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Abstract. This paper is devoted to the study of a nonlinear Euler-
Bernoulli Beam type equation involving both left and right Caputo frac-
tional derivatives. Differently from the approaches of the other papers
where they established the existence of solution for the linear Euler-
Bernoulli Beam type equation numerically, we use the lower and upper
solutions method with some new results on the monotonicity of the right
Caputo derivative. Furthermore, we give the explicit expression of the
upper and lower solutions. A numerical example is given to illustrate the
obtained results.

1 Introduction

Fractional differential equations containing a composition of left and right
fractional derivatives occur in the fractional theoretical mechanics and may
arise naturally in the study of variational problems such as the fractional
Euler-Lagrange equations, see [1–5,8, 12]. The presence of both left and right
fractional derivatives in the nonlinear differential equation poses many com-
plications when trying to apply the existing methods, for this reason, most
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studies focus on the linear cases and use numerical analysis, we refer the reader
to [1, 5, 12].

In [12] the authors discussed a linear fractional differential equation in-
volving the right Caputo derivative and the left Riemann-Liouville fractional
derivative and describing the height of granular material decreasing over time
in a silo:

CDαL−D
α
0+u (t) + bu (t) = 0, 0 ≤ t ≤ L, 0 < α ≤ 1.

Recently in [5], the author solved analytically and numerically a linear frac-
tional Euler–Bernoulli beam equation containing left and right fractional Ca-
puto derivatives:

CDαCL−D
α
0+u (t) = f (t) , 0 ≤ t ≤ L, 1 < α ≤ 2
u(0) = u′(0) = u(L) = u′(L) = 0,

that is derived by using a variational approach.
In [8] the authors proved existence of solutions for a nonlinear fractional

oscillator equation containing both left Riemann–Liouville and right Caputo
fractional derivatives

−CDα1−D
β
0+u (t) +ω

2u (t) = f (t, u (t)) ,

0 ≤ t ≤ 1,ω ∈ R,ω 6= 0, 0 < α,β < 1
u (0) = 0,D

β
0+u (1) = 0.

The main tools for this study was the upper and lower solutions method.
Nonlinear fractional differential equations has been studied by different

methods such fixed point theorems, upper and lower solutions method, suc-
cessive approximations,... see [1–10,13,14].

In this paper we focus on a nonlinear Euler-Bernoulli Beam equation in-
volving both left and right Caputo fractional derivatives

CDαC1−D
β
0+u (t) = f (t, u (t)) , 0 ≤ t ≤ 1, (1)

with the boundary conditions

u (0) = u′ (0) = u (1) = Dβ+10+ u (1) = 0, (2)

Where 1 < α,β < 2, CDα1− and CD
β
0+ denote respectively the right and the

left sides Caputo derivatives and D
β+1
0+ denotes the left Riemann–Liouville

fractional derivative. Denote by (P1) the problem (1)-(2).
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Note that the presence of both left and right fractional derivatives leads
to great difficulties. To solve problem (P1) we apply the lower and upper so-
lutions method and a new result on the monotonicity for the right Caputo
derivative. To succeed with such approach, we transform the problem (P1) to
a right Caputo fractional boundary value problem of lower order. After con-
structing the explicit expressions of the lower and upper solutions, we define a
sequence of modified problems that we solve by Schauder fixed point theorem.
An example is presented to illustrate the main theorem.

2 Preliminaries

In this section, we recall necessary definitions of fractional operators and their
properties [11,15,16].

The left and right Caputo derivatives of order n−1 < p < n are respectively
defined as

CD
p
0+g(t) =

(
I
1−p
0+ Dng

)
(t),

CD
p
1−g(t) = −

(
I
1−p
1− Dng

)
(t),

and the Riemann -Liouville fractional derivative is defined as

D
p
0+g(t) = D

n
(
I
1−p
0+ g

)
(t),

where Dn is the the classical derivative operator of order n and the operators
I
p
0+ and Ip1− are respectively the left and right fractional Riemann–Liouville

integrals of order p > 0 defined by

I
p
0+g(t) =

1

Γ (p)

∫ t
0

g(s)

(t− s)1−p
ds,

I
p
1−g(t) =

1

Γ (p)

∫ 1
t

g(s)

(s− t)1−p
ds.

The composition rules of the fractional operators (for n − 1 < p < n) are:

1- IpC0+D
p
0+g (t) = g (t) −

∑n−1
k=0

g(k)(0)
k! tk.

2- IpC1−D
p
1−g (t) = g (t) −

∑n−1
k=0

(−1)kg(k)(1)
k! (1− t)k .

3- CDp1−Dg (t) = −CDp+11− g (t) .

4- DDp0+g (t) = D
p+1
0+ g (t) .

Next we give some results on the Caputo derivative of monotone functions.
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Theorem 1 [8] Assume that g ∈ C1[0, 1] is such that CD
γ
1−g (t) ≥ 0 for

all t ∈ [0, 1] and all γ ∈ (p, 1) with some p ∈ (0, 1). Then g is monotone
decreasing. Similarly, if CDγ1−g (t) ≤ 0 for all t and γ mentioned above, then
g is monotone increasing.

3 Main results

To reduce the problem (P1) to an equivalent right Caputo fractional boundary
value problem of lower order, we use the following Lemma

Lemma 1 If a function g satisfies g (0) = g′ (0) , then we have

CDαC1−D
β
0+g (t) = −CDα−11− D

β+1
0+ g (t) .

where Dβ+10+ denotes the Riemann -Liouville fractional derivative.

Proof. The proof is based on the composition rules of the fractional operators.
�

From Lemma 2, equation (1) can be written as

−CDα−11− D
β+1
0+ u (t) = f (t, u (t)) , 0 ≤ t ≤ 1.

Denote by (P2) the auxiliary problem:

(P2)

{
D
β+1
0+ u (t) = v (t) , 0 ≤ t ≤ 1
u (0) = u′ (0) = u (1) = 0.

In the next lemma, we give the solution of (P2).

Lemma 2 If 1 < β < 2, then problem (P2) has a unique solution given by

u (t) = Iβ+10+ v (t) − tβIβ+10+ v (1) .

Let E denotes the Banach space C ([0, 1] ,R) equipped with the uniform
norm ||u|| = max

t∈[0,1]
|u (t)| . Define the operator T on E by

Tv (t) = Iβ+10+ v (t) − tβIβ+10+ v (1) , t ∈ [0, 1] ,

thus

u (t) = Tv (t) , t ∈ [0, 1] .
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From the boundary condition Dβ+10+ u (1) = 0, we show that the problem
(P1) is equivalent to the following right Caputo boundary value problem of
order 0 < α− 1 < 1 :

(P3)

{
−CDα−11− v (t) = f (t, Tv (t)) , 0 ≤ t ≤ 1

v (1) = 0.

Let us make the following hypotheses:
(H1) There exists a constant A ≥ 0 such that

f (t, x) ≥ −A

Γ (2− α)
(1− t)1−γ ,

for 0 ≤ t ≤ 1, for all γ ∈ [α− 1, 1) and −A(β+1)
Γ(3+β) ≤ x ≤ 0.

(H2) There exists a constant B ≤ 0 such that A ≥ |B| and

f (t, x) ≤ −B

Γ (2− α)
(1− t)1−γ ,

for 0 ≤ t ≤ 1, for all γ ∈ [α− 1, 1) and 0 ≤ x ≤ −B(β+1)
Γ(3+β) .

To use Theorem 1, we have to adapt the definition of the lower and upper
solutions for problem (P1) as follows:

Definition 1 The functions σ, σ ∈ AC4 [0, 1] are called lower and upper so-
lutions of problem (P1) respectively, if

a) −CDγ1−D
β+1
0+ σ (t) ≥ f (t, σ (t)) ,for all t ∈ [0, 1] and for all γ ∈ [α − 1, 1)

and
σ (0) ≥ 0, σ′ (0) ≥ 0, σ (1) ≥ 0 and Dβ+10+ σ (1) ≥ 0.
b) −CDγ1−D

β+1
0+ σ (t) ≤ f (t, σ (t)) ,for all t ∈ [0, 1] and for all γ ∈ [α − 1, 1)

and
σ (0) ≤ 0, σ′ (0) ≤ 0, σ (1) ≤ 0 and Dβ+10+ σ (1) ≤ 0.
Where

AC4 [0, 1] =
{
u ∈ C3 [0, 1] , u(3) absolutely continuous function on [0, 1]

}
.

Functions σ and σ are lower and upper solutions in reverse order if σ(t) ≥
σ(t), 0 ≤ t ≤ 1.

Lemma 3 Under the hypotheses (H1) and (H2), the problem (P1) has a lower
and an upper solutions.
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Proof. Define ϕ (t) = A (1− t), then we get

0 ≥ Tϕ (t) = Iβ+10+ ϕ (t) − tβIβ+10+ ϕ (1)

=
Atβ

Γ (3+ β)

(
−t2 + t (β+ 2) − (β+ 1)

)
≥ −A (β+ 1)

Γ (3+ β)
.

By computation we obtain for γ ∈ [α− 1, 1)

CD
γ
1−ϕ (t) =

A

Γ (2− γ)
(1− t)1−γ ,

Now, we show that σ (t) = Tϕ (t) is an upper solution of problem (P1). By
the help of hypothesis (H1), we have for all t ∈ [0, 1] and for all γ ∈ [α− 1, 1)

−CDγ1−D
β+1
0+ σ (t) = −CDγ1−ϕ (t) =

−A

Γ (2− γ)
(1− t)1−γ

≤ f (t, Tϕ (t)) = f (t, σ (t))

in addition σ (0) ≤ 0, σ′ (0) ≤ 0,σ (1) ≤ 0 and Dβ+10+ σ (1) ≤ 0, consequently
σ (t) = Tϕ (t) is an upper solution of problem (P1).

Similarly, setting ψ (t) = B (1− t) and taking hypothesis (H2) into account,
we show that σ (t) = Tψ (t) is a lower solution of problem (P1). Finally we
write the explicit expressions of the upper and lower solutions as

σ (t) = Tϕ (t) =
Atβ

Γ (3+ β)

(
−t2 + t (β+ 2) − (β+ 1)

)
≤ 0,

σ (t) = Tψ (t) =
Btβ

Γ (3+ β)

(
−t2 + t (β+ 2) − (β+ 1)

)
≥ 0,

and then σ and σ are lower and upper solutions in reverse order, i.e

σ (t) ≤ σ (t) , 0 ≤ t ≤ 1.

The proof is completed. �

Let us introduce the following sequence of modified problems
(
(P4)γ

)
, for

γ ∈ [α− 1, 1): (
(P4)γ

){ −CDγ1−v (t) = Fv (t) , 0 ≤ t ≤ 1
v (1) = 0,

where the operator F : E→ E, is defined by

Fv (t) = f (t, T (min (ϕ,max (v,ψ)))) , 0 ≤ t ≤ 1.
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The relation between the solution of the sequence of modified problem
(
(P4)γ

)
and the solution of problem (P1) is given in the following lemma:

Lemma 4 If v is a solution of problem
(
(P4)α−1

)
, then u = Tv is a solution

of problem (P1) satisfying

σ (t) ≤ u (t) ≤ σ (t) , 0 ≤ t ≤ 1. (3)

Proof. Let vγ be a solution of problem
(
(P4)γ

)
for γ ∈ [α − 1, 1), we shall

prove that

ψ (t) ≤ vγ (t) ≤ ϕ (t) , 0 ≤ t ≤ 1. (4)

For this purpose, set ε (t) = vγ (t)−ϕ (t) . It’s clear that ε (1) = 0. Suppose the
contrary, i.e. there exists t1 ∈ (0, 1] such that ε (t1) > 0, since ε is continuous,
then there exist a ∈ [0, t1] and b ∈ (t1, 1] such that ε (b) = 0 and ε (t) ≥ 0,
for all t ∈ [a, b]. By taking the right Caputo derivative of ε, it yields

CD
γ
1−ε (t) = CD

γ
1−vγ (t) −

C D
γ
1−ϕ (t)

= −f (t, T (min [ϕ, (max (vγ, ψ))])) −
C D

γ
1−ϕ (t)

= −f (t, Tϕ (t)) −C Dγ1−ϕ (t) .

Taking in to account that σ = Tϕ (t) is an upper solution, we conclude that
CD

γ
1−ε (t) ≤ 0, t ∈ [a, b], therefore, ε is increasing on [a, b] by Theorem 1.

Since ε (b) = 0, then ε (t) ≤ 0, for all t ∈ [a, b] and thus vγ (t) ≤ ϕ (t) ,
t ∈ [a, b] that leads to a contradiction. Proceeding by the same way, we prove
that ψ (t) ≤ vγ (t) , t ∈ [0, 1].

Now, let v be a solution of problem ((P4)α−1) , then thanks to inequalities
(4) we have

−CDα−11− v (t) = Fv (t) = f (t, Tv (t)) ,

hence v is a solution of (P3) and consequently u = Tv is a solution of (P1).
Let us rewrite the operator T as

Tv (t) =
1

Γ (1+ β)

∫ 1
0

G (t, s) v (s)ds

where the Green function G given by

G (t, s) =

{
(t− s)β − tβ (1− s)β , s ≤ t

−tβ (1− s)β , s ≥ t
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is negative for 0 ≤ s, t ≤ 1, consequently, by applying the operator T to (4) it
yields

Tϕ (t) ≤ Tv (t) ≤ Tψ (t) , 0 ≤ t ≤ 1,
thus (3) holds. This achieves the proof. �

Now we are ready to prove our main results for problem (P1):

Theorem 2 Under the hypotheses (H1) and (H2), the problem (P1) has at
least one solution u satisfying

σ (t) ≤ u (t) ≤ σ (t) , 0 ≤ t ≤ 1.

Proof. Define the operator R on E, by

Rv (t) = −Iα−11− Fv (t)

= −Iα−11− f (t, T (min (ϕ,max (v,ψ)))) , 0 ≤ t ≤ 1.

Let us remark that if R has a fixed point v then u = Tv is a solution of (P1).
Set

Ω = {v ∈ C [0, 1] , ‖v‖ ≤ M

Γ (α)
}.

where
M = max {|f(t, x)| , σ (t) ≤ x ≤ σ (t) , 0 ≤ t ≤ 1} .

Let us prove that R (Ω) is uniformly bounded, equicontinuous and R (Ω) ⊂ Ω.
Let v ∈ Ω, then σ (t) ≤ T (min (ϕ,max (v,ψ))) (t) ≤ σ (t) we get

|Rv (t)| ≤ Iα−11− |f (t, T (min (ϕ,max (v,ψ))) (t))|

=
1

Γ (α− 1)

∫ 1
t

|f (s, T (min (ϕ,max (v,ψ))) (s))|

(s− t)2−α
ds

≤ M

Γ (α)
,

therefore R (Ω) is uniformly bounded and R (Ω) ⊂ Ω. Let 0 ≤ t1 < t2 ≤ 1, for
simplicity we denote g(t) = f (t, T (min (ϕ,max (v,ψ))) (t)) , we have

|Rv (t1) − Rv (t2)| ≤
∣∣∣Iα−11− g (t1) − I

α−1
1− g (t2)

∣∣∣
≤ 1

Γ (α− 1)

∫ t2
t1

(s− t1)
α−2 |g (s)|ds+

1

Γ (α− 1)

∫ 1
t2

(
(s− t1)

α−2 − (s− t2)
α−2

)
|g (s)|ds

≤ M

Γ (α)

(
(1− t1)

α−1 − (1− t2)
α−1

)→ 0, t1 → t2,
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hence, R (Ω) is equicontinuous. By Arzela-Ascoli Theorem we conclude that
R is completely continuous. Finally an application of Schauder fixed point
theorem implies that R has a fixed point v ∈ Ω, and so u = Tv is a solution
of (P1) satisfying from Lemma 7, σ (t) ≤ u (t) ≤ σ (t), 0 ≤ t ≤ 1. The proof
is completed. �

Next, we present an example to illustrate the obtained results.

Example 1 Consider the problem (P1) with α = 5
3 , β = 3

2 and

f (t, x) =
2Γ

(
9
2

)
5Γ

(
1
3

)x (1− t) 1
3 , 0 ≤ t ≤ 1, x ∈ R.

If we choose A = 1 and B = −1, then Hypotheses (H1) and (H2) are satisfied,
in fact for forγ ∈ [ 23 , 1), 0 ≤ t ≤ 1,

−5
2Γ( 9

2)
≤ x ≤ 0, we have

f (t, x) =
2Γ

(
9
2

)
5Γ

(
1
3

)x (1− t) 1
3 =

2Γ
(
9
2

)
5Γ

(
1
3

)x (1− t)1− 2
3

≥ −1

Γ
(
1
3

) (1− t)1− 2
3 ≥ −1

Γ
(
1
3

) (1− t)1−γ .
and if γ ∈ [ 23 , 1), 0 ≤ t ≤ 1, 0 ≤ x ≤

5

2Γ( 9
2)
, it yields

f (t, x) =
2Γ

(
9
2

)
5Γ

(
1
3

)x (1− t) 1
3 =

2Γ
(
9
2

)
5Γ

(
1
3

)x (1− t)1− 2
3

≤ 1

Γ
(
1
3

) (1− t)1− 2
3 ≤ 1

Γ
(
1
3

) (1− t)1−γ .
The expressions of lower and upper solutions are

σ (t) = Tϕ (t) =
t
3
2

Γ
(
9
2

) (−t2 + 7

2
t−

5

2

)
≤ 0,

σ (t) = Tψ (t) =
−t

3
2

Γ
(
9
2

) (−t2 + 7

2
t−

5

2

)
≥ 0.
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