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Abstract. Using the notion of weighted sharing of sets, we study the
uniqueness problem of meromorphic functions sharing two finite sets. Our
results are inspired from an article due to J. F. Chen (Open Math., 15
(2017), 1244–1250).

1 Introduction, Definitions and Main results

In this paper, a meromorphic function means a function which is meromorphic
in the entire complex plane C. Throughout the paper, we adopt the standard
notations of Nevanlinna value distribution theory as explained in [6] and [12].
We denote byM(C) the class of all meromorphic functions defined in C and by
M1(C) the class of meromorphic functions which have finitely many poles in
C. For convenience, we denote any set of positive real numbers of finite linear
measure by E, not necessarily the same at each occurrence. For a nonconstant
meromorphic function h, we denote by S(r, h) any quantity satisfying S(r, h) =
o{T(r, h)} for r→∞, r 6∈ E. The order λ(f) of f ∈M(C) is defined as

λ(f) = lim sup
r−→∞

log T(r, f)

log r
.
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For a meromorphic function f and a set S ⊂ C∪ {∞}, we define Ef(S) (Ef(S))
to be the set of all a-points of f, where a ∈ S, together with their multiplicities
(ignoring their multiplicities). We say that two functions f and g share the set
S CM (IM) if Ef(S) = Eg(S) (Ef(S) = Eg(S)).

The development of research works related to set sharing problems was
broadly initiated due to the following question which was raised by F. Gross [5].

Question 1 Can one find two finite sets Si(i = 1, 2) of C ∪ {∞} such that
any two nonconstant entire functions f and g satisfying Ef(Si) = Eg(Si) for
i = 1, 2 must be identical?

In 1994, H. X. Yi [14] proved the following theorem which gives an affirmative
answer to Gross’s question.

Theorem A Let S1 = {ω | ωn−1 = 0} and S2 = {a}, where n ≥ 5 is an integer,
a 6= 0 and a2n 6= 1. If f and g are entire functions such that Ef(Sj) = Eg(Sj)
for j = 1, 2, then f ≡ g.

In [5], F. Gross also pointed that if the answer of Question 1 is affirmative,
then it would be interesting to know how large the sets can be.

In 1998, H. X. Yi [15] proved the following theorem which deals with the
above comment.

Theorem B Let S1 = {0} and S2 = {ω | ω2(ω+a)−b = 0}, where a and b are
two nonzero constants such that the algebraic equation ω2(ω+a)−b = 0 has
no multiple roots. If f and g are two entire functions satisfying Ef(Sj) = Eg(Sj)
for j = 1, 2, then f ≡ g.

In this direction, a lot of research works have been devoted during the last
two decades (see [4], [9], [10], [13]).

We recall the following recent result due to J. F. Chen [2].

Theorem C Let k be a positive integer and let S1 = {α1, α2, . . . , αk}, S2 =
{β1, β2}, where α1, α2, . . . , αk, β1, β2 are k+2 distinct finite complex numbers
satisfying

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)2 6= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)2.

If two nonconstant meromorphic functions f and g in M1(C) share S1 CM,
S2 IM, and if the order of f is neither an integer nor infinite, then f ≡ g.

In the same paper, the author also proved another result concerning unique
range sets. Before stating the result, we present the definition of unique range
sets.
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Definition 1 For a family of functions G, the subsets S1, S2, . . . , Sq of C∪{∞}

such that for any f, g ∈ G, f and g share Sj CM for j = 1, 2, . . . , q imply f ≡ g,
are called unique range sets (URS, in brief) for the functions in G.

Theorem D Let k be a positive integer and let S1 = {α1, α2, . . . , αk}, S2 =
{β1, β2}, where α1, α2, . . . , αk, β1, β2 are k+2 distinct finite complex numbers
satisfying

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)2 6= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)2.

If the order of f is neither an integer nor infinite, then the sets S1 and S2 are
the URS of meromorphic functions in M1(C).

The condition (β1−α1)
2(β1−α2)

2 . . . (β1−αk)
2 6= (β2−α1)

2(β2−α2)
2 . . . (β2−

αk)
2 in Theorems C and D can not be dropped as shown by the following ex-

ample.

Example 1 [2] For a positive integer k, let f(z) =
∑∞
n=1

zn

n3n , g(z) = −f(z),
S1 = {−1, 1, −2, 2, . . . , −k, k}, and S2 = {−(k + 1), k + 1}. Then using the
result of [3, p. 288] we deduce

λ(f) =
1

lim inf
n−→∞ logn3n

n logn

= lim sup
n−→∞

n logn

logn3n
=
1

3
.

Clearly f(z), g(z) ∈M1(C), f(z) and g(z) share S1, S2 CM. But f(z) 6≡ g(z).

The assumption “nonconstant meromorphic functions f and g in M1(C)” in
Theorems C and D cannot be relaxed to “nonconstant meromorphic functions
f and g in M(C)” as shown by the following example.

Example 2 [2] For a positive integer k, let f(z) =
∑∞
n=1

zn

n3n , g(z) = 1
f(z) ,

S1 =
{
2, 1

2 , 3,
1
3 , . . . , k,

1
k

}
, S2 =

{
k + 1, 1

k+1

}
. From Example 1 we note

that λ(f) = 1
3 and, therefore, using the result of [3, p. 293] we see that g(z) has

infinitely many poles in C. Moreover, f(z) and g(z) share the sets S1, S2 CM.
But f(z) 6≡ g(z).

The following example given in [2] shows the necessity of the assumption in
Theorems C and D that the order of f is neither an integer nor infinite.
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Example 3 For a positive integer k, let f(z) = ez (resp. f(z) = ee
z
), g(z) =

1
f(z) , S1 =

{
2, 1

2 , 3,
1
3 , . . . , k,

1
k

}
, S2 =

{
k + 1, 1

k+1

}
. Then by Lemma 8 in

section 2 we see that λ(f) = 1 (resp. λ(f) = ∞). Though all other conditions
of Theorems C and D are satisfied, f(z) 6≡ g(z).

However, the research on set sharing problem gained a new dimension when
the idea of weighted sharing, introduced by I. Lahiri in 2001 (see [7], [8]), was
incorporated. The necessary definitions are as follows:

Definition 2 Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a;g),
we say that f and g share the value a with weight k.

We write f and g share (a, k) to mean that f and g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p
where 0 ≤ p < k. In particular, f and g share a CM (IM) if and only if f and
g share (a,∞) ((a, 0)).

Definition 3 Let S be a set of distinct elements of C ∪ {∞} and k be a non-
negative integer or infinity. We denote by Ef(S, k) the set ∪a∈SEk(a; f). We
say that f and g share the set S with weight k, or simply f and g share (S, k)
if Ef(S, k) = Eg(S, k).

Definition 4 Let k be a positive integer and S1 = {α1, α2, . . . , αk}, where αi’s
are nonzero complex constants. Suppose that

P(z) =
zk − (

∑
αi)z

k−1 + . . .+ (−1)k−1(
∑
αi1αi2 ...αik−1

)z

(−1)k+1α1α2...αk
, (1)

where αi ∈ S1 for i = 1, 2, . . . , k. Let m1 be the number of simple zeros of P(z)
and m2 be the number of multiple zeros of P(z). Then we define Γ1 := m1+m2

and Γ2 := m1 + 2m2.

Regarding Theorem C, one may ask the following question:

Question 2 Is the conclusion of Theorem C still true if f and g share (S1, 2)
and S2 IM instead of sharing S1 CM and S2 IM?

In this paper, we try to find possible answers to the above question and prove
the following theorems:
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Theorem 1 Let f, g ∈M1(C) and S1 = {α1, α2, . . . , αk}, S2 = {β1, β2}, where
α1, α2, . . . , αk, β1, β2 are k+ 2 distinct nonzero complex constants satisfying
k > 2Γ2. If f, g share (S1, 2) and S2 IM, then f ≡ g, provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)2 6= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)2

and f is of non-integer finite order.

Theorem 2 Let S1 and S2 be stated as in Theorem 1 with k > 2Γ2. If M2(C)
denote the subclass of meromorphic functions of non-integer finite order in
M1(C), then the sets S1 and S2 are the URS of meromorphic functions in
M2(C), provided

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)2 6= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)2.

We now state some more definitions (see [7], [8]).

Definition 5 For a ∈ C ∪ {∞}, we denote by N(r, a; f| = k) the reduced
counting function of the a-points of f whose multiplicities are exactly k. In
particular, N(r, a; f| = 1) or N(r, a; f| = 1) is the counting function of the
simple a-points of f.

Definition 6 For a positive integer m we denote by N(r, a; f| ≤ m) (N(r, a; f| ≥
m)) the counting function of those a-points of f whose multiplicities are not
greater (less) than m, where each a-point is counted according to its multiplic-
ity. N(r, a; f| ≤ m) and N(r, a; f| ≥ m) are the corresponding reduced counting
functions.

Definition 7 We denote by N2(r, a; f) the sum N(r, a; f) +N(r, a; f| ≥ 2).

Definition 8 Let f and g be two nonconstant meromorphic functions such
that f and g share (a, 2) for a ∈ C ∪ {∞}. Let z0 be an a-point of f with
multiplicity p and an a-point of g with multiplicity q. We denote by NL(r, a; f)
(NL(r, a;g)) the reduced counting function of those a-points of f and g where

p > q ≥ 3 (q > p ≥ 3). Also we denote by N
(3
E (r, a; f) the counting function of

those a-points of f and g where p = q ≥ 3. Clearly N
(3
E (r, a; f) = N

(3
E (r, a;g).

Definition 9 Let f, g share the value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) = N∗(r, a;g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a;g).
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2 Lemmas

In this section, we present some lemmas which will be needed in the sequel.
We denote by H the following function:

H =

(
F ′′

F ′
−

2F ′

F− 1

)
−

(
G ′′

G ′
−

2G ′

G− 1

)
,

where F and G are two meromorphic functions in M1(C).

Lemma 1 [7] If F, G share (1, 1) and H 6≡ 0, then

N(r, 1; F| = 1) ≤ N(r,∞;H) + S(r, F) + S(r,G).

Lemma 2 Let F,G ∈M1(C). If F, G share (1, 0) and H 6≡ 0, then

N(r,∞, H) ≤ N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1; F,G)
+N0(r, 0; F

′) +N0(r, 0;G
′) + S(r, F) + S(r,G),

where N0(r, 0; F
′) is the reduced counting function of those zeros of F ′ which

are not the zeros of F(F− 1). N0(r, 0;G
′) is defined similarly.

Proof. Noting thatN∗(r,∞; F,G) = S(r, F)+S(r,G), this lemma can be proved
in a similar manner as in Lemma 4 of [9]. �

Lemma 3 [1] Let F and G be two nonconstant meromorphic functions sharing
(1, 2). Then

2NL(r, 1; F) + 3NL(r, 1;G) + 2N
(3
E (r, 1; F) +N(r, 1; F| = 2)

≤ N(r, 1;G) −N(r, 1;G).

Lemma 4 [11] Let f be a nonconstant meromorphic function and P(f) = a0+
a1f + a2f

2 + . . . + anf
n, where a0, a1, a2, . . . , an are constants and an 6= 0.

Then T(r, P(f)) = nT(r, f) +O(1).

Lemma 5 [15] If H ≡ 0, then T(r,G) = T(r, F) +O(1). If, in addition,

lim sup
r→∞,r 6∈E

N(r, 0; F) +N(r,∞; F) +N(r, 0;G) +N(r,∞;G)

T(r)
< 1,

where T(r) = max{T(r, F), T(r,G)} then either F ≡ G or F.G ≡ 1.
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Remark 1 We observe that the above lemma holds for F,G ∈ M(C). As
our discussion is restricted in M1(C), we may drop the terms N(r,∞; F) and
N(r,∞;G) while using this result.

Lemma 6 Let F,G ∈M1(C). If F and G share (1, 2) and H 6≡ 0, then

(i) T(r, F) ≤ N2(r, 0; F)+N2(r, 0;G)−m(r, 1;G)−N
(3
E (r, 1; F)−NL(r, 1;G)+

S(r, F) + S(r,G);

(ii) T(r,G) ≤ N2(r, 0;G)+N2(r, 0; F)−m(r, 1; F)−N
(3
E (r, 1;G)−NL(r, 1; F)+

S(r, F) + S(r,G).

Proof. The proof of this lemma flows in the line of the proof of Lemma 2.13
in [1]. As we are dealing with functions of classM1(C), we insist in presenting
the proof for the sake of completeness.

From the second fundamental theorem of Nevanlinna , we have

T(r, F) ≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) −N0(r, 0; F
′) + S(r, F);

that is,

T(r, F) ≤ N(r, 0; F) +N(r, 1; F) −N0(r, 0; F
′) + S(r, F). (2)

Similarly,

T(r,G) ≤ N(r, 0;G) +N(r, 1;G) −N0(r, 0;G
′) + S(r,G). (3)

Combining (2) and (3), we obtain

T(r, F) + T(r,G) ≤ N(r, 0; F) +N(r, 0;G) +N(r, 1; F) +N(r, 1;G)

−N0(r, 0; F
′) −N0(r, 0;G

′) + S(r, F) + S(r,G). (4)

We also see that

N(r, 1; F) +N(r, 1 : G) ≤ N(r, 1; F| = 1) +N(r, 1; F| = 2) +N
(3
E (r, 1; F)

+NL(r, 1; F) +NL(r, 1;G) +N(r, 1;G). (5)

Using Lemma 1 and Lemma 2 in (5), we obtain that

N(r, 1; F) +N(r, 1;G) ≤ N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1; F)

+2NL(r, 1;G) +N(r, 1; F| = 2) +N
(3
E (r, 1; F)

+N0(r, 0; F
′) +N0(r, 0;G

′) +N(r, 1;G)

+S(r, F) + S(r,G).
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Substituting the value of N(r, 1;G) from Lemma 3, we obtain

N(r, 1; F) +N(r, 1;G) ≤ N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1; F)

+2NL(r, 1;G) +N(r, 1; F| = 2) +N
(3
E (r, 1; F)

+N0(r, 0; F
′) +N0(r, 0;G

′) +N(r, 1;G)

−2NL(r, 1; F) − 3NL(r, 1;G) − 2N
(3
E (r, 1; F)

−N(r, 1; F| = 2) + S(r, F) + S(r,G)

≤ N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) −NL(r, 1;G)

−N
(3
E (r, 1; F) + T(r,G) −m(r, 1;G) +N0(r, 0; F

′)

+N0(r, 0;G
′) + S(r, F) + S(r,G). (6)

Noting the fact that N2(r, a; f) = N(r, a; f)+N(r, a; f| ≥ 2), the lemma follows
from (4) and (6). �

Lemma 7 Let f, g ∈ M1(C). If f, g share the set {β1, β2} IM, then λ(f) =
λ(g).

Proof. Proof of this lemma can be extracted from the first part of the proof
of Theorem 1.3 in [2] (see p. 1247). �

Lemma 8 (see [12, p. 65]) Let h be an entire function and f(z) = eh(z). Then

(i) if h(z) is a polynomial of degh, then λ(f) = degh;

(ii) if h(z) is a transcendental entire function, then λ(f) =∞.

Lemma 9 (see [12, p. 115]) Let a1, a2 and a3 be three distinct complex num-
bers in C∪ {∞}. If two nonconstant meromorphic functions f and g share a1,
a2 and a3 CM, and if the order of f and g is neither an integer nor infinity,
then f ≡ g.

3 Proof of the Theorems

Proof. [Proof of Theorem 1] Let F = P(f) and G = P(g) where P(z) is defined
as in (1). Clearly F, G share (1, 2) as f, g share (S1, 2). From Lemma 4, we
obtain

T(r, F) = kT(r, f) + S(r, f); (7)
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T(r,G) = kT(r, g) + S(r, g). (8)

Let H 6≡ 0. By Lemma 6, we have

T(r, F) ≤ N2(r, 0; F) +N2(r, 0;G) + S(r, F) + S(r,G)

= N2(r, 0;P(f)) +N2(r, 0;P(g)) + S(r, f) + S(r, g)

≤ Γ2N(r, 0; f) + Γ2N(r, 0;g) + S(r, f) + S(r, g)

≤ Γ2{T(r, f) + T(r, g)}+ S(r, f) + S(r, g). (9)

Similarly,

T(r,G) ≤ Γ2{T(r, f) + T(r, g)}+ S(r, f) + S(r, g). (10)

From (7)-(10), we obtain

k{T(r, f) + T(r, g)} ≤ 2Γ2{T(r, f) + T(r, g)}+ S(r, f) + S(r, g),

which is a contradiction as k > 2Γ2. Hence H ≡ 0.
Let T(r) = max{T(r, F), T(r,G)}. Now,

N(r, 0; F) +N(r, 0;G) ≤ Γ1N(r, 0; f) + Γ1N(r, 0;g)

≤ Γ1{T(r, f) + T(r, g)}+ S(r, f) + S(r, g)

=
Γ1
k
{T(r, F) + T(r,G)}+ S(r, F) + S(r,G)

≤ 2Γ1
k
T(r) + o{T(r)}. (11)

As k > 2Γ2 ≥ 2Γ1, from Lemma 5 and (11), we obtain either F ≡ G or F.G ≡ 1.
If possible, let F.G ≡ 1. Then P(f).P(g) ≡ 1. As g ∈ M1(C), we have

P(g) ∈ M1(C). Hence P(f) has at most finitely many zeros. Therefore P(f) =
µ1(z)e

φ1(z), where µ1(z) is a rational function and φ1(z) is an entire function,
which is a contradiction by Lemma 8 as the order of f is neither an integer
not infinity. Similarly if we consider the case when P(g) has at most finitely
many zeros, we arrive at a contradiction as λ(g) = λ(f), by Lemma 7. Hence
the case F.G ≡ 1 can not occur.

If F ≡ G, we have P(f) ≡ P(g), which gives

(f(z) − α1)(f(z) − α2) . . . (f(z) − αk)

(g(z) − α1)(g(z) − α2) . . . (g(z) − αk)
≡ 1. (12)

From (12) and the assumption

(β1 − α1)
2(β1 − α2)

2 · · · (β1 − αk)2 6= (β2 − α1)
2(β2 − α2)

2 · · · (β2 − αk)2,
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we obtain that f(z) = β1 if and only if g(z) = β1 since f and g share S2 IM.
Similarly, we see that f(z) = β2 if and only if g(z) = β2. Consequently, we
have f and g share β1 and β2 IM. Again, from (12) we see that f and g share
β1, β2 and∞ CM. Noting that the order of f is neither an integer nor infinity,
the conclusion follows from Lemma 7 and Lemma 9. �

Proof. [Proof of Theorem 2] If f, g share S1 and S2 CM, then f, g certainly
share (S1, 2) and S2 IM, which satisfies the conditions of Theorem 1 and hence
the conclusion follows. Here we omit the details. �
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