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Abstract. In this paper, the concept of fractional q- calculus and gener-
alized Al-Oboudi differential operator defining certain classes of analytic
functions in the open disc are used. The results investigated for these
classes of functions include the coefficient estimates, inclusion relations,
extreme points and some more properties.

1 Introduction

Let A denote the class of all analytic functions of the form

f(z) = z+

∞∑
k=2

akz
k (1)

defined in the unit disc U = {z : |z| < 1}.
Let T denote the subclass of A in U , consisting of analytic functions whose

non-zero coefficients from the second onwards are negative. That is, an analytic
function f ∈ T if it has a Taylor expansion of the form

f(z) = z−

∞∑
k=2

akz
k (ak ≥ 0) (2)
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Fractional q-calculus operator 179

which are analytic in the open disc U .
The q-shifted factorial is defined for α, q ∈ C as a product of n factors by

(α, q)n =

{
1, n=0;
(1− α)(1− αq) · · · (1− αqn−1), n ∈ N, (3)

and in terms of the basic analogue of the gamma function

(qα;q)n =
Γq(α+ n)(1− q)n

Γq(α)
, (n > 0), (4)

where the q-gamma functions [4, 5] is defined by

Γq(x) =
(q;q)∞(1− q)1−x

(qx;q)∞ (0 < q < 1). (5)

Note that, if |q| < 1, the q-shifted factorial (3) remains meaningful for n =∞
as a convergent infinite product

(α;q)∞ =

∞∏
m=0

(1− αqm).

Now recall the following q-analogue definitions given by Gasper and Rah-
man [4]. The recurrence relation for q-gamma function is given by

Γq(x+ 1) = [x]qΓq(x), where, [x]q =
(1− qx)

(1− q)
, (6)

and called q-analogue of x.
Jackson’s q-derivative and q-integral of a function f defined on a subset of

C are, respectively, given by (see Gasper and Rahman [4])

Dqf(z) =
f(z) − f(zq)

z(1− q)
, (z 6= 0, q 6= 0). (7)

∫ z
0

f(t)dq(t) = z(1− z)

∞∑
m=0

qmf(zqm). (8)

In view of the relation

lim
q→1−

(qα;q)n
(1− q)n

= (α)n, (9)

we observe that the q-shifted fractional (2) reduces to the familiar Pochham-
mer symbol (α)n, where (α)n = α(α+ 1) · · · (α+ n+ 1).

Now recall the definition of the fractional q-calculus operators of a complex-
valued function f(z), which were recently studied by Purohit and Raina [7].
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Definition 1 (fractional q-integral operator). The fractional q-integral oper-
ator Iδq,z of a function f(z) of order δ (δ > 0) is defined by

Iδq,z = D
−δ
q,zf(z) =

1

Γq(δ)

∫ z
0

(z− tq)1−δf(t)dqt, (10)

where f(z) is a analytic in a simply connected region in the z-plane containing
the origin. Here, the term (z− tq)δ−1 is a q-binomial function defined by

(z− tq)δ−1 = z
δ−1

∞∏
m=0

[
1− ( tqz )q

m

1− ( tqz )q
δ +m− 1

]
(11)

= zδ 1φ0

[
q−δ+1; −;q,

tqδ

z

]
.

According to Gasper and Rahman [4], the series 1φ0[δ; −;q, z] is single-
valued when |arg(z)| < π. Therefore, the function (z− tq)δ−1 in (11) is single-

valued when |arg(−tq
δ

z | < π, |tq
δ
z | < 1, and |arg(z)| < π.

Definition 2 (fractional q-derivative operator). The fractional q-derivative
operator Dδq,z of a f(z) of order δ(0 ≤ δ < 1) is defined by

Dδq,zf(z) = Dq,zI
1−δ
q,z f(z) =

1

Γq(1− δ)
Dq

∫ z
0

(z− tq)−δf(t)dqt, (12)

where f(z) is suitably constrained and the multiplicity of (z− tq)−δ is removed
as in Definition 1 above.

Definition 3 (extended fractional q-derivative operator). Under the hypothe-
ses of Definition 2, the fractional q-derivative for the function f(z) of order δ
is defined by

Dδq,zf(z) = D
n
q,zI

n−δ
q,z f(z), (13)

where, n− 1 ≤ δ < n, n ∈ N0.
The fractional q-defferintegral operator is defined by Ωδq,zf(z) for the func-

tion f(z) of the form (1),

Ωδqf(z) = Γq(2− δ)z
δDδq,zf(z) = z+

∞∑
k=2

Γq(k+ 1)Γq(2− δ)

Γq(k+ 1− δ)
akz

k, (14)

where Dδq,z in (14), represents, respectively, a fractional q-integral of f(z) of
order δ when −∞ < δ < 0 and a fractional q-derivative of f(z) of order δ
when 0 < δ < 2.
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A linear multiplier fractional q-differintegral operator is defined as

Dδ, 0q, λf(z) = f(z),
Dδ, 1q, λf(z) = (1− λ)Ωδqf(z) + λzDq(Ω

δ
qf(z)),

Dδ, 2q, λf(z) = Dδ, 1q, λ(Dδ, 1q, λf(z))
...

Dδ, nq, λf(z) = Dδ, 1q, λ(Dδ, n−1q, λ f(z)). (15)

We note that if f ∈ A is given by (1), then by (15), we have

Dδ, nq, λf(z) = z+
∞∑
k=2

B(k, δ, λ, n, q)akz
k, (16)

where

B(k, δ, λ, n, q) =

(
Γq(2− δ)Γq(k+ 1)

Γq(k+ 1− δ)
[([k]q − 1)λ+ 1]

)n
. (17)

It can be seen that, by specializing the parameters, the operator Dδ, nq, λ reduces
tomany known and new integral and differential operators. In particular, when
δ = 0, and q → 1− the operator Dδ, nq, λ reduces to the operator introduced by
AL-Oboudi [1] and if δ = 0, λ = 1 and q→ 1− and it reduces to the operator
introduced by Sălăgean [9].

Now using above differential operator, we define the following subclass of
T .

Let T nq (α,β, δ, λ) be the subclass of T consisting of functions which satisfy
the conditions

<

{
zDq(Dδ, nq, λf)

βzDq(Dδ, nq, λf) + (1− β)Dδ, nq, λf

}
> α, (18)

for some α, β (0 ≤ α,β < 1), δ ≤ 2, λ > 0 and n ∈ N0.

In particular, if δ = 0, and q→ 1− we get the classes studided by Ravikumar,
Dileep and Latha [8] and if δ = 0, and q → 1− and different parametric of
values n we get the classes studied by Mostafa [6], Altintas and Owa [2].



182 N. Ravikumar

2 Main results

Theorem 1 A function f(z) defined by (2) is in the class T nq (α,β, δ, λ) if
and only if

∞∑
k=2

B(k, δ, λ, n, q)ak[(1− αβ)[k]q + αβ− α] < 1− α, (19)

where, B(k, δ, λ, n, q) is defined in (17), α, β (0 ≤ α,β < 1), λ > 0 and
n ∈ N0.

Proof. Suppose f ∈ T nq (α,β, δ, λ). Then

<

{
zDq(Dδ, nq, λf)

βzDq(Dδ, nq, λf) + (1− β)Dδ, nq, λf

}
> α,

<


z−

∞∑
k=2

B(k, δ, λ, n, q)[k]qakz
k

β[z−

∞∑
k=2

B(k, δ, λ, n, q)[k]qakz
k] + (1− β)[z−

∞∑
k=2

B(k, δ, λ, n, q)akz
k]

 > α,

<


z−

∞∑
k=2

B(k, δ, λ, n, q)[k]qakz
k

z−

∞∑
k=2

B(k, δ, λ, n, q)akz
k[β([k]q − 1) + 1]

 > α.
Letting z→ 1, we get,

1−

∞∑
k=2

B(k, δ, λ, n, q)[k]qak > α

{
1−

∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1]

}
.

Equivalenty we have,

∞∑
k=2

B(k, δ, λ, n, q)[k]qak−α

{ ∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1]

}
< (1−α)

which implies

∞∑
k=2

B(k, δ, λ, n, q)ak[(1− αβ)[k]q + αβ− α] < (1− α).
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Conversely, assume that (2.1) is be true. We have to show that (6) is satisfied
or equivalently ∣∣∣∣∣

{
zDq(Dδ, nq, λf)

βzDq(Dδ, nq, λf) + (1− β)Dδ, nq, λf

}
− 1

∣∣∣∣∣ < 1− α.
But ∣∣∣∣∣∣∣∣∣∣


z−

∞∑
k=2

B(k, δ, λ, n, q)[k]qakz
k

z−

∞∑
k=2

B(k, δ, λ, n, q)akz
k[β([k]q − 1) + 1]

− 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∞∑
k=2

B(k, δ, λ, n, q)ak([k]q − 1)(β− 1)zk

z−

∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1]z
k

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
k=2

B(k, δ, λ, n, q)ak([k]q − 1)(β− 1)|zk|

|z|−

∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1]|z
k|

≤

∞∑
k=2

B(k, δ, λ, n, q)ak([k]q − 1)(β− 1)

1−

∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1]

.

The last expression is bounded above by 1− α if

∞∑
k=2

B(k, δ, λ, n, q)ak([k]q − 1)(β− 1)

≤ (1− α)(1−

∞∑
k=2

B(k, δ, λ, n, q)ak[β([k]q − 1) + 1])

or ∞∑
k=2

B(k, δ, λ, n, q)ak[(1− αβ)[k]q + αβ− α] < 1− α,
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which is true by hypothesis. This completes the assertion of Theorem 1. �

Corollary 2 If f ∈ T nq (α,β, δ, λ), then

|ak| ≤
1− α

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]
.

Theorem 3 Let 0 ≤ α < 1, 0 ≤ β1 ≤ β2 < 1, n ∈ N0, then
T nq (α,β1, δ, λ) ⊂ T nq (α,β2, δ, λ).

Proof. For f(z) ∈ T nq (α,β2, δ, λ). We have,

∞∑
k=2

B(k, δ, λ, n, q)ak[(1− αβ2)[k]q + αβ2 − α]

≤
∞∑
k=2

B(k, δ, λ, n, q)ak[(1− αβ1)[k]q + αβ1 − α] < 1− α.

Hence f(z) ∈ T nq (α,β1, δ, λ). �

Theorem 4 Let f(z) ∈ T nq (α,β, δ, λ). Define f1(z) = z and

fk(z) = z+
1− α

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]
zk, k = 2, 3, · · · ,

for some α, β (0 ≤ β < 1), n ∈ N0 , λ > 0 and z ∈ U . Then f(z) ∈

T nq (α,β, δ, λ) if and only if f(z) can be expressed as f(z) =
∞∑
k=1

µkfk(z) where

µk ≥ 0 and
∞∑
k=1

µk = 1.

Proof. If f(z) =
∞∑
k=1

µkfk(z) with
∞∑
k=1

µk = 1, µk ≥ 0, then

∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]µk
B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]

(1− α)

∞∑
k=2

µk(1− α)

= (1− µ1)(1− α) ≤ (1− α).
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Hence f(z) ∈ T nq (α,β, δ, λ).

Conversely, let f(z) = z−
∞∑
k=2

akz
k ∈ T nq (α,β, δ, λ), define

µk =
B(k, δ, λ, n, q) [(1− αβ)[k]q + αβ− α] |ak|

(1− α)
, k = 2, 3, · · · ,

and define µ1 = 1−

∞∑
k=2

µk. From Theorem (1),

∞∑
k=2

µk ≤ 1 and hence µ1 ≥ 0.

Since µkfk(z) = µkf(z) + akz
k,

∞∑
k=1

µkfk(z) = z−

∞∑
k=2

akz
k = f(z). �

Theorem 5 The class T nq (α,β, δ, λ) is closed under convex linear combina-
tion.

Proof. Let f(z), g(z) ∈ T nq (α,β, δ, λ) and let

f(z) = z−

∞∑
k=2

akz
k, g(z) = z−

∞∑
k=2

bkz
k.

For η such that 0 ≤ η ≤ 1, it suffices to show that the function defined by
h(z) = (1− η)f(z) + ηg(z), z ∈ U belongs to T nq (α,β, δ, λ). Now

h(z) = z−

∞∑
k=2

[(1− η)ak + ηbk]z
k.

Applying Theorem 1, to f(z), g(z) ∈ T nq (α,β, δ, λ), we have

∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α] [(1− η)ak + ηbk]

= (1− η)

∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]ak

+ η

∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]bk

≤ (1− η)(1− α) + η(1− α) = (1− α).

This implies that h(z) ∈ T nq (α,β, δ, λ). �
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Corollary 6 If f1(z), f2(z) are in T nq (α,β, δ, λ) then the function defined

by g(z) =
1

2
[f1(z) + f2(z)] is also in T nq (α,β, δ, λ).

Theorem 7 Let for j = 1, 2, · · · , k, fj(z) = z −

∞∑
k=2

ak,jz
k ∈ T nq (α,β, δ, λ)

and 0 < βj < 1 such that
k∑
j=1

βj = 1, then the function F(z) defined by

F(z) =

k∑
j=1

βjfj(z) is also in T nq (α,β, δ, λ).

Proof. For each j ∈ {1, 2, 3, · · · , k} we obtain∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]|ak| < (1− α).

F(z) =

k∑
j=1

βj

(
z−

∞∑
k=2

ak,jz
k

)
= z−

∞∑
k=2

( k∑
j=1

βjak,j

)
zk

·
∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]

 k∑
j=1

βjak,j


=

k∑
j=1

βj

[ ∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]

]

<

k∑
j=1

βj(1− α) < (1− α).

Therefore F(z) ∈ T nq (α,β, δ, λ). �

Bernardi Libera’s integral operator is defined as

Lγf(z) =
γ+ 1

zγ

∫ z
0

tγ−1f(t)dt,

which was studied by Bernardi in [3].

Theorem 8 Let f(z) ∈ T nq (α,β, δ, λ). The q-analogous Bernardi’s integral

operator defined by Lq,γf(z) =
[γ+ 1]q
zγ

∫ z
0

tγ−1f(t)dqt then Lq,γf(z) ∈ T nq (α,β,

δ, λ).
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Proof. We have

Lq,γf(z) =
[γ+ 1]q
zγ

z(1− q)

∞∑
j=0

qj(zqj)γ−1f(zqj)

= [γ+ 1]q(1− q)

∞∑
j=0

qjγf(zqj)

= [γ+ 1]q(1− q)

∞∑
j=0

qjγ
∞∑
k=1

qjkakz
k,

= [γ+ 1]q

∞∑
j=0

∞∑
k=1

(1− q)qj(γ+k)akz
k

= z−

∞∑
k=2

[γ+ 1]q
[γ+ k]q

akz
k.

Since f ∈ T nq (α,β, δ, λ) and since
[γ+ 1]q
[γ+ k]q

< 1, we have

∞∑
k=2

B(k, δ, λ, n, q)[(1− αβ)[k]q + αβ− α]
[γ+ 1]q
[γ+ k]q

ak < (1− α). �
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