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Abstract. We show that deciding if a simple graph has a partial ori-
entation of its edges such that all vertices have a prescribed in-, out-
and undirected degree, is NP-complete even for planar graphs. We prove
that two related questions are also NP-complete, one is the decision of
whether a score vector of a soccer-tournament is legal or not (we know
who played who so far, but do not know the outcomes), the other is about
a special edge-coloring of 3-uniform hypergraphs.

1 Introduction

The problem of deciding whether we can direct a graph with each vertex
having a prescribed in- and out-degree is well-known to be in P. It is another
interesting question to determine the complexity of the problem where instead
of a directed graph, we want to obtain a mixed graph, ie. a graph that has both
directed and undirected edges, and we prescribe the in-, out- and undirected-
degree of each vertex. Let us denote the problem of deciding whether this can
be done or not by Partial Orientation for general graphs and Pl-PO for
planar graphs. We show that both Partial Orientation and Pl-PO are
NP-complete.
The Elimination Problem is to decide whether a given team can still

win the tournament at some point. This was shown to be NP-complete not
so long ago independently by Bernholt et al. ([1]) and Kern and Paulusma
([3]). Later it was also generalized to various other point-systems by Kern and
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Paulusma ([4]), in this paper they solve completely for which score allocation
rules the problem is NP-complete, assuming that we do not require that the
score vector is reachable in a valid tournament. They suspected that deciding
if a score vector is reachable or not (if we know the remaining games) is a
difficult problem. So let us denote the problem of deciding whether a given
score vector is a possible result of a soccer-tournament or not (if we know
which team played against which so far) by Score Vector. In this paper
we prove that Score Vector is NP-complete (in the case when teams get
1 < p 6= 2 points for winning, 1 for drawing and 0 for losing a game). The proof
is an easy consequence of our construction given to the Partial Orientation
problem.
Let us define the tricoloring of a hyperedge containing 3 vertices such that we

color its vertices red, green and blue, using all three colors. Given a 3-uniform
hypergraph and a color requirement for each vertex that prescribes how many
times it has to be red, green and blue, the problem of deciding whether there
is a suitable tricoloring or not, is denoted by Tricoloring. We show that
Tricoloring is NP-complete.

2 Partial orientation of general graphs

We denote the degree of a vertex v in a simple graph by d(v). In the mixed
graph the in-degree is denoted by ρ(v), the out-degree by δ(v) and the number
of the adjacent undirected edges by θ(v). Thus d(v) = ρ(v) + δ(v) + θ(v).
When we say orientation, we mean three possibilities: The two directions and
the undirected case. Thus in the beginning we have a graph with unoriented
edges and we want to orient them.
We reduce 3-SAT to Partial Orientation as follows: We construct a

graph for each input formula to 3-SAT. For each xi variable the graph will
have a tree that is almost binary; its root has degree two, each vertex on an
odd level has degree three and each vertex on an even level has degree two.
The last level is an even one, and from each leaf there is an edge connecting
the tree to the rest of the graph, whose other end will be determined later.
(See Figure 1.) For the root we prescribe ρ(ri) = δ(ri) = 1. For the orientation
of each edge of the tree there will be exactly two possibilities. The direction
of the two edges of ri will determine the orientation of each other edge in the
tree.
For each vertex w on an odd level of the tree we prescribe ρ(w) = δ(w) =

θ(w) = 1 and for each vertex v on an even level we prescribe either ρ(v) =
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δ(v) = 1 or ρ(v) = θ(v) = 1 or θ(v) = δ(v) = 1. When we say that v is
ρδ (or ρθ or δθ), we mean that for the degree two vertex v the prescription
is ρ(v) = δ(v) = 1. One of the two grandchildren of a ρδ vertex is always a
ρθ, while the other is always a δθ. Similarly, the ρθ vertices have ρδ and δθ

grandchildren and δθ vertices have ρδ and ρθ grandchildren. The root has four
grandchildren, both of its children have one ρθ and one δθ child. This finishes
the description of the tree. Note that since every edge in the tree is incident
to a vertex of degree two, we have exactly two possible orientation for each
edge. When we say that an edge is ρδ, we mean that its orientation cannot be
undirected.

ri

w

v1 v2

%δ

δθ %θ

%θ δθ %θ δθ%δ

δθ

%δ%δ

%θ

%δ

ri

w

v1 v2

%δ

δθ %θ

%θ δθ %θ δθ%δ

δθ

%δ%δ

%θ

%δ

Figure 1: The two possible orientations of the tree associated with xi.

Eg., let us take one of ri’s children, w, and both of w’s children, v1 and v2.
The edge riw can be either directed towards w or away from w but it cannot
be undirected. (See the two possibilities in Figure 1.) The edge connecting v1

to its child can be undirected or directed away from v1 but this is determined
by the orientation of riw. The edge connecting v2 to its child can be directed
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towards v2 or be undirected and this is also determined by the orientation
of riw. These edges determine the orientation of the edges under them and
therefore the orientation of the whole tree depends on the choice at the root.
This way we can achieve that from one decision at ri we have an arbitrary
number of edges directed to the same way from the leaves of the tree. Let us
count how many.
Let us denote the number of the ρδ edges (the ones that cannot be undi-

rected) that are going from the 2lth level to the 2l+1th by a(l) and the number
of the other edges at the same level by b(l). We have a(0) = 2 and b(0) = 0 and
it is easy to see that the equations a(l) = b(l−1) and b(l) = 2a(l−1)+b(l−1)

hold. Solving these we get a(l + 1) = b(l) = 4(2l − (−1)l)/3. For each variable
xi, let us denote the (unnegated) occurrences of xi in the clauses by ui and the
occurrences of xi by ni. We choose the height hi of the tree associated with
xi to be the smallest number that satisfies a(hi) ≥ 2 max(ui, ni). This implies
that the size of each tree is at most linear. Note that half of the edges counted
in a(l) are directed towards the tree, and the other half away from the tree,
whichever orientations we choose at ri. We will call one of these orientations
true and the other orientation false. For each clause that contains xi, we reserve
an edge that is directed away from the tree in the true orientation and towards
the tree in the false orientation. Similarly, for each clause that contains xi, we
reserve an edge that is directed towards the tree in the true orientation and
away from the tree in the false orientation. This can be done since a(hi) is
sufficiently large.
For each clause C the graph will have a vertex vc of degree 5. The prescription

for each vC is ρ(vC) = 3 and δ(vC) = 2. The three edges reserved for clause
C (adjacent to the leaves of the trees associated with the variables of C) are
connected to the vertex vC. The remaining two edges are connected to the
degree two ρδ vertices vC1 and vC2. The other neighbor of these vertices are
to be determined.
Now we are done with the representation of our formula, we only need to

somehow take care of the edges that have only one incident vertex so far. To
this end, we add the mirrored reflection of everything constructed so far to the
graph. This means for every vertex v that belongs to a tree or a clause, we
add a v ′ vertex that is connected to w ′ if and only if v is connected to w. We
also connect v and v ′ if and only if v has an edge that was not connected to
any other vertex yet. The prescription of v ′ is ρ(v ′) = δ(v), δ(v ′) = ρ(v) and
θ(v ′) = θ(v). This finishes our construction.
Now we have to prove that this graph has a mixed orientation fulfilling the

required prescriptions if and only if the original formula had a true assignment.
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First, if the formula had a true assignment, then let us orient the edges of
the trees associated with the true variables in their true orientation and orient
edges of the trees associated with the false variables in their false orientation.
Each vC will have at least one edge entering from a tree, we can pick the two
edges connecting it to vC1 and vC2 such that ρ(vC) = 3. We do the opposite
with each edge in the mirrored part of the graph, this guarantees a good
orientation for the vv ′ type edges.
Similarly, if the graph has a good orientation, then let us pick the variables

associated with the trees whose orientation is true to be true, and the rest to
be false. Since ρ(vC) = 3 and only two edges can enter vC that are not coming
from a tree, therefore one of the trees associated with a variable of C must
have true orientation, thus each clause must have a true literal.

3 Partial orientation of planar graphs

The construction will be very similar to the previous one, but now in-
stead of 3-SAT we will reduce Pl-1-Ex3MonoSat to Pl-PO. The Pl-1-
Ex3MonoSat problem is the following. The input is a CNF which consists
of clauses containing exactly 3 variables, each unnegated. Furthermore, the
CNF has a planar realization, ie. there is a planar, bipartite graph such that
one class represents the variables, the other the clauses and there is an edge
iff the variable is contained in the clause. The problem is to decide if there
is an assignment such that there is exactly one true literal in every clause.
Pl-1-Ex3MonoSat was shown to be NP-complete by Hunt et al. [2].
Our reduction is similar as in the case of general graphs, but the same does

not work because the edges going to the mirrored part might intersect each
other. So instead of the mirrored part, we have to come up with a new idea
how to take care of the unneeded edges.
Each variable occurring t times in the clauses, will be represented by t copies

of a tree that are connected to each other. Each copy will be a tree with three
levels (seven vertices) that was defined in the previous section. These copies are
connected to each other in a cycle - the other end of the edge of the rightmost
leaf of the ith tree is the leftmost leaf of the i + 1th tree (mod r). (See Figure
2.) Because of this, we either have 2r undirected or r pairs of directed edges
(where from each pair one is directed away, the other towards the leaf) leaving
the variable component. We call the first the true orientation.
Each clause is represented by a single vertex vC for which we prescribe

ρ(w) = δ(w) = θ(w) = 2. From each variable, that is in the clause, we connect
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Figure 2: Copies of trees associated with xi are connected to each other.

a pair of edges to vC. This means that exactly one of the variables of the clause
must be true. Therefore the graph has a good orientation if and only if the
original formula had a true assignment.

4 Score vector problem

To prove that Score Vector is NP-complete, we associate a vertex of a
graph to each of the teams. The graph is the same as in the Partial Orientation
of general graphs, but instead of prescribing the degrees of a vertex v, we
prescribe the score of the team associated with that vertex to be pδ(v) + θ(v)

(it would get this much if it had won δ(v), drew θ(v) and lost ρ(v) games).
Now we only have to notice that in our construction the score of each vertex
that has degree at most three, determines the number of games that the team
associated with that vertex won, drew and lost. Eg., if a vertex w has p + 1

points and d(w) = 3, then this is only possible if it has won one game, drew one
game and lost one game (since 1 < p 6= 2). Since none of the vertices adjacent
to the vC’s drew any of their games, the vC’s must have 3 wins and 2 losses.
Therefore our construction reduces 3-SAT to Score Vector if instead of
the degrees we prescribe the scores.
Note that when p = 2, the construction fails because one win, one draw and

one losing worth the same number of points as three draws. For this p = 2 case
the problem is in P and the proof is a folklore; just take the original simple
graph, double every edge and ask whether this graph can be (completely)
directed such that for every vertex v the number of edges directed away from
v equals the score of v.
In a soccer tournament usually the teams have played the same number of

matches at a given time, while in our construction the degrees vary. We can fix
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this by adding a few new vertices who have won all their matches and played
some of the teams whose degree is less than the average. Also, in tournaments
everyone plays with everyone else in a round, so at any point the who-played-
who-so-far graph can be partitioned into perfect matchings. Our construction
with a little modification can be transformed into a regular bipartite graph,
that always have this property.

5 Triorientation problem

First we will modify a bit our construction given for the Partial Orien-
tation of general graphs. Delete all the vertices that belong to the mirrored
part (half of the vertices) and replace them with a single vertex z. The neigh-
bors of z are all the vertices that were connected to the mirrored part. This
way we obtain a bipartite graph G = (A,B, E) and in one class (eg. in A)
every vertex has degree two. We claim that if we let θ(z) =

∑
{θ(a) : a ∈

A} −
∑

{θ(b) : b ∈ B \ {z}}, ρ(z) =
∑

{δ(a) : a ∈ A} −
∑

{ρ(b) : b ∈ B \ {z}},
δ(z) =

∑
{ρ(a) : a ∈ A} −

∑
{δ(b) : b ∈ B \ {z}}, then it is NP-complete to

decide if this graph has a mixed orientation. We can use the same argument
as we did in Section 2, we only have to check that the degree prescriptions of
z are not violated and this follows from the fact that G is bipartite; if all other
requirements are satisfied, then its requirements are satisfied as well.
Now we are ready to present a 3-uniform hypergraph. The vertices of the

hypergraph are the same as the vertices of G. For each vertex in A, add one
hyperedge, H = {(a, u, v) : a ∈ A,au ∈ E, av ∈ E}. The color-prescriptions
of the hypergraph are determined by the degree-prescriptions of G. For b ∈
B : red(b) = ρ(b), green(b) = δ(b), blue(b) = θ(b), for a ∈ A : red(a) =

1 − ρ(a), green(a) = 1 − δ(a), blue(a) = 1 − θ(a). This way, for instance an
a ∈ A vertex that is ρδ in G, becomes blue in its only hyperedge. We claim
that this hypergraph has a triorientation iff G has a mixed orientation.
If G has a mixed orientation, then the color of u in (a, u, v) ∈ H is red if

au is directed away from u, green if au is directed towards u and blue if au

is undirected. It is easy to see that this is a good triorientation.
If the hypergraph has a good triorientation, then if u in (a, u, v) ∈ H is red,

we direct au away from u, if u is green, we direct au towards u and if u is
blue, we let au to be undirected. Since the color of a, u and v are different,
this gives a good mixed orientation, satisfying all the degree-requirements.
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construction such that every vertex has degree at most three.
An interesting open question remains to determine the complexity of the

problem when we only know the score (or the in-, out- and undirected de-
grees) of each vertex and the number of games it played (but do not know
against whom) and we have to decide whether it is a possible outcome of a
real tournament or not. We conjecture these problems to be in P although
we could not even solve it in the case when we know that everyone played
with everyone else exactly once (meaning the tournament is finished, ie. the
graph is the complete graph). A similar question can be raised concerning the
Elimination Problem.

References

[1] T. Bernholt, A. Gülich, T. Hofmeister, N. Schmitt, Football elimination
is hard to decide under the 3-point-rule, Mathematical Foundations of
Computer Science 1999, Lecture Notes in Computer Science, Vol. 1672,
Springer, Berlin, 1999, 410–418.

[2] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan and R.E. Stearns, The
complexity of planar counting problems, SIAM J. Comput., 27 1998, 1142–
1167.

[3] W. Kern, D. Paulusma, The new FIFA rules are hard: complexity aspects
of sports competitions, Discrete Applied Mathematics 108 (2001), 317–323.

[4] W. Kern and D. Paulusma, The computational complexity of the elimina-
tion problem in generalized sports competitions, Discrete Optimization 1
(2004), 205–214.

Received: August 5, 2008


