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Abstract. The construction of membership function of fuzzy numbers
is an important problem in vagueness modeling. Theoretically, the shape
of fuzzy numbers must depend on the applied triangular space. The
membership function must defined in a such a way that the change of the
triangular norm modifies the shape of fuzzy number, but the calculus with
them remain valid. The quasi-triangular fuzzy numbers introduced by
M. Kovacs in 1992 are satisfied this requirement. The shortage that not
any quasi-triangular fuzzy number has opposite (inverse) can be solved
if the set of quasi-triangular fuzzy numbers is included isomorphically in
an extended set and this extended set with addition forms a group. In
the present paper we formulate the extended set of the quasi-triangular
fuzzy numbers, being also shown that the extended set is a real vector
space with scalar product.

1 Introduction

The concept of quasi-triangular fuzzy numbers generated by a continuous de-
creasing function was introduced first by M. Kovács in 1992. The shortage
that not any quasi-triangular fuzzy number has opposite (inverse) but only
the ones with spread zero, can be solved if the set of quasi-triangular fuzzy
numbers is included isomorphically in an extended set and this extended set
with addition forms a group. In section 3 this group is constructed and in
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section 4 it is shown that the extended set with addition and multiplication
with a scalar is a real vector space. In the section 5 we construct the real
vector space with scalar product of quasi-triangular fuzzy numbers.

In the study of algebraic structures for fuzzy numbers many results since the
1970s have been obtained. For example D. Dubois and H. Prade (1978) inves-
tigates the operations with fuzzy numbers and theirs properties, R. Goetschel
and W. Voxman (1986) and S. Gähler (1999) continue this work and M. Ko-
vacs and L. H. Tran (1991) constructs and studies the set of centered M-fuzzy
numbers. M. Kovacs (1992) introduces a notion of quasi-triangular fuzzy num-
ber which was used in the fuzzy linear programming by Z. Mako (2006). The
properties of another class of quasi-triangular fuzzy numbers were investigated
by M. Mares (1992,1992/1993, 1993, 1997), J. Dombi and N. Győrb́ıró (2006)
and D. H. Hong (2007) obtains some properties of the operations with fuzzy
numbers. A. M. Bica (2007) investigates the operations over the class of fuzzy
numbers.

2 Preliminaries

The fuzzy set concept was introduced in mathematics by K. Menger in 1942
and reintroduced in the system theory by L. A. Zadeh in 1965. L. A. Zadeh
has introduced this notion to measure quantitatively the vague of the linguistic
variable. The basic idea was: if X is a set, then all A subsets of X can be
identified with its characteristic function χA : X → {0, 1}, χA (x) = 1 ⇔ x ∈ A

and χA (x) = 0 ⇔ x /∈ A.

The notion of fuzzy set is another approach of the subset notion. There exist
continue and transitory situations in which we have to sugest that an element
belongs to a set by different level. This fact we indicate with the membership
degree.

Definition 1 Let X be a set. A mapping µ : X → [0, 1] is called membership
function, and the set Ā = {(x, µ (x)) / x ∈ X} is called fuzzy set on X. The
membership function of Ā is denoted by µĀ.

The collection of all fuzzy subsets of X we will denote by F (X). We place
a bar over a symbol if it represents a fuzzy set. If Ā is a fuzzy set of X, then
µĀ (x) represents the membership degree of x to X. The empty fuzzy set is
denoted by ∅̄, where µ∅̄ (x) = 0 for all x ∈ X. The total fuzzy set is denoted
by X̄, where µX̄ (x) = 1 for all x ∈ X.
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Definition 2 The height of Ā is defined as hgt
(
Ā

)
= sup

x∈X
µĀ (x). The sup-

port of Ā is the subset of X given by suppĀ = {x ∈ X / µĀ (x) > 0}.

Definition 3 Let X be a topological space. The α−level of Ā is defined as

[
Ā

]α
=

{
{x ∈ X/ µĀ (x) ≥ α} if α > 0,

cl
(
suppĀ

)
if α = 0.

where cl
(
suppĀ

)
is closure of the support of Ā.

Definition 4 A fuzzy set Ā on vector space X is convex, if all α -levels are
convex subsets of X, and it is normal if

[
Ā

]1 6= ∅.
In many situations people are only able to characterize imprecisely numerical

data. For example people use terms like: ”about 100” or ”near 10”. These
are examples of what are called fuzzy numbers.

Definition 5 A convex, normal fuzzy set on the real line R with upper semi-
continuous membership function will be called fuzzy number.

Triangular norms and co-norms were introduced by K. Menger (1942) and
studied first by B. Schweizer and A. Sklar (1961, 1963, 1983) to model dis-
tances in probabilistic metric spaces. In fuzzy sets theory triangular norms
and co-norms are extensively used to model logical connection and and or.

In the fuzzy literatures, these concepts was studied e. g. in E. Creţu (2001),
J. Dombi (1982), D. Dubois and H. Prade (1985), J. Fodor (1991, 1999), S.
Jenei (1998, 1999, 2000, 2001, 2004), V. Radu (1974, 1984, 1992 ).

Definition 6 The function N : [0, 1] → [0, 1] is a negation operation if:

(i) N (1) = 0 and N (0) = 1;

(ii) N is continuous and strictly decreasing;

(iii) N (N (x)) = x, for all x ∈ [0, 1] .

Definition 7 Let N be a negation operation. The mapping T : [0, 1] × [0, 1]

→ [0, 1] is a triangular norm (briefly t-norm) if satisfies the properties:

Symmetry : T (x, y) = T (y, x) , ∀x, y ∈ [0, 1] ;

Associativity : T (T (x, y) , z) = T (x, T (y, z)) , ∀x, y, z ∈ [0, 1] ;

Monotonicity : T (x1, y1) ≤ T (x2, y2) ifx1 ≤ x2andy1 ≤ y2;

One identity : T (x, 1) = x, ∀x ∈ [0, 1]
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and the mapping S : [0, 1]× [0, 1] → [0, 1],

S (x, y) = N (T (N (x) ,N (y)))

is a triangular co-norm (the dual of T given by N).

Definition 8 The t-norm T is Archimedean if T is continuous and T(x, x) <

x, for all x ∈ (0, 1).

Definition 9 The t-norm T is called strict if T is strictly increasing in both
arguments.

Theorem 1 ([22]) Every Archimedean t-norm T is representable by a con-
tinuous and decreasing function g : [0, 1] → [0,+∞] with g (1) = 0 and

T (x, y) = g[−1] (g (x) + g (y)) ,

where

g[−1] (x) =

{
g−1 (x) if 0 ≤ x < g (0) ,

0 if x ≥ g (0) .

If g1and g2 are the generator function of T , then there exist c > 0 such that
g1 = cg2.

Remark 1 If the Archimedean t-norm T is strict, then g (0) = +∞ otherwise
g (0) = p < ∞.

Theorem 2 ([38]) An application N : [0, 1] → [0, 1] is a negation if and only
if there exist an increasing and continuous function e : [0, 1] → [0, 1] , with
e (0) = 0, e (1) = 1 such thatN (x) = e−1 (1 − e (x)) , for all x ∈ [0, 1] .

Remark 2 The generator function of negation N (x) = 1 − x is e (x) = x.

Another negation generator function is

eλ (x) =
ln (1 + λx)

ln (1 + λ)
,

where λ > −1, λ 6= 0.

Remark 3 Examples to t-norm are following:

• minim: min (x, y) = min {x, y} ;
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• product: P (x, y) = xy, the generator function is g (x) = − ln x;

• weak: W (x, y) =

{
min {x, y} if max {x, y} = 1,

0 otherwise.

If the negation operation is N (x) = 1 − x, then the dual of these t-norms
are:

• maxim: max (x, y) = max {x, y} ;

• probability: SP (x, y) = x + y − xy;

• strong: SW (x, y) =

{
max {x, y} if min {x, y} = 0,

1 otherwise.

Proposition 1 If T is a t-norm and S is the dual of T, then

W (x, y) ≤ T (x, y) ≤ min {x, y} ,

max {x, y} ≤ S (x, y) ≤ SW (x, y) ,

for all x, y ∈ [0, 1] .

Let X be a nonempty set, T be a t-norm, N be a negation operation and S

the dual of T given by N. The intersection, union, complement and Cartesian
product of fuzzy sets may be defined in the following way.

Definition 10 The T−intersection’s membership function of fuzzy sets Ā

and B̄ is defined as

µĀuB̄ (x) = T (µĀ (x) , µB̄ (x)) , ∀x ∈ X.

The S−union’s membership function of fuzzy sets Ā and B̄ is defined as

µĀtB̄ (x) = S (µĀ (x) , µB̄ (x)) , ∀x ∈ X.

The N−complement’s membership function of fuzzy sets Ā and B̄ is defined
as

µkĀ (x) = N (µĀ (x)) , ∀x ∈ X.

Definition 11 The T -Cartesian product’s membership function of fuzzy sets
Āi ∈ F (Xi) , i = 1, ..., n is defined as

µĀ (x1, x2, ..., xn) =

T
(
µĀ1

(x1) , T
(
µĀ2

(x2) , T
(
...T

(
µĀn−1

(xn−1) , µĀn
(xn)

)
...

)))
,

for all (x1, x2, ..., xn) ∈ X1 × X2 × ...× Xn.
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In order to use fuzzy sets and relations in any intelligent system we must
be able to perform arithmetic operations. In fuzzy theory the extension of
arithmetic operations to fuzzy sets was formulated by L.A. Zadeh in 1965.
Using any t-norm the extension is possible to generalize.

Definition 12 (Generalized Zadeh’s extension principle) Let T be a t-
norm and let X1, X2, ..., Xn (n ≥ 2) and Y be a family of sets. Assume that
f : X1 × X2 × ... × Xn → Y is a mapping. On the basis of the generalized
extension principle ( sup-T extension principle) to f a mapping F : F (X1) ×
F (X2) × ... × F (Xn) → F (Y) is ordered such that for all

(
Ā1, Ā2, ..., Ān

) ∈
F (X1)×F (X2)× ...×F (Xn) the membership function of F

(
Ā1, Ā2, ..., Ān

)
is

µF(Ā1,Ā2,...,Ān) (y) =




sup
(x1,...,xn)∈f−1(y)

{
T

(
µĀ1

(x1) , T
(
...T

(
µĀn−1

(xn−1) , µĀn
(xn)

)
...

))}

if f−1 (y) 6= ∅,
0

if f−1 (y) = ∅.
If n = 1, then

µF(Ā1) (y) =

{
supx1∈f−1(y)

{
µĀ1

(x1)
}

if f−1 (y) 6= ∅,
0 if f−1 (y) = ∅.

If we use the generalized Zadeh’s extension principle, the operations on
F (X) are uniquely determined by T , N and the corresponding operations of
X.

Definition 13 The triplet (F (X) , T,N) will be called fuzzy triangular space.

If T is a t-norm and ”∗” is a binary operation on R, then ”∗” can be extended
to fuzzy quantities in the sense of the generalized extension principle of Zadeh.

Definition 14 Let Ā and B̄ be two fuzzy numbers. Then the membership
function of fuzzy set Ā ∗ B̄ ∈ F (R) is

µ Ā∗B̄ (y) = sup {T (µĀ (x1) , µB̄ (x2)) / x1 ∗ x2 = y} , (1)

for all y ∈ R.
If we replace ”∗” with operations ”+”, ”−”,”·”, or ”/”, then we get the

membership functions of sum, difference, product or fraction.



Real vector space with scalar prod. of quasi-triang. fuzzy numb. 57

3 Additive group of quasi-triangular fuzzy numbers

The construction of membership function of fuzzy numbers is an important
problem in vagueness modeling. Theoretically, the shape of fuzzy numbers
must depend on the applied triangular space.

We noticed that, if the model constructed on the computer does not comply
the requests of the given problem, then we choose another norm. The mem-
bership function must defined in a such a way that the change of the t-norm
modifies the shape of fuzzy number, but the calculus with them remain valid.
This desideratum is satisfied, for instance if quasi-triangular fuzzy numbers
introduced by M. Kovacs [21] are used.

Let p ∈ [1, +∞] and g : [0, 1] → [0, ∞] be a continuous, strictly decreasing
function with the boundary properties g (1) = 0 and lim

t→0
g (t) = g0 ≤ ∞.

The quasi-triangular fuzzy number we define in the fuzzy triangular space
(F (R) , Tgp,N), where

Tgp (x, y) = g[−1]
(
(gp (x) + gp (y))

1
p

)
(2)

is an Archimedean t-norm generated by g and

N (x) =

{
1 − x if g0 = +∞,

g−1 (g0 − g (x)) if g0 ∈ R.
(3)

is a negation operation.

Definition 15 The set of quasi-triangular fuzzy numbers is

Ng =
{
Ā ∈ F (R) / there is a ∈ R, d > 0 such that (4)

µĀ (x) = g[−1]

(
|x − a|

d

)
for all x ∈ R

} ⋃

{
Ā ∈ F (R) / there is a ∈ R such that
µĀ (x) = χ{a} (x) for all x ∈ R}

,

where χA is characteristic function of the set A. The elements of Ng will be
called quasi-triangular fuzzy numbers generated by g with center λ and spread
d and we will denote them with < λ, d > .

Remark 4 The quasi-triangular fuzzy numbers < a1, d1 > and < a2, d2 >

are equal if and only if a1 = a2 and d1 = d2.
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Remark 5 If < λ, d >∈ Ng and d > 0, then

[< λ, d >]α = [λ − dg (α) , λ + dg (α)]

and if d = 0, then [< λ, d >]α = {λ}, for all α ∈ [0, 1] .

Example 1 Let g : (0, 1] → [0, ∞) be a function given by g (t) =
√

−2 ln t.
Then the membership function of quasi-triangular fuzzy numbers < a, d > is

µ (t) = e
−

(t−a)2

2d2 if d > 0, and

µ (t) =

{
1 if t = a,

0 if t 6= a
if d = 0.

Suppose Ā and B̄ are fuzzy sets on R. Then using the generalized Zadeh’s
extension principle we get:

Definition 16 If p ∈ [1, +∞), then the Tgp-sum of Ā and B̄ is defined by

µĀ+B̄ (z) = sup
x+y=z

[
g[−1]

(
[gp (µĀ (x)) + gp (µB̄ (y))]

1
p

)]
,

for all z ∈ R.

If p = +∞, then the Tgp-sum of Ā and B̄ is defined by

µĀ+B̄ (z) = sup
x+y=z

min {µĀ (x) , µB̄ (y)} ,

for all z ∈ R.

M. Kovács and T. Keresztfalvi in [19] proved the formula (5) for the Tgp-sum
of quasi-triangular fuzzy numbers.

Theorem 3 Let p ∈ [1, +∞]. If Ā = 〈a, d〉 and B̄ = 〈b, e〉 are quasi-triangular
fuzzy numbers, then Ā + B̄ is quasi-triangular fuzzy number too, and

Ā + B̄ =
〈
a + b, (dq + eq)

1
q

〉
, (5)

where 1
p + 1

q = 1.

Theorem 4 ([23]) (Ng, +) is a commutative monoid with element zero 0̄ =<

0, 0 > and if p ∈ (1,+∞] , then it possesses the simplification property.
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As follows from the theorem 4, the quasi-triangular fuzzy numbers do not
form an additive group. This fact can complicate some theoretical consid-
erations or applied procedures. This deficiency can be removed if the set of
quasi-triangular fuzzy numbers is included isomorphically in an extended set
and this extended set forms an additive group with Tgp-sum. In this section
we construct this group if p > 1.

As follows from the definition of Tgp-Cartesian product, the membership
function of the pair (< a1, d1 >,< a2, d2 >) is

µ(〈a1,d1〉,〈a2,d2〉) (x, y) = Tgp

(
µ〈a1,d1〉 (x) , µ〈a2,d2〉 (y)

)
, (6)

for all (x, y) ∈ R× R. We denote the set of pairs by =gp.

Definition 17 Let (< a1, d1 >,< a2, d2 >), (< a3, d3 >,< a4, d4 >) ∈ =gp.

Then we say that
(< a1, d1 >,< a2, d2 >) equivalent to (< a3, d3 >,< a4, d4 >) , and write

(< a1, d1 >,< a2, d2 >) ∼ (< a3, d3 >,< a4, d4 >) if

a1 + a4 = a2 + a3,
(
d

q
1 + d

q
4

)1/q
=

(
d

q
2 + d

q
3

)1/q
.

It can be easily seen that ”˜” is an equivalence relation. This relation
generates in =gp a division on equivalence class.

Definition 18 The factor set is

=gp/∼ =
{

(< a1, d1 >,< a2, d2 >) / < a1, d1 >,< a2, d2 >∈ Ng

}
,

where

(< a1, d1 >,< a2, d2 >) =

{(< a3, d3 >,< a4, d4 >) / < a3, d3 >,< a4, d4 >∈ Ng and

a1 + a4 = a2 + a3 ,
(
d

q
1 + d

q
4

)1/q
=

(
d

q
2 + d

q
3

)1/q
}

.

Definition 19 The addition operation in =gp/∼ is defined by

(< a1, d1 >,< a2, d2 >)⊕ (< a3, d3 >,< a4, d4 >)

=
(〈

a1 + a3,
(
d

q
1 + d

q
3

) 1
q

〉
,
〈
a2 + a4,

(
d

q
2 + d

q
4

) 1
q

〉)
,

for all (< a1, d1 >,< a2, d2 >), (< a3, d3 >,< a4, d4 >) ∈ =gp/∼.
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Because the commutative monoid (Ng, +) possesses simplification property
if p > 1, it follows that:

Theorem 5 If p > 1, then (=gp/∼,⊕) is an additive commutative group.

The opposite of (< a1, d1 >,< a2, d2 >) we denote by
Ä(< a1, d1 >,< a2, d2 >).

Proposition 2 If < x, y >, < a, d >∈ Ng, then

(< a, d > + < x, y >, < a, d >) = (< x, y >, < 0, 0 >).

Proposition 3 ([24]) If p > 1, then the function F : Ng → =gp/∼ with
F (< x, y >) = (< x, y >, < 0, 0 >) is a homomorphism.

Theorem 6 ([24]) (Ng, +) is isomorphic to (F (Ng) ,⊕).

The consequence of Theorem 6 (< x, y >,< 0, 0 >) is identical with < x, y >

, if we consider this isomorphism. Using this property we introduce the fol-
lowing notations:

By the Theorem 6 it follows that (< x, y >,< 0, 0 >) is identical with <

x, y >, if we consider the isomorphism in Theorem 6. Using this property we
introduce the following notations:

We denote by [x, y] = (< x, y >, < 0, 0 >) the quasi-triangular fuzzy number
with center x and spread y, and its opposite by Ä [x, y] = (< 0, 0 >, < x, y >).

Definition 20 If p > 1, then the extended set of quasi-triangular fuzzy num-
ber is fgp = f⊕gp ∪ fÄ

gp, where

f⊕gp = {[x, y] / < x, y >∈ Ng} and fÄ
gp = {Ä [x, y] / < x, y >∈ Ng} .

Theorem 7 ([24]) If p > 1, then =gp/∼ = fgp.

If we introduce the notation [x1, y1] Ä [x2, y2] = [x1, y1]⊕ (Ä [x2, y2]) , then
from Theorem 7 it follows:

Theorem 8 If p > 1, then (fgp,⊕) is an additive commutative group.

Corollary 1 (i) If [x, y] ∈ fgp, then [0, 0] Ä [x, y] = Ä [x, y].

(ii) If [x, y] ∈ fgp, then Ä (Ä [x, y]) = [x, y].
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(iii) If [x1, y1] , [x2, y2] ∈ fgp, then

(Ä [x1, y1])⊕ (Ä [x2, y2]) = Ä ([x1, y1]⊕ [x2, y2]) .

(iv) If [x1, y1] , [x2, y2] ∈ fgp, then

[x1, y1] Ä [x2, y2] =





[
x1 − x2,

(
y

q
1 − y

q
2

) 1
q

]
if y1 ≥ y2,

Ä
[
x2 − x1,

(
y

q
2 − y

q
1

) 1
q

]
if y2 > y1.

(v) If [x1, y1] , [x2, y2] , [x3, y3] , [x4, y4] ∈ fgp and

[x1, y1] Ä [x2, y2] = [x3, y3] Ä [x4, y4] ,

then
[x1, y1]⊕ [x4, y4] = [x3, y3]⊕ [x2, y2] .

4 Real vector space of quasi-triangular fuzzy num-
bers

In this section we construct the vector space of quasi-triangular fuzzy numbers
if p > 1. We know that 2 · [x, y] = [x, y]⊕ [x, y] =

[
2x, 2

1
q y

]
for all [x, y] ∈ fgp.

We generalize this property as follows.

Definition 21 For all [x, y] ∈ f⊕gp and for all a ∈ R the scalar multiplication
a [x, y] is defined by

a [x, y] =





[
ax, a

1
q y

]
if a ≥ 0,

Ä
[
−ax, (−a)

1
q y

]
if a < 0,

and for all Ä [x, y] ∈ fÄ
gp the scalar multiplication a (Ä [x, y]) is defined by

a (Ä [x, y]) = Ä (a [x, y]) .

Remark 6 For all Ä [x, y] ∈ fÄ
gp and for all a ∈ R we have

a (Ä [x, y]) =





Ä
[
ax, a

1
q y

]
if a ≥ 0,[

−ax, (−a)
1
q y

]
if a < 0.
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Similarly, for all [x, y] ∈ f⊕gp and a ≥ 0 we have

(−a) [x, y] = Ä
[
ax, a

1
q y

]
= a (Ä [x, y]) and

(−a) (Ä [x, y]) = a [x, y] .

Theorem 9 If p > 1, then the triple (fgp,⊕, ·) is a real vector space.

Proof. Since (fgp,⊕) is an additive commutative group the following prop-
erties must be proved.

(i) If a, b ∈ R and Z ∈ fgp, then (a + b) Z = aZ⊕ bZ.

If Z = [x, y] ∈ f⊕gp, a ≥ 0 and b ≥ 0, then

(a + b) [x, y] =
[
(a + b) x, (a + b)

1
q y

]

=
[
ax, a

1
q y

]
⊕

[
bx, b

1
q y

]

= a [x, y]⊕ b [x, y] .

If Z = Ä [x, y] ∈ fÄ
gp, a ≥ 0 and b ≥ 0, then

(a + b) (Ä [x, y]) = Ä ((a + b) [x, y])

= Ä (a [x, y]⊕ b [x, y])

= (Äa [x, y])⊕ (Äb [x, y])

= a (Ä [x, y])⊕ b (Ä [x, y]) .

If Z = [x, y] ∈ f⊕gp, a ≥ 0 b < 0 and a + b ≥ 0, then

a [x, y]⊕ b [x, y] =
[
ax, a

1
q y

]
Ä

[
−bx, (−b)

1
q y

]

=
[
ax − (−b) x, (a − (−b))

1
q y

]

= (a + b) [x, y] .

If Z = Ä [x, y] ∈ fÄ
gp, a ≥ 0 b < 0 and a + b ≥ 0, then

a (Ä [x, y])⊕ b (Ä [x, y]) = (Äa [x, y])⊕ ((−b) [x, y])

= Äa [x, y] Ä b [x, y]

= Ä (a [x, y]⊕ b [x, y] )

= (a + b) (Ä [x, y]) .
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If Z = [x, y] ∈ f⊕gp, a ≥ 0 b < 0 and a + b < 0, then

a [x, y]⊕ b [x, y] =
[
ax, a

1
q y

]
Ä

[
−bx, (−b)

1
q y

]

= Ä
[
−ax + (−b) x, (−b − a)

1
q y

]

= (a + b) [x, y] .

If Z = Ä [x, y] ∈ fÄ
gp, a ≥ 0 b < 0 and a + b < 0, then

a (Ä [x, y])⊕ b (Ä [x, y]) = (Äa [x, y])⊕ ((−b) [x, y])

= Äa [x, y] Ä b [x, y]

= Ä (a [x, y]⊕ b [x, y] )

= (a + b) (Ä [x, y]) .

If Z = [x, y] ∈ f⊕gp, a < 0 and b < 0, then

a [x, y]⊕ b [x, y] = Ä
[
−ax, (−a)

1
q y

]
Ä

[
−bx, (−b)

1
q y

]

= Ä
[
−ax − bx, (−a − b)

1
q y

]

= (a + b) [x, y] .

If Z = Ä [x, y] ∈ fÄ
gp, a < 0 and b < 0, then

a (Ä [x, y])⊕ b (Ä [x, y]) = ((−a) [x, y])⊕ ((−b) [x, y])

= (−a − b) [x, y]

= (a + b) (Ä [x, y]) .

(ii) If Z1, Z2 ∈ fgp and a ∈ R, then a (Z1 ⊕ Z2) = aZ1 ⊕ aZ2.

If Z1 = [x1, y1] ∈ f⊕gp, Z2 = [x2, y2] ∈ f⊕gp and a ≥ 0, then

a (Z1 ⊕ Z2) = a
[
x1 + x2,

(
y

q
1 + y

q
2

) 1
q

]

=
[
ax1 + ax2,

(
ay

q
1 + ay

q
2

) 1
q

]

= a [x1, y1]⊕ a [x2, y2]

= aZ1 ⊕ aZ2.
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If Z1 = [x1, y1] ∈ f⊕gp, Z2 = ª [x2, y2] ∈ fÄ
gp, y1 ≥ y2 and a ≥ 0, then

a (Z1 ⊕ Z2) = a
[
x1 − x2,

(
y

q
1 − y

q
2

) 1
q

]

=
[
ax1 − ax2,

(
ay

q
1 − ay

q
2

) 1
q

]

= a [x1, y1]ª a [x2, y2]

= aZ1 ⊕ aZ2.

If Z1 = [x1, y1] ∈ f⊕gp, Z2 = ª [x2, y2] ∈ fÄ
gp, y1 < y2 and a ≥ 0, then

a (Z1 ⊕ Z2) = (−a)
[
x2 − x1,

(
y

q
2 − y

q
1

) 1
q

]

= ª
[
ax2 − ax1,

(
ay

q
2 − ay

q
1

) 1
q

]

= a [x1, y1]ª a [x2, y2]

= aZ1 ⊕ aZ2.

If Z1 = ª [x1, y1] , Z2 = ª [x2, y2] ∈ fÄ
gp and a ≥ 0, then

a (Z1 ⊕ Z2) = (−a)
[
x1 + x2,

(
y

q
1 + y

q
2

) 1
q

]

= ª
[
ax1 + ax2,

(
ay

q
1 + ay

q
2

) 1
q

]

= a (ª [x1, y1])⊕ a (ª [x2, y2])

= aZ1 ⊕ aZ2.

If a < 0, then

aZ1 ⊕ aZ2 = ª ((−a)Z1)ª ((−a)Z2)

= ª ((−a)Z1 ⊕ (−a) Z2)

= ª (−a) (Z1 ⊕ Z2)

= a (Z1 ⊕ Z2) .

(iii) If a, b ∈ R and Z ∈ fgp, then (ab) Z = a (bZ) .

If Z = [x, y] ∈ f⊕gp, a ≥ 0 and b ≥ 0, then

(ab) [x, y] =
[
(ab) x, (ab)

1
q y

]

= a
[
bx, b

1
q y

]

= a (b [x, y]) .
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If Z = [x, y] ∈ f⊕gp, a ≥ 0 and b < 0, then

(ab) [x, y] = Ä
[
(−ab) x, (−ab)

1
q y

]

= a
(
Ä

[
−bx, (−b)

1
q y

])

= a (b [x, y]) .

If Z = [x, y] ∈ f⊕gp, a < 0 and b < 0, then

(ab) [x, y] =
[
(−a) (−b) x, ((−a) (−b))

1
q y

]

= (−a) ((−b) [x, y])

= a (Ä ((−b) [x, y]))

= a (b [x, y]) .

If Z = Ä [x, y] ∈ fÄ
gp, then

(ab) (Ä [x, y]) = Ä ((ab) [x, y])

= Ä (a (b [x, y]))

= a (Ä (b [x, y]))

= a (b (Ä [x, y])) .

(iv) If Z ∈ fgp, then 1 · Z = Z.

If Z = [x, y] ∈ f⊕gp, then 1 [x, y] = [x, y] .

If Z = Ä [x, y] ∈ fÄ
gp, then 1 (Ä [x, y]) = Ä [x, y] .

¥

5 Scalar product of quasi-triangular fuzzy numbers

In this section we construct the real vector space with scalar product of quasi-
triangular fuzzy numbers.

Definition 22 The product of the classes

(< a1, d1 >,< a2, d2 >), (< a3, d3 >,< a4, d4 >) ∈ =gp/∼

is defined by

(< a1, d1 >,< a2, d2 >) · (< a3, d3 >,< a4, d4 >) (7)
= (a1 − a2) (a3 − a4) +

(
d

q
1 − d

q
2

) (
d

q
3 − d

q
4

)
.
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Theorem 10 (fgp,⊕, ·) is a real vector space with scalar product given by
(7).

Proof. Let

(< a5, d5 >,< a6, d6 >) ∈ (< a1, d1 >,< a2, d2 >) and

(< a7, d7 >,< a8, d8 >) ∈ (< a3, d3 >,< a4, d4 >).

Since

a5 − a6 = a1 − a2, a7 − a8 = a3 − a4, d
q
5 − d

q
6 = d

q
1 − d

q
2 , d

q
7 − d

q
8 = d

q
3 − d

q
4

follows that the (7) does not depend on choice of the elements.
Let

(< a1, d1 >,< a2, d2 >), (< a3, d3 >,< a4, d4 >),

(< a5, d5 >,< a6, d6 >) ∈ =gp/∼.

(i) The scalar product is commutative since:

(< a1, d1 >,< a2, d2 >) · (< a3, d3 >,< a4, d4 >) =

(< a3, d3 >,< a4, d4 >) · (< a1, d1 >,< a2, d2 >).

(ii) For all λ ≥ 0 we have

(
λ(< a1, d1 >, < a2, d2 >)

)
· (< a3, d3 >,< a4, d4 >)

= (λ ([a1, d1]ª [a2, d2])) · (< a3, d3 >,< a4, d4 >)

=
(
< λa1, λ1/qd1 >,< λa2, λ1/qd2 >

) · (< a3, d3 >,< a4, d4 >)

= (λa1 − λa2) (a3 − a4) +
(
λd

q
1 − λd

q
2

) (
d

q
3 − d

q
4

)

= λ
[
(a1 − a2) (a3 − a4) +

(
d

q
1 − d

q
2

) (
d

q
3 − d

q
4

)]

= λ(< a1, d1 >,< a2, d2 >) · (< a3, d3 >,< a4, d4 >).
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For all λ < 0 we have
(
λ(< a1, d1 >,< a2, d2 >)

)
· (< a3, d3 >,< a4, d4 >)

= (λ ([a1, d1]ª [a2, d2])) · (< a3, d3 >,< a4, d4 >)

=
(
< −λa2, (−λ)1/q d2 >,< −λa1, (−λ)1/q d1 >

)
·

(< a3, d3 >,< a4, d4 >)

= (−λa2 + λa1) (a3 − a4) +
(
−λd

q
2 + λd

q
1

) (
d

q
3 − d

q
4

)

= λ
[
(a1 − a2) (a3 − a4) +

(
d

q
1 − d

q
2

) (
d

q
3 − d

q
4

)]

= λ(< a1, d1 >,< a2, d2 >) · (< a3, d3 >,< a4, d4 >).

(iii) The distributivity follows by

(
(< a1, d1 >,< a2, d2 >)⊕ (< a3, d3 >,< a4, d4 >)

)
·

(< a5, d5 >,< a6, d6 >)

=
(
< a1 + a3,

(
d

q
1 + d

q
3

)1/q
>,< a2 + a4,

(
d

q
2 + d

q
4

)1/q
>

)
·

(< a5, d5 >,< a6, d6 >)

= (a1 + a3 − a2 − a4) (a5 − a6) +
(
d

q
1 + d

q
3 − d

q
2 − d

q
4

) (
d

q
5 − d

q
6

)

= (a1 − a2) (a5 − a6) +
(
d

q
1 − d

q
2

) (
d

q
5 − d

q
6

)
+

(a3 − a4) (a5 − a6) +
(
d

q
3 − d

q
4

) (
d

q
5 − d

q
6

)

=
(
(< a1, d1 >,< a2, d2 >) · (< a5, d5 >,< a6, d6 >)

)

⊕
(
(< a3, d3 >,< a4, d4 >) · (< a5, d5 >, < a6, d6 >)

)
.

(iv) The positivity also satisfied:

(< a1, d1 >,< a2, d2 >) · (< a1, d1 >,< a2, d2 >)

= (a1 − a2)
2 +

(
d

q
1 − d

q
2

)2 ≥ 0.

If
(< a1, d1 >,< a2, d2 >) · (< a1, d1 >,< a2, d2 >) = 0,

then a1 = a2 and d1 = d2. In conclusion (〈a1, d1〉 , 〈a2, d2〉) is the zero ele-
ment. ¥
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Proposition 4 For all [a1, d1] , [a2, d2] ∈ fgp we have

ª [a1, d1] · (ª [a2, d2]) = [a1, d1] · [a2, d2] ,

ª [a1, d1] · [a2, d2] = − [a1, d1] · [a2, d2] .

Proof. Since

[a1, d1] = (< a1, d1 >,< 0, 0 >),

ª [a1, d1] = (< 0, 0 >, < a1, d1 >),

[a2, d2] = (< a2, d2 >,< 0, 0 >),

ª [a2, d2] = (< 0, 0 >, < a2, d2 >)

it follows that

[a1, d1] · [a2, d2] = a1a2 + d
q
1d

q
2 ,

ª [a1, d1] · [a2, d2] = −a1a2 − d
q
1d

q
2

= − [a1, d1] · [a2, d2] ,

ª [a1, d1] · (ª [a2, d2]) = a1a2 + d
q
1d

q
2

= [a1, d1] · [a2, d2] .

¥

Definition 23 In the real vector space fgp the norm of [a, d] ∈ f⊕gp and ª
[a, d] ∈ fªgp is defined by

‖[a, d]‖ =
√

a2 + d2q,

‖ª [a, d]‖ =
√

a2 + d2q.

Definition 24 In the real vector space fgp the distance of C1, C2 ∈ fgp is
defined by

d (C1, C2) = ‖C1 ª C2‖ .
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