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Abstract. In this paper we shall prove and sharpen a conjecture of A.
Bialostocki on anti-Ramsey colorings of the complete graph Kn. Assume
the edges of a Kn are colored by t colors. The basic question is how
many colors ensure that Kn has a spanning subtree of diameter at most
d in which each edge has a different color. The surprising fact is that the
answers are the same for every d ≥ 3. Moreover, we can set the maximal
degree of the spanning tree at least n − 4 without altering the answer.
This implies that in these cases there is an extremal anti-Ramsey coloring
using only one color more than once. Recently Jiang showed that this is
not the case for d = 2. We also prove a new extremal property of Moore
graphs of diameter 2 (e.g. the Petersen graph), that yields a bit shorter
proof of a weaker version of our main theorem.

1 Introduction

Erdős, Simonovits and Sós [10] initiated the investigation of anti-Ramsey prob-
lems for graphs. Call an edge-colored graph totally multicolored (TMC, for
short) if any two edges have different colors. Given a family L of graphs, what
is the maximum t for which there exist t-colorings of the edges of Kn, where
every color is used at least once, without a TMC subgraph that belongs to L?
This maximum will be denoted by R∗(n,L). When L consists a single graph
G, we shall use R∗(n,G) for R∗(n, {G}).

These questions are related to extremal graph problems. Define ex(n,L)

as the maximal integer m of edges such that there is a graph with n vertices
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and m edges which does not contain a subgraph isomorphic to a graph in L.
Denote ex(n, {G}) by ex(n,G).

It is easy to see that R∗(n,L) ≤ ex(n,L); indeed, if we have a coloring
which uses t colors and no TMC subgraph belonging to L is obtained, then,
by choosing for every color an edge with this color arbitrarily we have a graph
with t edges which does not contain subgraphs belonging to L. On the other
hand, let L∗ = {L − e : L ∈ L, e ∈ E(L)}, and let G be a subgraph of Kn

containing no member of L∗. Then, as it was observed in [10], every coloring
of Kn for which all edges not belonging to G has the same color contains no
TMC member of L. In particular, since G can be chosen to have ex(n,L∗)
edges,

R∗(n,L) ≥ ex(n,L∗) + 1. (1)

The above inequality is sharp iff there is an extremal anti-Ramsey coloring
using only one color more than once. Erdős, Simonovits and Sós showed also
that sometimes this is the case, and sometimes it is not. (1) is sharp if L
consists of one clique with at least 4 vertices and n is large enough. That is,

R∗(n,Kk) = ex(n,Kk − e) + 1 (2)

for sufficiently large n and k ≥ 4. (Their proofs gave R∗(n, Kk) explicitly, since
they proved (2) by showing

R∗(n,Kk) ≤ ex(n,Kk−1) + 1. (3)

for sufficiently large n and k ≥ 4. (3), combining with (1) and an earlier
theorem of Dirac [7] stating Recently Montellano-Ballesteros and Neumann-
Lara [18] and Schiermeyer [19] proved (2) for every possible n.) On the other
hand, it was also shown in [10] that (1) is not sharp if L consists one cycle of
length k and n ≥ 2k − 1.

Calculation of the exact anti-Ramsey numbers has proven to be very hard.
They have been found only for few L so far, and, for most of these Ls, |L| = 1

(see [10], [18] and [19] for cliques, [10], [1] and [14] for short cycles, [20] and [17]
for paths, [13] for stars, [15] for brooms, that is, for trees formed by identifying
the center of a star and an endpoint of a path, and [19] for matchings).

The case |L| ≥ 2 was examined first by Bialostocki and Voxman [5] and
by Jiang and West [15]. They considered the family of all trees with k edges,
denoted by Tk. R∗(n, Tk) makes sense iff k ≤ n−1. Bialostocki and Voxman [5]
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gave R∗(n, Tn−1) for every n; independently Jiang and West [15] gave R∗(n, Tk)

for every n and k. (1) proved to be sharp for all of them. In particular, T ∗n−1

obviously consists of forests of order n with exactly two components, hence
for n ≥ 3 a graph of order n is T ∗n−1-free iff it has at least three components;
therefore it is easy to see that

ex(n, T ∗n−1) =

(
n − 2

2

)
(4)

for n ≥ 3. Bialostocki and Voxman [5] and Jiang and West [15] proved the
next theorem:

Theorem 1 For n ≥ 3,

R∗(n, Tn−1) =

(
n − 2

2

)
+ 1.

(As we said, Jiang and West proved a much more general theorem.) Bialo-
stocki [3] conjectured a generalization in another direction.

Let T d
n−1 be the family of the trees of size n − 1 and diameter at most d.

Bialostocki conjectured that

R∗(n, T 4
n−1) = R∗(n, Tn−1). (5)

In other words, if the number of colors is greater than
(
n−2

2

)
+ 1 then there is

a TMC spanning tree of diameter at most 4. His motivation was a result of
him and his collaborators about corresponding Ramsey-type questions. It is
well-known that if a graph is disconnected, i.e., if its diameter is infinite, then
the diameter of its complement is at most 2. Bialostocki, Dierker and Voxman
[4] proved that the same is true for complements of graphs of diameter greater
than 4.

Our main aim in this paper is to show that much more is true. First of all,

R∗(n, T 3
n−1) = R∗(n, Tn−1). (6)

That is, if the number of colors is greater than
(
n−2

2

)
+ 1 then there is a TMC

spanning tree with an edge dominating the whole tree, i.e., every vertex is
adjacent to an endpoint of this edge. We shall call such a tree a double star,
and the edge dominating the whole tree the central edge. (Note that a star is
also a double star, and all its edges are central.) It is obvious that in (6) the
diameter 3 cannot be replaced by 2, since T 2

n−1 = {K1,n−1}, T 2∗
n−1 = {K1,n−2}
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and therefore R∗(n,K1,n−2) ≥ ex(n, K1,n−2) + 1 =
(
n
2

)
− n + 1 > R∗(n, Tn−1)

for n ≥ 4. Jiang [13] showed the considerably more interesting fact, that

R∗(n, T 2
k ) − ex(n, T 2

k
∗
) > 1, (7)

for k ≥ n/2 + 2. In particular,

R∗(n, T 2
n−1) − ex(n, T 2∗

n−1) > 1

for n ≥ 6. That is, for these cases the extremal anti-Ramsey colorings use at
least two colors more than once. (7) disproves a conjecture of Manoussakis,
Spyratos, Tuza and Voigt [16] who expected equality in (7) for every k and n.
(7) is implied from the trivial facts that T 2

k = {K1,k}, for k ≥ 2, T 2
k
∗

= {K1,k−1}

and

ex(n,K1,k−1) =

⌊
n(k − 2)

2

⌋
,

and the next theorem of Jiang [13]:

Theorem 2 For every n > k ≥ 2,

0 ≤ R∗(n, K1,k) −

(⌊
n(k − 2)

2

⌋
+

⌊
n

n − k + 2

⌋)
≤ 1,

and the lower bound is sharp unless all of n, k and b2n/(n − k + 2)c are odd.

(Jiang conjectures that the lower bound is the truth also in the remaining
case.)

However, R∗(n,L) = R∗(n, Tn−1) holds even for a family L much smaller
than T 3

n−1. Let DSm
n−1 be the families of the double stars with n vertices

whose maximal degree is at least n − m, that is, their second largest degrees
are at most m. Obviously, for n ≥ 2 the second largest degree of a double star
of size n − 1 can be any positive integer between 1 and n/2, and all of these
possible second largest degrees determines the double star uniquely, therefore
|T 3

n−1| = bn/2c for n ≥ 2, and |DSm
n−1| = m for n ≥ 2m. In comparison, it

is easy to see that |T 4
n−1| > P(b(n − 1)/2c), where P is the partition function,

that is, P(k) is the number of writing the integer k as a sum of positive integers
without regard to order. Hardy and Ramanujan [11] showed that, for some
absolute constants A and B, eA

√
k < P(k) < eB

√
k.

We shall show that

R∗(n, Tn−1) = R∗(n,DS4
n−1). (8)
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Thus the conjectured equality (5) is true even if we replace the superpoli-
nomially large family T 4

n−1 by the family DS4
n−1 consisting four graphs.

Jiang’s theorem above shows that DS4
n−1 cannot be replaced by DS3

n−1.
Since all of the three members of DS3

n−1 contain K1,n−3, R∗(n,DS3
n−1) ≥

R∗(n,K1,n−3). Therefore Theorem 2 implies that, for n ≥ 25,

R∗(n,DS3
n−1) ≥

n(n − 5)

2
+

⌊n

5

⌋
=

(
n − 2

2

)
+

⌊n

5

⌋
− 3

>

(
n − 2

2

)
+ 1 = R∗(n, Tn−1).

In the next section we prove our main result.
In the last section we present an alternative, simpler proof of statement (6),

by proving another theorem that perhaps is of its own interest. A graph is
called Moore graph if it has diameter d and girth 2d+1 for some integer d. The
trivial examples are complete graphs and odd cycles. Hoffman and Singleton
proved that: every regular nontrivial Moore graph of diameter 2 has degree 3,
7 or 57; the unique 3-regular Moore graph of diameter 2 is the Petersen graph;
there is exactly one 7-regular Moore graph (now it is called Hoffman-Singleton
graph); and there is no nontrivial regular Moore graph of diameter 3. Erdős
and Rényi [8] (see also [9]) found the next extremal property of regular Moore
graphs of diameter 2.

Theorem 3 Let G be a graph of order n, diameter d and maximal degree ∆.
Then

|E(G)| ≥ n(n − 1)(∆ − 2)

2((∆ − 1)d − 1)
,

and equality holds iff G is a regular Moore graph.

Later Singleton [21] showed that, perhaps surprisingly, every Moore graph
is regular. Finally, Bannai and Ito [2] and, independently, Damerell [6] proved
that every nontrivial Moore graph has diameter 2. It yields that equality can
hold in Theorem 3 only if d = 2 and ∆ ∈ {2; 3; 7; 57}. It is still unknown if
there are 57-regular Moore graphs. It is easy to see that if they exist then
their order is 1 + 57 + 57 · 56 = 3250.

We will show the next extremal property of the Moore graphs of diameter
2. If the graph G has diameter 2 and minimal degree δ then its size is at least
((δ + 1)/2)n − (δ2 + 1)/2, and equality holds iff G is a Moore graph. In case
of d = 2, this fact can be considered as a dual of Theorem 3.
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2 Proof of the main theorem

The main result of this chapter is the following.

Theorem 4 For n ≥ 3,

R∗(n,DS4
n−1) =

(
n − 2

2

)
+ 1.

Theorem 4 and Theorem 1 immediately imply (8) for n ≥ 3, and it is obvious
for n = 2, since then (and even for n ≤ 4) Tn−1 = DS4

n−1.
As usual, we shall denote by NG(x) the set of the vertices adjacent to x

in G, and let NG[x] be the set NG(x) ∪ {x}. For any subgraph G of Kn, we
define V(G) as the whole V(Kn) even if, for some v ∈ V(Kn), there is no edge
of G incident to v. We say that a set D ⊂ V(Kn) is a dominating set in a
subgraph G of Kn if every vertex of D is adjacent to at least one vertex of D.
We shall denote the minimal degree of a graph G by δ(G) and the subgraph
of G formed by the edges joining the disjoint subsets A,B ⊆ V(G) by G[A,B].

Before starting the proof of Theorem 4, we state and prove three lemmas.
All of them are very simple, but stating them as lemmas will make the proof
of Theorem 4 easier to read.

The first lemma does not concern colorings, but rather only subgraphs of
Kn whose complements do not contain double stars with high maximal degree.

Lemma 1 Let m, n be integers with m ≤ n/2. Let G be a subgraph of Kn for
which G does not contain a spanning double star with maximal degree at least
n − m, and let u be a vertex of G of degree at most m − 1. Then NG(u) is a
dominating set in G.

We will use this lemma for m = 4 only, but its proof is essentially the same
for every m.
Proof. Suppose that NG(u) is not a dominating set in G, that is, there is
a vertex v whose distance from u in G is at least 3. Then uv ∈ E(G), and
NG(u) ∩ NG(v) = ∅. Hence uv is a central edge of a spanning double star
contained in G in which the degree of u is |NG[u]| ≥ n − m. ¥

The next two lemmas concern edge-colored Kns and their some particular
subgraphs we define as follows. A subgraph of an edge-colored Kn is called
representing iff it has exactly one edge of every color appearing on Kn. We
shall call a subgraph H representing-complement (RC, for short) iff H is repre-
senting. Furthermore, for a given edge-coloring of Kn, we shall call a subgraph
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H special representing-complement (SRC, for short) iff δ(H) is minimal over
all RC subgraphs.

Lemma 2 Let a subgraph H of an edge-colored Kn be SRC, and let v be a
vertex whose degree in H is δ(H). Then for any edge e of H incident to v

there is an edge of H incident to v colored with the color of e.

Proof. Since H is RC, there is an edge f of H colored with the color of e.
Since H is representing, H − f + e is also representing, hence H − e + f is RC.
If f was not incident to v, then the degree of v in H− e+ f would be δ(H)− 1,
contradicting the fact that H is SRC. ¥

Lemma 3 In every SRC subgraph H of an edge-colored Kn, the vertices whose
degree in H is δ(H) forms an independent set.

Proof. Let u, v be two vertices whose degrees in H is δ(H). By Lemma 2 in
H there are edges f1, f2 incident to u, v, respectively, colored with the color
of uv. Since H is RC, only one edge of H can be colored with the color of
uv, hence f1 = f2. But then f1 is incident to u and v both, that is, f1 = uv,
contradicting the facts uv ∈ E(H) and f1 ∈ E(H). ¥
Proof.[Proof of Theorem 4] Obviously R∗(n,DS4

n−1) ≥ R∗(n, Tn−1), and, for
n ≥ 3,

R∗(n, Tn−1) ≥
(

n − 2

2

)
+ 1 (9)

is a part of Theorem 1. (As we saw in the introduction, (9) is the easy direction
of Theorem 1, since it immediately follows from (1) and (4).) Therefore, all
we need to prove is

R∗(n,DS4
n−1) ≤

(
n − 2

2

)
+ 1.

For the sake of brevity, we shall call a subgraph good if it is RC and for
some vertex of degree at most 3, the set of its neighbors is not dominating.
By Lemma 1 it suffices to prove that, for every coloring of E(Kn) that uses(
n−2

2

)
+ 2 colors, there is a good subgraph.

Consider an arbitrary coloring of the edges of Kn that uses
(
n−2

2

)
+ 2 colors.

Let H be an arbitrary SRC subgraph. Then its size is
(
n
2

)
−

(
n−2

2

)
−2 = 2n−5.

If δ(H) = 0 then there is a vertex u with NH(u) = ∅, hence H is good.
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If δ(H) = 1 then let u, v be vertices such that v is the only neighbor of u

in H. By Lemma 2 there is a vertex w different from v such that the colors
of uv and uw are the same, hence H − uv + uw is also RC. If neither H nor
H−uv+uw is good, then v is adjacent to every vertex in H, and w is adjacent
to every vertex in H − uv + uw, that is, to every vertex other than u in H.
Hence the degrees of v and w in H are n − 1 and n − 2, respectively, so H has
at least 2n − 4 edges, a contradiction.

Suppose that δ(H) = 2. In the remainder of this proof, the graph, whose
adjacency relation is considered, is always H. Let u be a vertex of degree 2
and with neighbors v1, v2. First we assume that uv1 and uv2 have the same
color, say, red. By Lemma 2 there is a vertex v3 different from v1 and v2

such that uv3 is also red. For each 1 ≤ i ≤ 3, H − uvi + uv3 is RC. Thus if
none of them is good, then for any permutation (i, j, k) of (1, 2, 3), {vi, vj} is a
dominating set. Therefore every element of V(Kn) \ {u, v1, v2, v3} has at least
2 neighbors among the vjs, and every vi has at least 1 neighbor among the
other two vjs. Hence there are at least 2(n − 4) edges between {v1, v2, v3} and
V(Kn)\{u, v1, v2, v3}, and at least 2 edges inside of {v1, v2, v3}. Since the degree
of u is 2, we have again the contradiction |E(H)| ≥ 2(n − 4) + 2 + 2 = 2n − 4.

We may therefore assume that uv1 and uv2 have different colors. By
Lemma 2 there are w1, w2 ∈ V(Kn) \ {u, v1, v2} such that uwi have the same
color as uvi. Let z1, . . . , zn−5 be the remaining vertices. If none of the RC
graphs H, H − uv1 + uw1, H − uv2 + uw2, H − uv1 + uw1 − uv2 + uw2 is
good, then any pair containing one vertex among v1, w1 and one vertex among
v2, w2 form a dominating set. Hence, for every 1 ≤ i ≤ n−5, zi is adjacent to
either v1 and w1 or to v2 and w2. Therefore there are at least 2(n − 5) edges
that are incident with the set {z1, . . . , zn−5}.

Assume that v1w1 /∈ E(H). If H is not good, then the set {v1, v2} is domi-
nating, hence v2w1 ∈ E(H). Similarly, if H − uv1 + uw1, H − uv2 + uw2 or
H−uv1+uw1−uv2+uw2 is not good then, in order, v2v1, w2w1 or w2v1 is an
edge of H. But, since the degree of u is 2, these imply that if none of the four
mentioned subgraphs are good, then there are at least 2(n−5)+4+2 = 2n−4

edges in H. Thus v1w1 ∈ E(H). Similarly, v2w2 ∈ E(H), and therefore there
is an edge e of H such that the 2n − 6 edges of H − e are the following: uv1,
uv2, v1w1, v2w2, and for every 1 ≤ i ≤ n− 5, either the pair v1zi, w1zi or the
pair v1zi, w1zi.

If n ≥ 8 then there is an integer l such that 1 ≤ l ≤ n − 5 and e is not
adjacent to zl. Hence the only neighbors of zl are either v1 and w1 or v2

and w2. Thus if N(zl) is dominating then there are at least 2 edges between
{v1, w1} and {v2, w2}. However, as both are outside of H−e, this is impossible.
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Figure 1: Case δ(H) = 2 if uv1 and uv2 has different colors.

Therefore H is good.
On the other hand, by Lemma 3 there are no two adjacent vertices of degree

2. Hence there are at least two vertices of degree greater than 2, therefore the
sum of the degrees is at least 2n + 2. Since the size of H is 2n − 5, we have
4n − 10 ≥ 2n + 2 and n ≥ 6. Moreover, n > 6 since otherwise H would
have two vertices of degree 3 and they would be adjacent to all the other four
vertices, a contradiction.

Therefore the only remaining case is when n = 7 and e = z1z2. Then
N(w1) is not dominating since v2 and w2 are not adjacent to any vertices in
it. Clearly, the degree of w1 is at most 3. (In fact, it is 2, since otherwise the
degree of w2 is 1 and so δ(H) 6= 2.) Hence H is good.

H

w w

v

u

v

1

2

2

1

Figure 2: Subcase n = 7.

Finally, let δ(H) = 3 and let u be a vertex of degree 3, with neighbors
v1, v2, v3. As in the previous argument, we can assume that there are (not
necessarily different) vertices w1, w2, w3 ∈ V(Kn) \ {u, v1, v2, v3} such that
uwi have the same color as uvi. Set W = {v1, v2, v3, w1, w2, w3} and let Z

be the set of the remaining vertices, that is, Z = V(Kn) \ (W ∪ {u}). As in
the previous cases, every vertex of Z has at least 2 neighbors in W and every
vertex of W has at least 1 neighbor in W. As we shall show, these facts lead
to a lower bound on the sum of all degrees, that implies an upper bound on
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n. The degree of u is 3. The sum of the degrees of the vertices in W is
|E(H[W, {u}])| + 2|E(H[W])| + |E(H[W,Z])|, that is at least 3 + |W| + 2|Z|. The
sum of the degrees of the vertices in Z is at least 3|Z|. Hence the sum of all
degrees is at least 6 + |W| + 5|Z| = 6 + |W| + 5(n − |W| − 1) = 1 + 5n − 4|W|,
which is at least 5n− 23. Since this sum is exactly 2|E(H)| = 4n− 10, we have
5n − 23 ≤ 4n − 10, that is, n ≤ 13.

On the other hand, 2|E(H)| = 4n − 10 and δ(H) = 3 imply that there are
at least 10 vertices of degree 3. By Lemma 3, they form an independent set.
Hence the graph has at least 30 edges. It implies that 2n − 5 ≥ 30, that is,
n ≥ 18, a contradiction. ¥

3 An extremal property of the nontrivial Moore
graphs

Theorem 1 and Theorem 4 imply immediately the following theorem.

Theorem 5 For n ≥ 3,

R∗(n, T 3
n−1) =

(
n − 2

2

)
+ 1.

In this section we shall prove an extremal property of the Moore graphs of
diameter 2. As we saw in the introduction, the family of these graphs consists
of C5, the Petersen graph, the Hoffman-Singleton graph and perhaps some
57-regular graphs of order 3250. The fact that the Petersen graph possesses
this property leads to a proof of Theorem 5 that is a bit shorter than our proof
for Theorem 4.

We will prove the following theorem.

Theorem 6 Let G be a graph of order n, diameter 2 and minimal degree δ.
Then

|E(G)| ≥ (δ + 1)n − δ2 − 1

2
,

and equality holds iff G is a Moore graph.

First, we show how can one simplify the proof of Theorem 5 by using The-
orem 6.
Proof. [Proof of Theorem 5.] We repeat the proof of Theorem 4, changing
the end only, which handled the case δ(H) = 3. As we saw in the proof of
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Lemma 1, if there are two vertices u, v of a graph G such that their distance
is at least 3, than G contains a spanning double star (with central edge uv).
In other words, if a graph does not contain a spanning double star, then the
diameter of its complement is at most 2. Therefore, if a coloring of E(Kn)

does not yield any TMC spanning double star, then its RC subgraphs have
diameter at most 2. If the coloring uses

(
n−2

2

)
+ 2 colors, then the size of its

RC subgraphs is
(
n
2

)
−

(
n−2

2

)
− 2 = 2n − 5. Therefore if H is an SRC subgraph

with δ(H) = 3, then, by Theorem 6, H is the Petersen graph. On the other
hand, by Lemma 3, if an SRC subgraph of any coloring of E(Kn) is not empty
(that is, if the coloring uses less than

(
n
2

)
colors) then it cannot be regular,

thus we have the desired contradiction. ¥
For proving Theorem 6 we need the following lemma.

Lemma 4 Let n be an integer with n ≥ 2, and let G be a graph of order n,
diameter at most 2 and degree sequence d1, d2, . . . , dn. Then

n∑

i=1

d2
i ≥ n2 − n,

and equality holds iff either the girth of G is 5 or G = K1,n−1.

Proof. Let V(G) = {v1, v2, . . . , vn} and di be degree of vi for every i. Count
the walks of length 2 in G, that is, the ordered triples (vi, vj, vk) of vertices
with vivj, vjvk ∈ E(G) (i = k being allowed). For a given j the number is
obviously d2

j , therefore the total number is
∑n

i=1 d2
i .

Now we show that there is an injection f from the set of ordered pairs of
distinct vertices to the set of these walks. For vivj /∈ E(G), let f(vi, vj) =

(vi, vk, vj) with arbitrary k such that vivk, vkvj ∈ E(G) (such j exists since the
diameter of G is at most 2). For vivj ∈ E(G), let f(vi, vj) = (vi, vj, vi). f is an
injection since for i 6= k, (vi, vj, vk) can only be the image of (vi, vk), and for
i = k, it can only be the image of (vi, vj).

Since the number of ordered pairs of distinct vertices is n2 − n,
∑n

i=1 d2
i ≥

n2 −n. Equality holds iff f is surjective, that is, iff there is exactly one k with
vivk, vkvj ∈ E(G) for every i, j with vivj /∈ E(G) and there is no such k for any
i, j with vivj ∈ E(G). In other words, iff G contains neither C3 nor C4, that
is, G is either a forest or its girth is at least 5. The only forest with order
n and diameter at most 2 is K1,n−1. Since the distance of two vertices of a
shortest cycle of a graph is obviously the length of the shorter arc of this cycle
connecting them, a girth of a graph with diameter 2 cannot be greater than
5. ¥
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Proof. [Proof of Theorem 6.] Let e = |E(G)|. By Lemma 4, it is sufficient to
show that if the degree sequence of G is d1, d2, . . . , dn and

n∑

i=1

d2
i ≥ n2 − n, (10)

then

e ≥ (δ + 1)n − δ2 − 1

2
, (11)

and equality holds in (11) only if it holds in (10).
First assume that n ≤ δ2 + 1. In this case, since obviously e ≥ δn/2, (11)

is trivially true. Equality holds iff n = δ2 + 1 and di = δ for every i. Then∑n
i=1 d2

i = nδ2 = n(n − 1) = n2 − n.
Now assume n > δ2+1. Because of convexity of the function x2, if x1, . . . , xn

and s are real numbers such that, for every i, xi ≥ δ, s ≥ δn and
∑n

1 xi = s,
then

∑n
i=1 x2

i ≤ (n − 1)δ2 + (s − (n − 1)δ)2, and equality holds iff there is at
most one i with xi > δ. Hence if

∑n
i=1 d2

i ≥ n2 − n then

(n − 1)δ2 + (2e − (n − 1)δ)2 ≥ n2 − n,

that is,

4e2 − 4δ(n − 1)e + δ2((n − 1)2 + n − 1) ≥ n(n − 1),

e2 − δ(n − 1)e +
δ2 − 1

4
n(n − 1) ≥ 0,

therefore

2e ≥ δ(n − 1) +

√
δ2(n − 1)2 − (δ2 − 1)n(n − 1)

= δ(n − 1) +

√
(n − 1)(n − δ2).

Thus, it suffices to show

δ(n − 1) +

√
(n − 1)(n − δ2) > (δ + 1)n − δ2 − 1,

that is,

δ2 − δ + 1 > n −

√
(n − 1)(n − δ2). (12)
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It is easy to verify that the right-hand side is strictly decreasing in n. Since
equality holds in (12) for n = δ2 + 1, the inequality is valid for n > δ2 + 1. ¥

The author would like to thank Béla Bollobás and Miklós Simonovits for
valuable comments and remarks, and Miklós Simonovits for calling my atten-
tion to this problem.

References
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[13] Jiang, T., Edge-colorings with no large polychromatic stars, Graphs Com-
bin., 18 (2002), 303–308.

[14] Jiang, T., Schiermeyer, I., West, D., The Erdős–Simonovits–Sós conjec-
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