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Abstract. The object of the present paper is to study of two certain
subclass of analytic functions related with Booth lemniscate which we
denote by BS(α) and BK(α). Some properties of these subclasses are
considered.

1 Introduction

Let ∆ be the open unit disk in the complex plane C and A be the class of
normalized and analytic functions. Easily seen that any f ∈ A has the following
form:

f(z) = z+ a2z
2 + a3z

3 + · · · (z ∈ ∆). (1)

Further, by S we will denote the class of all functions in A which are univalent
in ∆. The set of all functions f ∈ A that are starlike univalent in ∆ will be
denote by S∗ and the set of all functions f ∈ A that are convex univalent in
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∆ will be denote by K. Analytically, the function f ∈ A is a starlike univalent
function, if and only if

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ ∆).

Also, f ∈ A belongs to the class K, if and only if

Re

{
1+

zf ′′(z)

f ′(z)

}
> 0 (z ∈ ∆).

For more details about this functions, the reader may refer to the book of
Duren [2]. Define by B the class of analytic functions w(z) in ∆ with w(0) = 0
and |w(z)| < 1, (z ∈ ∆). Let f and g be two functions in A. Then we say that f
is subordinate to g, written f(z) ≺ g(z), if there exists a function w ∈ B such
that f(z) = g(w(z)) for all z ∈ ∆. Furthermore, if the function g is univalent
in ∆, then we have the following equivalence:

f(z) ≺ g(z)⇔ (f(0) = g(0) and f(∆) ⊂ g(∆)).

Recently, the authors [10, 11], (see also [5]) have studied the function

Fα(z) :=
z

1− αz2
=

∞∑
n=1

αn−1z2n−1 (z ∈ ∆, 0 ≤ α ≤ 1). (2)

We remark that the function Fα(z) is a starlike univalent function when 0 ≤
α < 1. In addition Fα(∆) = D(α) (0 ≤ α < 1), where

D(α) =

{
x+ iy ∈ C :

(
x2 + y2

)2
−

x2

(1− α)2
−

y2

(1+ α)2
< 0

}
and

F1(∆) = C\ {(−∞,−i/2] ∪ [i/2,∞)} .

For f ∈ A we denote by Area f(∆), the area of the multi-sheeted image of
the disk ∆r = {z ∈ C : |z| < r} (0 < r ≤ 1) under f. Thus, in terms of the
coefficients of f, f ′(z) =

∑∞
n=1 nanz

n−1 one gets with the help of the classical
Parseval-Gutzmer formula (see [2]) the relation

Area f(∆) =

∫ ∫
∆r

|f ′(z)|2dxdy = π

∞∑
n=1

n|an|
2r2n, (3)
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which is called the Dirichlet integral of f. Computing this area is known as the
area problem for the functions of type f. Thus, a function has a finite Dirichlet
integral exactly when its image has finite area (counting multiplicities). All
polynomials and, more generally, all functions f ∈ A for which f ′ is bounded
on ∆ are Dirichlet finite. Now by (2), (3) and since

∑∞
n=1 nr

2(n−1) = 1/(1−r2)2

we get:

Corollary 1 Let 0 ≤ α < 1. Then

Area {Fα(∆)} =
π

(1− α2)2
.

Let BS(α) be the subclass of A which satisfy the condition(
zf ′(z)

f(z)
− 1

)
≺ Fα(z) (z ∈ ∆). (4)

The function class BS(α) was studied extensively by Kargar et al. [5]. The
function

f̃(z) = z

(
1+ z

√
α

1− z
√
α

) 1
2
√
α

, (5)

is extremal function for several problems in the class BS(α). We note that the
image of the function Fα(z) (0 ≤ α < 1) is the Booth lemniscate. We remark
that a curve described by(

x2 + y2
)2

−
(
n4 + 2m2

)
x2 −

(
n4 − 2m2

)
y2 = 0 (x, y) 6= (0, 0),

(is a special case of Persian curve) was studied by Booth and is called the
Booth lemniscate [1]. The Booth lemniscate is called elliptic if n4 > 2m2

while, for n4 < 2m2, it is termed hyperbolic. Thus it is clear that the curve(
x2 + y2

)2
−

x2

(1− α)2
−

y2

(1+ α)2
= 0 (x, y) 6= (0, 0),

is the Booth lemniscate of elliptic type. Thus the class BS(α) is related to the
Booth lemniscate.

In the present paper some properties of the class BS(α) including, the or-
der of strongly satarlikeness, upper and lower bound for Ref(z), distortion
and grow theorems and some sharp inequalities and logarithmic coefficients
inequalities are considered. Also at the end, we introduce a certain subclass of
convex functions.
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2 Main results

Our first result is contained in the following. Further we recall that (see [12])
the function f is strongly starlike of order γ and type β in the disc ∆, if it
satisfies the following inequality:∣∣∣∣arg

{
zf ′(z)

f(z)
− β

}∣∣∣∣ < πγ

2
(0 ≤ β ≤ 1, 0 < γ ≤ 1). (6)

Theorem 1 Let 0 ≤ α ≤ 1 and 0 < ϕ < 2π. If f ∈ BS(α), then f is strongly
starlike function of order γ(α,ϕ) and type 1 where

γ(α,ϕ) :=
2

π
arctan

(
1+ α

1− α
| tanϕ|

)
.

Proof. Let z = reiϕ(r < 1) and ϕ ∈ (0, 2π). Then we have

Fα(re
iϕ) =

reiϕ

1− αr2e2iϕ
.
1− αr2e−2iϕ

1− αr2e−2iϕ

=
r(1− αr2) cosϕ+ ir(1+ αr2) sinϕ

1− 2αr2 cos 2ϕ+ α2r4
.

Hence∣∣∣∣Im{Fα(re
iϕ)}

Re{Fα(reiϕ)}

∣∣∣∣ = ∣∣∣∣ (1+ αr2) sinϕ

(1− αr2) cosϕ

∣∣∣∣ = 1+ αr2

1− αr2
| tanϕ| (ϕ ∈ (0, 2π)). (7)

For such r the curve Fα(re
iϕ) is univalent in ∆r = {z : |z| < r}. Therefore[(

zf ′(z)

f(z)
− 1

)
≺ Fα(z), z ∈ ∆r

]⇔ [(
zf ′(z)

f(z)
− 1

)
∈ Fα(∆r), z ∈ ∆r

]
. (8)

Then by (7) and (8), we have∣∣∣∣arg

{
zf ′(z)

f(z)
− 1

}∣∣∣∣ = ∣∣∣∣arctan
Im[(zf ′(z)/f(z)) − 1]

Re[(zf ′(z)/f(z)) − 1]

∣∣∣∣
≤
∣∣∣∣arctan

Im(Fα(re
iϕ))

Re(Fα(reiϕ))

∣∣∣∣
< arctan

(
1+ αr2

1− αr2
| tanϕ|

)
,
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and letting r→ 1−, the proof of the theorem is completed. �

In the sequel we define an analytic function L(z) by

L(z) = exp

∫ z
0

1+ Fα(t)

t
dt (0 ≤ α ≤ 3− 2

√
2, t 6= 0), (9)

where Fα is given by (2). Since the function Fα is convex univalent for 0 ≤
α ≤ 3 − 2

√
2, thus as result of (cf. [9]), the function L(z) is convex univalent

function in ∆.

Theorem 2 Let 0 ≤ α ≤ 3− 2
√
2. If f ∈ BS(α), then

L(−r) ≤ Re{f(z)} ≤ L(r) (|z| = r < 1),

where L(.) defined by (9).

Proof. Suppose that f ∈ BS(α). Then by Lindelöf’s principle of subordination
[4], we get

inf
|z|≤r

Re{L(z)} ≤ inf
|z|≤r

Re{f(z)} ≤ sup
|z|≤r

Re{f(z)}

≤ sup
|z|≤r

Re{|f(z)|} ≤ sup
|z|≤r

Re{L(z)}.
(10)

Because Fα is a convex univalent function for 0 ≤ α ≤ 3 − 2
√
2 and has real

coefficients, hence Fα(∆) is a convex domain with respect to real axis. Moreover
we have

sup
|z|≤r

Re{L(z)} = sup
−r≤z≤r

L(z) = L(r)

and
inf
|z|≤r

Re{L(z)} = inf
−r≤z≤r

L(z) = L(−r).

The proof of Theorem 2 is thus completed. �

Theorem 3 Let f ∈ BS(α), 0 < α ≤ 3− 2
√
2, rs(α) =

√
1+4α−1
2α ≤ 0.8703,

Fα(rs(α)) = max
|z|=rs(α)<1

|Fα(z)| and Fα(−rs(α)) = min
|z|=rs(α)<1

|Fα(z)|.

Then we have

1

1+ r2s(α)
(Fα(rs(α)) − 1) ≤ |f ′(z)| ≤ 1

1− r2s(α)
(Fα(rs(α)) + 1) (11)

and∫ rs(α)
0

Fα(t)

1+ t2
dt− arctan rs(α) ≤ |f(z)| ≤ 1

2
log

(
1+ rs(α)

1− rs(α)

)
+

∫ rs(α)
0

Fα(t)

1− t2
dt (12)



Some properties of analytic functions 117

Proof. Let f ∈ BS(α). Then by definition of subordination we have

zf ′(z)

f(z)
= 1+ Fα(w(z)), (13)

where w(z) is an analytic function w(0) = 0 and |w(z)| < 1. From [6, Corollary
2.1], if f ∈ BS(α), then f is starlike univalent function in |z| < rs(α), where

rs(α) =
√
1+4α−1
2α . Thus if we define q(z) : ∆rs(α) → C by the equation q(z) :=

f(z), where ∆rs(α) := {z : |z| < rs(α)}, then q(z) is starlike univalent function
in ∆rs(α) and therefore

rs(α)

1+ r2s(α)
≤ |q(z)| ≤ rs(α)

1− r2s(α)
(|z| = rs(α) < 1).

Now by (13), we have

zf ′(z) = q(z)(Fα(z) + 1) |z| = rs(α) < 1.

Since w(∆rs(α)) ⊂ ∆rs(α) and by the maximum principle for harmonic func-
tions, we get

|f ′(z)| =
|q(z)|

|z|
|Fα(w(z)) + 1|

≤ 1

1− r2s(α)
(|Fα(w(z))|+ 1)

≤ 1

1− r2s(α)

(
max

|z|=rs(α)
|Fα(w(z))|+ 1

)
≤ 1

1− r2s(α)
(Fα(rs(α)) + 1).

With the same proof we obtain

|f ′(z)| ≥ 1

1+ r2s(α)
(Fα(rs(α)) − 1).

Since the function f is a univalent function, the inequality for |f(z)| follows from
the corresponding inequalities for |f ′(z)| by Privalov’s Theorem [4, Theorem
7, p. 67]. �

Theorem 4 Let Fα(z) be given by (2). Then we have

1

1+ α
≤ |Fα(z)| ≤

1

1− α
(z ∈ ∆− {0}, 0 < α < 1). (14)
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Proof. It is sufficient that to consider |Fα(z)| on the boundary

∂Fα(∆) =
{
Fα(e

iθ) : θ ∈ [0, 2π]
}
.

A simple check gives us

x = Re
{
Fα(e

iθ)
}
=

(1− α) cos θ

1+ α2 − 2α cos 2θ
(15)

and

y = Im
{
Fα(e

iθ)
}
=

(1+ α) sin θ

1+ α2 − 2α cos 2θ
. (16)

Therefore, we have∣∣∣Fα(eiθ)∣∣∣2 = 1

1+ α2 − 2α cos 2θ
(17)

=
1

1+ α2 − 2α(2t2 − 1)
=: H(t) (t = cos θ). (18)

Since 0 ≤ t ≤ 1, it is easy to see that H ′(t) ≤ 0 when −1 ≤ t ≤ 0 and
H ′(t) ≥ 0 if 0 ≤ t ≤ 1. Thus

1

(1+ α)2
≤ H(t) ≤ 1

(1− α)2
(−1 ≤ t < 0)

and
1

(1+ α)2
≤ H(t) ≤ 1

(1− α)2
(0 < t ≤ 1).

This completes the proof. �

A simple consequence of Theorem 4 as follows.

Theorem 5 If f ∈ BS(α) (0 < α < 1), then

1

1+ α
≤
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤ 1

1− α
(z ∈ ∆).

The inequalities are sharp for the function f̃ defined by (5).

Proof. By definition of subordination, and by using of Theorem 4, the proof is
obvious. For the sharpness of inequalities consider the function f̃ which defined
by (5). It is easy to see that∣∣∣∣∣zf̃ ′(z)f̃(z)

− 1

∣∣∣∣∣ =
∣∣∣∣ z

1− αz2

∣∣∣∣ = |Fα(z)|
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and concluding the proof. �

The logarithmic coefficients γn of f(z) are defined by

log

{
f(z)

z

}
=

∞∑
n=1

2γnz
n (z ∈ ∆). (19)

This coefficients play an important role for various estimates in the theory of
univalent functions. For example, consider the Koebe function

k(z) =
z

(1− µz)2
(µ ∈ R).

Easily seen that the above function k(z) has logarithmic coefficients γn(k) =
µn/n where |µ| = 1 and n ≥ 1. Also for f ∈ S we have

γ1 =
a2
2

and γ2 =
1

2

(
a3 −

a22
2

)
and the sharp estimates

|γ1| ≤ 1 and |γ2| ≤
1

2
(1+ 2e−2) ≈ 0.635 . . . ,

hold. Also, sharp inequalities are known for sums involving logarithmic coef-
ficients. For instance, the logarithmic coefficients γn of every function f ∈ S
satisfy the sharp inequality

∞∑
n=1

|γn|
2 ≤ π

2

6
(20)

and the equality is attained for the Koebe function (see [3, Theorem 4]).
The following lemma will be useful for the next result.

Lemma 1 (see [5, Theorem 2.1]) Let f ∈ A and 0 ≤ α < 1. If f ∈ BS(α),
then

log
f(z)

z
≺
∫ z
0

Pα(t) − 1

t
dt (z ∈ ∆), (21)

where

Pα(z) − 1 =
2

π(1− α)
i log

(
1− eπi(1−α)

2
z

1− z

)
(z ∈ ∆) (22)

and

P̃α(z) =

∫ z
0

Pα(t) − 1

t
dt (z ∈ ∆), (23)

are convex univalent in ∆.
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We remark that an analytic function Pµ,β : ∆→ C by

Pµ,β(z) = 1+
β− µ

π
i log

(
1− e2πi

1−µ
β−µ z

1− z

)
, (µ < 1 < β). (24)

is a convex univalent function in ∆, and has the form:

Pµ,β(z) = 1+

∞∑
n=1

Bnz
n,

where

Bn =
β− µ

nπ
i
(
1− e2nπi

1−µ
β−µ

)
, (n = 1, 2, . . .). (25)

The above function Pµ,β(z) was introduced by Kuroki and Owa [7] and they
proved that Pµ,β maps ∆ onto a convex domain

Pµ,β(∆) = {w ∈ C : µ < Re{w} < β}, (26)

conformally. Note that if we take µ = 1/(α − 1) and β = 1/(1 − α) in (24),
then we have the function Pα which defined by (22). Now we have the following
result about logarithmic coefficients.

Theorem 6 Let f ∈ A belongs to the class BS(α) and 0 < α < 1. Then the
logarithmic coefficients of f satisfy the inequality

∞∑
n=1

|γn|
2 ≤ 1

(1− α)2

[
π2

45
−
1

π2

(
Li4

(
eπ(α−2)i

)
+ Li4

(
eπ(2−α)i

))]
, (27)

where Li4 is as following

Li4(z) =

∞∑
n=1

zn

n4
= −

1

2

∫ 1
0

log2(1/t) log(1− tz)

t
dt. (28)

The inequality is sharp.

Proof. If f ∈ BS(α), then by using Lemma 1 and with a simple calculation
we get

log
f(z)

z
≺

∞∑
n=1

2

πn2(1− α)
i
(
1− eπn(2−α)i

)
zn (z ∈ ∆). (29)
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Now, by putting (19) into the last relation we have∞∑
n=1

2γnz
n ≺

∞∑
n=1

1

πn2(1− α)
i
(
1− eπn(2−α)i

)
zn (z ∈ ∆). (30)

Again, by Rogosinski’s theorem [2, 6.2], we obtain

∞∑
n=1

|γn|
2 ≤

∞∑
n=1

∣∣∣∣ 1

πn2(1− α)
i
(
1− eπn(2−α)i

)∣∣∣∣2
=

2

π2(1− α)2

( ∞∑
n=1

1

n4
−

∞∑
n=1

cosπ(2− α)n

n4

)
It is a simple exercise to verify that

∑∞
n=1

1
n4

= π4/90 and

∞∑
n=1

cosπ(2− α)n

n4
=
1

2

{
Li4

(
e−i(2−α)π

)
+ Li4

(
ei(2−α)π

)}
and thus the desired inequality (27) follows. For the sharpness of the inequality,
consider

F(z) = z exp P̃(z). (31)

It is easy to see that the function F(z) belongs to the class BS(α). Also, a
simple check gives us

γn(F(z)) =
1

πn2(1− α)
i
(
1− eπn(2−α)i

)
.

Therefore the proof of this theorem is completed. �

Theorem 7 Let f ∈ BS(α). Then the logarithmic coefficients of f satisfy

|γn| ≤
1

2n
(n ≥ 1).

Proof. If f ∈ BS(α), then by definition BS(α), we have

zf ′(z)

f(z)
− 1 = z

(
log

{
f(z)

z

}) ′
≺ Fα(z).

Thus ∞∑
n=1

2nγnz
n ≺

∞∑
n=1

αn−1z2n−1.

Applying the Rogosinski theorem [8], we get the inequality 2n|γn| ≤ 1. This
completes the proof. �
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3 The class BK(α)

In this section we introduce a new class. Our principal definition is the follow-
ing.

Definition 1 Let 0 ≤ α < 1 and Fα be defined by (2). Then f ∈ A belongs to
the class BK(α) if f satisfies the following:

zf ′′(z)

f ′(z)
≺ Fα(z) (z ∈ ∆). (32)

Remark 1 By Alexander’s lemma f ∈ BK(α), if and only if zf ′(z) ∈ BS(α).
Thus, if f ∈ A belongs to the class BK(α), then

α

α− 1
< Re

{
1+

zf ′′(z)

f ′(z)

}
<
2− α

1− α
(z ∈ ∆).

The following theorem provides us a method of finding the members of the
class BK(α).

Theorem 8 A function f ∈ A belongs to the class BK(α) if and only if there
exists a analytic function q, q(z) ≺ Fα(z) such that

f(z) =

∫ z
0

(
exp

∫ζ
0

q(t)

t

)
dζ. (33)

Proof. First, we let f ∈ BK(α). Then from (32) and by definition of subordi-
nation there exists a function ω ∈ B such that

zf ′′(z)

f ′(z)
= Fα(ω(z)) (z ∈ ∆). (34)

Now we define q(z) = Fα(ω(z)) and so q(z) ≺ Fα(z). The equation (34) readily
gives

{log f ′(z)} ′ =
q(z)

z

and moreover

f ′(z) = exp

(∫ζ
0

q(t)

t
dt

)
,

which upon integration yields (33). Conversely, by simple calculations we see
that if f satisfies (33), then f ∈ BK(α) and therefore we omit the details. �
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If we apply Theorem 8 with q(z) = Fα(z), then (33) with some easy calcu-
lations becomes

f̂α(z) := z+
z2

2
+
1

6
z3 +

1

12

(
α+

1

2

)
z4 +

1

60

(
4α+

1

2

)
z5 + · · · . (35)

Theorem 9 If a function f(z) defined by (1) belongs to the class BK(α), then

|a2| ≤
1

2
and |a3| ≤

1

6
.

The equality occurs for f̂ given in (35).

Proof. Assume that f ∈ BK(α). Then from (32) we have

zf ′′(z)

f ′(z)
=

ω(z)

1− αω2(z)
, (36)

where ω ∈ B and has the form ω(z) = b1z + b2z
2 + b3z

3 + · · · . It is fairly
well-known that if |ω(z)| = |b1z + b2z

2 + b3z
3 + · · · | < 1 (z ∈ ∆), then for all

k ∈ N = {1, 2, 3, . . .} we have |bk| ≤ 1. Comparing the initial coefficients in (36)
gives

2a2 = b1 and 6a3 − 4a
2
2 = b2. (37)

Thus |a2| ≤ 1/2 and 6a3 = b
2
1+b2. Since |b1|

2+ |b2| ≤ 1, therefore the assertion
is obtained. �

Corollary 2 It is well known that for ω(z) = b1z + b2z
2 + b3z

3 + · · · ∈ B
for all µ ∈ C, we have |b2 − µb

2
1| ≤ max{1, |µ|}. Therefore the Fekete-Szegö

inequality i.e. estimates of |a3 − µa
2
2| for the class BK(α) is equal to

|a3 − µa
2
2| ≤

1

6
max

{
1,

∣∣∣∣3µ2 − 1

∣∣∣∣} (µ ∈ C).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors of the manuscript have read and agreed to its content and are
accountable for all aspects of the accuracy and integrity of the manuscript.



124 P. Najmadi, Sh. Najafzadeh, A. Ebadian

Acknowledgments

The authors are thankful to the referee for the useful suggestions.

References

[1] J. Booth, A Treatise on Some New Geometrical Methods, Longmans,
Green Reader and Dyer, London, Vol. I (1873) and Vol. II (1877).

[2] P. L. Duren, Univalent functions, Springer-Verlag, 1983.

[3] P. L. Duren and Y. J. Leung, Logarithmic coefficients of univalent func-
tions, J. Anal. Math. 36 (1979), 36–43

[4] A. W. Goodman, Univalent Functions, Vol.I and II, Mariner, Tampa,
Florida, 1983.

[5] R. Kargar, A. Ebadian and J. Sokó l, On Booth lemiscate and starlike
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