Theorems 3.4 and
3.5 are asymptotically tight.

4 Expectation and variance of the reversal distance

Recall that h(π) is the number of hurdles and fr(π) is the number of fortresses
in the breakpoint graph of π. For a randomly and uniformly selected signed
permutation π, we have Prob(h(π) ≥ 1) = Θ( 1

n2 ) according to Swenson et al.
[10]. There are at most n hurdles in the breakpoint graph of any permutation.
So we have E[h] = O( 1

n). Swenson et al. [10] also showed that Prob(fr(π) =

1) = Θ( 1
n15 ), which implies that E[fr] = Θ( 1

n15 ) for fr(π) only takes value 1
or 0. Hence from (1.2) we have

E[d(π)] = n+ 1− E[c(π)] +O(
1

n
),

which implyies the following theorem:

Theorem 4.6 n+1− 1
2 logn− 3

2 +O( 1
n) ≤ E[d] ≤ n+1− n+1

2n log(n+1)+O( 1
n).

Since Prob(h(π) ≥ 1) and Prob(fr(π) = 1) are both very small, we can
drop the terms h(π) and fr(π) in most of the cases when we compute d(π).
Let d̃ = n + 1 − c(π). Then we have the following result as a consequence of
Theorem 3.5:

Theorem 4.7
Var[d̃] ≤ 1

2
log2 n+ 3 logn+ 3.
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