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Abstract. The connection between polylogarithmic functions and Eu-
ler sums is well known. In this paper we explore the representation and
many connections between integrals of products of polylogarithmic func-
tions and Euler sums. We shall consider mainly, polylogarithmic functions
with negative arguments, thereby producing new results and extending
the work of Freitas. Many examples of integrals of products of polylog-
arithmic functions in terms of Riemann zeta values and Dirichlet values
will be given.

1 Introduction and preliminaries

It is well known that integrals of products of polylogarithmic functions can be
associated with Euler sums, see [16]. In this paper we investigate the repre-
sentations of integrals of the type

1∫
0

xm Lit (−x) Liq (−x)dx,

for m ≥ −2, and for integers q and t. For m = −2,−1, 0 we give explicit
representations of the integral in terms of Euler sums and for m ≥ 0 we give a
recurrence relation for the integral in question. We also mention two specific
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integrals with a different argument in the polylogarithm. Some examples are
highlighted, almost none of which are amenable to a computer mathematical
package. This work extends the results given by [16], who examined a simi-
lar integral with positive arguments of the polylogarithm. Devoto and Duke
[14] also list many identities of lower order polylogarithmic integrals and their
relations to Euler sums. Some other important sources of information on poly-
logarithm functions are the works of [19] and [20]. In [3] and [12] the authors
explore the algorithmic and analytic properties of generalized harmonic Eu-
ler sums systematically, in order to compute the massive Feynman integrals
which arise in quantum field theories and in certain combinatorial problems.
Identities involving harmonic sums can arise from their quasi-shuffle algebra
or from other properties, such as relations to the Mellin transform

M[f(z)](N) =

1∫
0

dz zNf (z) ,

where the basic functions f(z) typically involve polylogarithms and harmonic
sums of lower weight. Applying the latter type of relations, the author in
[6], expresses all harmonic sums of the above type with weight w = 6, in
terms of Mellin transforms and combinations of functions and constants of
lower weight. In another interesting and related paper [17], the authors prove
several identities containing infinite sums of values of the Roger’s dilogarithm
function. defined on x ∈ [0.1], by

LR (x) =


Li2 (x) +

1
2 ln x ln (1− x) ; 0 < x < 1

0 ; x = 0
ζ (2) ; x = 1

.

The Lerch transcendent,

Φ (z, t, a) =

∞∑
m=0

zm

(m+ a)t

is defined for |z| < 1 and < (a) > 0 and satisfies the recurrence

Φ (z, t, a) = z Φ (z, t, a+ 1) + a−t.

The Lerch transcendent generalizes the Hurwitz zeta function at z = 1,

Φ (1, t, a) =

∞∑
m=0

1

(m+ a)t
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and the polylogarithm, or de-Jonquière’s function, when a = 1,

Lit (z) :=

∞∑
m=1

zm

mt
, t ∈ C when |z| < 1; < (t) > 1 when |z| = 1.

Let

Hn =

n∑
r=1

1

r
=

∫ 1
0

1− tn

1− t
dt = γ+ψ (n+ 1) =

∞∑
j=1

n

j (j+ n)
, H0 := 0

be the nth harmonic number, where γ denotes the Euler-Mascheroni constant,

H
(m)
n =

∑n
r=1

1
rm is the mth order harmonic number and ψ(z) is the digamma

(or psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ ′(z)

Γ(z)
and ψ(1+ z) = ψ(z) +

1

z
,

moreover,

ψ(z) = −γ+

∞∑
n=0

(
1

n+ 1
−

1

n+ z

)
.

More generally a non-linear Euler sum may be expressed as,

∑
n≥1

(±1)n

np

 t∏
j=1

(
H
(αj)
n

)qj r∏
k=1

(
J
(βk)
n

)mk


where p ≥ 2, t, r, qj, αj,mk, βk are positive integers and

(
H

(α)
n

)q
=

 n∑
j=1

1

jα

q , (J(β)n )m =

 n∑
j=1

(−1)j+1

jβ

m .
If, for a positive integer

λ =

t∑
j=1

αjqj +

r∑
j=1

βjmj + p,

then we call it a λ-order Euler sum. The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = −(−1)k+1 k!

∞∑
r=0

1

(r+ z)k+1
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and has the recurrence

ψ(k)(z+ 1) = ψ(k)(z) +
(−1)k k!

zk+1
.

The connection of the polygamma function with harmonic numbers is,

H
(α+1)
z = ζ (α+ 1) +

(−1)α

α!
ψ(α) (z+ 1) , z 6= {−1,−2,−3, ...} . (1)

and the multiplication formula is

ψ(k)(pz) = δm,0 lnp+
1

pk+1

p−1∑
j=0

ψ(k)(z+
j

p
) (2)

for p a positive integer and δp,k is the Kronecker delta. We define the alter-
nating zeta function (or Dirichlet eta function) η (z) as

η (z) :=

∞∑
n=1

(−1)n+1

nz
=
(
1− 21−z

)
ζ (z) (3)

where η (1) = ln 2. If we put

S (p, q) :=

∞∑
n=1

(−1)n+1 H
(p)
n

nq
,

in the case where p and q are both positive integers and p + q is an odd
integer, Flajolet and Salvy [15] gave the identity:

2S (p, q) = (1− (−1)p) ζ (p)η (q) + 2 (−1)p
∑

i+2k=q

(
p+ i− 1
p− 1

)
ζ (p+ i) η (2k)

+ η (p+ q) − 2
∑

j+2k=p

(
q+ j− 1
q− 1

)
(−1)j η (q+ j) η (2k) , (4)

where η (0) = 1
2 , η (1) = ln 2, ζ (1) = 0, and ζ (0) = − 1

2 in accordance with
the analytic continuation of the Riemann zeta function. We also know, from
the work of [11] that for odd weight (p+ q) we have

BW (p.q) =

∞∑
n=1

H
(p)
n

nq
= (−1)p

[p2 ]∑
j=1

(
p+ q− 2j− 1

p− 1

)
ζ (p+ q− 2j) ζ (2j)

(5)
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+
1

2

(
1+ (−1)p+1

)
ζ (p) ζ (q) + (−1)p

[p2 ]∑
j=1

(
p+ q− 2j− 1

q− 1

)
ζ (p+ q− 2j) ζ (2j)

+
ζ (p+ q)

2

(
1+ (−1)p+1

(
p+ q− 1

p

)
+ (−1)p+1

(
p+ q− 1

q

))
,

where [z] is the integer part of z. It appears that some isolated cases of
BW (p.q) , for even weight (p+ q) , can be expressed in zeta terms, but in
general, almost certainly, for even weight (p+ q) , no general closed form ex-
pression exits for BW (p.q) . (at least at the time of writing this paper). Two
examples with even weight are

∞∑
n=1

H
(2)
n

n4
= ζ2 (3) −

1

3
ζ (6) ,

∞∑
n=1

H
(4)
n

n4
=
13

12
ζ (8) .

The work in this paper extends the results of [16] and later [25], in which they
gave identities of products of polylogarithmic functions with positive argument
in terms of zeta functions. Other works including, [1], [4], [8], [10], [13], [18],
[22], [23], [24], cite many identities of polylogarithmic integrals and Euler sums,
but none of these examine the negative argument case. The following result
was obtained by Freitas, [16].

Lemma 1 For q and t positive integers

1∫
0

Lit (x) Liq (x)

x
dx =

q−1∑
j=1

(−1)j+1 ζ (t+ j) ζ (q− j+ 1) + (−1)q+1 EU (t+ q)

where EU (m) is Euler’s identity given in the next lemma.

The following lemma will be useful in the development of the main theorem.

Lemma 2 The following identities hold: for m ∈ N. Euler’s identity states

EU (m) =

∞∑
n=1

Hn

nm
= (m+ 2)ζ (m+ 1) −

m−2∑
j=1

ζ (m− j) ζ (j+ 1) . (6)
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For p a positive even integer,

HE (p) =

∞∑
n=1

Hn

(2n+ 1)p
=
p

2
(ζ (p+ 1) + η (p+ 1)) − (ζ (p) + η (p)) ln 2

−
1

2

p
2
−1∑
j=1

(ζ (p+ 1− 2j) + η (p+ 1− 2j)) (ζ (2j) + η (2j)) .

(7)

For p a positive odd integer,

HO (p) =

∞∑
n=1

Hn

(2n+ 1)p
=
p

4
(ζ (p+ 1) + η (p+ 1)) − (ζ (p) + η (p)) ln 2

−
1

4

(
1+ (−1)

p−1
2

2

)(
ζ

(
p+ 1

2

)
+ η

(
p+ 1

2

))

−
1

2

b∑
j=1

(ζ (p− 2j) + η (p− 2j)) (ζ (2j+ 1) + η (2j+ 1))

(8)

where η (z) is the Dirichlet eta function, b =
[
p−1
4

]
−

(
1+(−1)

p−1
2

2

)
and [z] is

the greatest integer less than z. For p and t positive integers we have

F (p, t) =

∞∑
n=1

(−1)n+1

np (n+ 1)t

=

p∑
r=1

(−1)p−r
(
p+ t− r− 1

p− r

)
η (r)

+

t∑
s=1

(−1)p+1
(
p+ t− s− 1

t− s

)
(1− η (s)) ,

(9)

G (p, t) =

∞∑
n=1

1

np (n+ 1)t
= (−1)p+1

(
p+ t− 1

p

)

+

p∑
r=2

(−1)p−r
(
p+ t− r− 1

p− r

)
ζ (r)

+

t∑
s=1

(−1)p
(
p+ t− s− 1

t− s

)
ζ (s) ,

(10)
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and

HG (p, t) =

∞∑
n=1

Hn

np (n+ 1)t
= (−1)p+1

(
p+ t− 2
p− 1

)
ζ (2)

+

p∑
r=2

(−1)p−r
(
p+ t− r− 1

p− r

)
EU (r)

+

t∑
s=2

(−1)p
(
p+ t− s− 1

t− s

)
(EU (s) − ζ (s+ 1)) .

(11)

Proof. The identity (6) is the Euler relation and by manipulation we arrive
at (7) and (8). The results (7) and (8) are closely related to those given by
Nakamura and Tasaka [21]. For the proof of (9) we notice that

1

np (n+ 1)t
=

p∑
r=1

(−1)p−r
(
p+ t− r− 1

p− r

)
1

nr

+

t∑
s=1

(−1)p
(
p+ t− s− 1

t− s

)
1

(n+ 1)s

therefore, summing over the integers n,

F (p, t) =

∞∑
n=1

(−1)n+1

np (n+ 1)t
=

p∑
r=1

(−1)p−r
(
p+ t− r− 1

p− r

)
η (r)

+

t∑
s=1

(−1)p
(
p+ t− s− 1

t− s

)
(1− η (s))

and hence (9) follows. Consider,

1

np (n+ 1)t
=

(−1)p+1

n (n+ 1)

(
p+ t− 2
p− 1

)
+

p∑
r=2

(−1)p−r
(
p+ t− r− 1

p− r

)
1

nr

+

t∑
s=2

(−1)p
(
p+ t− s− 1

t− s

)
1

(n+ 1)s
,

and summing over the integers n produces the result (10). The proof of (11) fol-
lows by summing

∑∞
n=1

Hn

np(n+1)t
in partial fraction form. An example, from (8)

∞∑
n=1

Hn

(2n+ 1)9
=
9207

2048
ζ (10) −

961

1024
ζ2 (5) −

889

512
ζ (7) ζ (3) −

511

256
ζ (9) ln 2
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and from (7),

∞∑
n=1

Hn

(2n+ 1)8
=
511

64
ζ (9) −

381

256
ζ (7) ζ (2) −

441

256
ζ (6) ζ (3)

−
465

256
ζ (5) ζ (4) −

255

128
ζ (8) ln 2.

�

2 Summation identity

We now prove the following theorems.

Theorem 1 For positive integers q and t, the integral of the product of two
polylogarithmic functions with negative arguments

I0 (q, t) =

1∫
0

Lit (−x) Liq (−x)dx =

0∫
−1

Lit (x)Liq (x)dx

=

q−1∑
j=1

(−1)j+1 η (q− j+ 1) F (t, j)

+ (−1)q (F (t, q+ 1) − (F (t, q) −G (t, q)) ln 2) + (−1)qWn (q, t)

(12)

where the sum

Wn (q, t) =

∞∑
n=1

Hn

(
1

(2n)t (2n+ 1)q
−

1

nt (n+ 1)q
+

1

(2n+ 1)t (2n+ 2)q

)
(13)

is obtained from (6), (7), (8) and the terms F (·, ·) , G (·, ·) are obtained from
(9) and (10) respectively.

Proof. By the definition of the polylogarithmic function we have

I0 (q, t) =

1∫
0

Lit (−x) Liq (−x)dx =
∞∑
n=1

∞∑
r=1

(−1)n+r

ntrq (n+ r+ 1)

=

∞∑
n=1

∞∑
r=1

(−1)n+r

nt

 (−1)q

(n+ r+ 1) (n+ 1)q
+

q∑
j=1

(−1)j+1

(n+ 1)j rq−j+1


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=

∞∑
n=1

(−1)n+r

nt

 (−1)q+1

(n+ 1)q

(
1

2
Hn+1

2
−
1

2
Hn

2

)
+

q∑
j=1

(−1)j+1 η (q− j+ 1)

(n+ 1)j


=

q−1∑
j=1

(−1)j+1 η (q− j+ 1)

∞∑
n=1

(−1)n+1

nt (n+ 1)j
+ (−1)q

∞∑
n=1

(−1)n+1

nt (n+ 1)q+1

+ (−1)q
∞∑
n=1

(−1)n+1

nt (n+ 1)q

(
1

2
Hn+1

2
−
1

2
Hn

2
− ln 2

)
.

Now we utilize the double argument identity (2) together with (9) we obtain

I0 (q, t) =

q−1∑
j=1

(−1)j+1 η (q− j+ 1) F (t, j) + (−1)q F (t, q+ 1)

+ (−1)q
∞∑
n=1

(−1)n+1

nt (n+ 1)q

(
Hn −Hn

2
− 2 ln 2

)
,

we can use the alternating harmonic number sum identity (4) to simplify the
last sum, however we shall simplify further as follows.

I0 (q, t) =

q−1∑
j=1

(−1)j+1 η (q− j+ 1) F (t, j) + (−1)q F (t, q+ 1)

+ (−1)q
∞∑
n=1

(−1)n+1

nt (n+ 1)q

(
(−1)n+1

(
H[n2 ]

−Hn

)
− (1+ (−1)n) ln 2

)
where [z] is the integer part of z. Now

I0 (q, t) =

q−1∑
j=1

(−1)j+1 η (q− j+ 1) F (t, j) + (−1)q F (t, q+ 1)

− (−1)q (F (t, q) −G (t, q)) ln 2+ (−1)qWn (q, t)

where

Wn (q, t) =

∞∑
n=1

Hn

(
1

(2n)t (2n+ 1)q
−

1

nt (n+ 1)q
+

1

(2n+ 1)t (2n+ 2)q

)
and the infinite positive harmonic number sums are easily obtainable from (6),
(7), (8), hence the identity (12) is achieved. �

The next theorem investigates the integral of the product of polylogarithmic
functions divided by a linear function.
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Theorem 2 Let (t, q) be positive integers, then for t+ q an odd integer

I1 (t, q) =

1∫
0

Lit (−x) Liq (−x)

x
dx = −

0∫
−1

Lit (x) Liq (x)

x
dx

=

q−1∑
j=1

(−1)j+1 η (t+ j)η (q− j+ 1)

+ (−1)q+1 (ζ (t+ q) + η (t+ q)) ln 2

+ (−1)q+1
(
2−t−q − 1

)
EU (q+ t) + (−1)q+1HO (q+ t) .

(14)

For t+ q an even integer

I1(t, q) =

q−1∑
j=1

(−1)j+1η(t+ j)η(q− j+ 1) + (−1)q+1(ζ(t+ q)

+ η(t+ q)) ln 2+ (−1)q+1
(
2−t−q − 1

)
EU (q+ t)

+ (−1)q+1HE (q+ t) .

(15)

Proof. Consider

I1 (t, q) =

1∫
0

Lit (−x) Liq (−x)

x
dx =

∑
n≥1

(−1)n

nt

1∫
0

xn−1 Liq (−x)dx,

and successively integrating by parts leads to

I1 (t, q) =
∑
n≥1

(−1)n

nt+j

q−1∑
j=1

η (q− j+ 1) +
∑
n≥1

(−1)n+q+1

nt+q−1

1∫
0

xn−1 Li1 (−x)dx.

Evaluating the inner integral,

1∫
0

xn−1 Li1 (−x)dx = −

1∫
0

xn−1 ln (1+ x)dx =
1

n

(
1

2
Hn

2
−
1

2
Hn−1

2
− ln 2

)
,
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so that

I1 (t, q) =
∑
n≥1

(−1)n

nt+j

q−1∑
j=1

(−1)j η (q− j+ 1)

+
∑
n≥1

(−1)n+q+1

nt+q

(
1

2
Hn

2
−
1

2
Hn−1

2
− ln 2

)

=

q−1∑
j=1

(−1)j+1 η (q− j+ 1)η (t+ j)

+
∑
n≥1

(−1)n+q+1

nt+q

(
1

2
Hn

2
−
1

2
Hn−1

2
− ln 2

)
.

If we now utilize the multiplication formula (2) we can write

I1 (t, q) =

q−1∑
j=1

(−1)j+1 η (q− j+ 1)η (t+ j)+(−1)q+1
∑
n≥1

(−1)n+1

nt+q

(
Hn −Hn

2

)
.

Now consider the harmonic number sum

∑
n≥1

(−1)n+1

nt+q

(
Hn −Hn

2

)
=

∑
n≥1

(−1)n+1

nt+q

(
(1− (−1)n) ln 2

+(−1)n+1
(
H[n2 ]

−Hn

) )

=
∑
n≥1

(−1)n+1

nt+q

(1− (−1)n) ln 2+ (−1)n+1
n∑
j=1

(−1)j

j


=

∑
n≥1

(−1)n+1

nt+q
(1− (−1)n) ln 2+

∑
n≥1

(
1

2t+q
− 1

)
Hn

nt+q
+
∑
n≥1

Hn

(2n+ 1)t+q

= (ζ (t+ q) + η (t+ q)) ln 2+
∑
n≥1

(
1

2t+q
− 1

)
Hn

nt+q
+
∑
n≥1

Hn

(2n+ 1)t+q

where [z] is the integer part of z. Hence
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I1 (t, q) =

q−1∑
j=1

(−1)j+1 η (q− j+ 1)η (t+ j) + (−1)q+1 (ζ (t+ q) + η (t+ q)) ln 2

+ (−1)q+1
∑
n≥1

(
1

2t+q
− 1

)
Hn

nt+q
+ (−1)q+1

∑
n≥1

Hn

(2n+ 1)t+q

=

q−1∑
j=1

(−1)j+1 η (q− j+ 1)η (t+ j) + (−1)q+1 (ζ (t+ q) + η (t+ q)) ln 2

+ (−1)q+1
(

1

2t+q
− 1

)
EU (q+ t)

+ (−1)q+1


HO (q+ t) , for t+ q odd

HE (q+ t) , for t+ q even
,

hence (14) and (15) follow. �

Remark 1 It is interesting to note that, for m ∈ R,
1∫
0

Lit (−x
m) Liq (−x

m)

x
dx =

1

m

1∫
0

Lit (−x) Liq (−x)

x
dx

The next theorem investigates the integral of the product of polylogarithmic
functions divided by a quadratic factor.

Theorem 3 For positive integers q and t, the integral of the product of two
polylogarithmic functions with negative arguments

I2 (t, q) =

1∫
0

Lit (−x) Liq (−x)

x2
dx =

0∫
−1

Lit (x) Liq (x)

x2
dx

= η (q+ 1) +

q−1∑
j=1

(−1)j η (q− j+ 1) F (j, t)

+ (−1)q (F (q, t) +G (q, t)) ln 2+ (−1)qWn (t, q)

(16)

where the sum,

Wn (t, q) =

∞∑
n=1

Hn

(
1

(2n)q (2n+ 1)t
−

1

nq (n+ 1)t
+

1

(2n+ 1)q (2n+ 2)t

)
(17)
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is obtained from (6), (7), (8) and the terms F (·, ·) , G (·, ·) are obtained from
(9) and (10) respectively.

Proof. Following the same process as in Theorem 2, we have,

I2 (t, q) =

1∫
0

Lit (−x) Liq (−x)

x2
dx =

∑
n≥1

(−1)n

nt

1∫
0

xn−2 Liq (−x)dx

= −

1∫
0

x−1 Liq (−x)dx+
∑
n≥2

(−1)n

nt

1∫
0

xn−2 Liq (−x)dx,

and re ordering the summation index n, produces

I2 (t, q) = η (q+ 1) +
∑
n≥1

(−1)n+1

(n+ 1)t

1∫
0

xn−1 Liq (−x)dx.

Integrating by parts, we have,

I2 (t, q) = η (q+ 1) +
∑
n≥1

(−1)n+1

(n+ 1)t


∑q−1
j=1

(−1)jη(q−j+1)
nj

+ (−1)q+1

nq−1

1∫
0

xn−1 Li1 (−x)dx


= η (q+ 1) +

q−1∑
j=1

(−1)j η (q− j+ 1)
∑
n≥1

(−1)n+1

nj (n+ 1)t

+
∑
n≥1

(−1)n+q

nq (n+ 1)t

(
1

2
Hn

2
−
1

2
Hn−1

2
− ln 2

)
.

Using the multiplication Theorem (2) and following the same steps as in
Theorem 2, we have

I2 (t, q) = η (q+ 1) +

q−1∑
j=1

(−1)j η (q− j+ 1) F (j, t)

+ (−1)q (F (q, t) +G (q, t)) ln 2+ (−1)qWn (t, q) ,

and the proof of Theorem 3 is finalized. �

The following recurrence relation holds for the reduction of the integral
of the product of polylogarithmic functions multiplied by the power of its
argument.
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Lemma 3 For (q, t) ∈ N and m ≥ 0, let

J (m,q, t) =

1∫
0

xm Lit (−x) Liq (−x)dx = (−1)m
0∫

−1

xm Lit (x) Liq (x)dx

then

(m+ 1) J (m,q, t) = η (q)η (t) − J (m,q, t− 1) − J (m,q− 1, t) .

For q = 1,

(m+ 1) J (m, 1, t) = η (t) +mJ (m− 1, 1, t) + J (m− 1, 1, t− 1) − J (m, 1, t− 1)

−mK (m, t) − K (m, t− 1)

where

K (m, t) =

1∫
0

xm Lit (−x) dx.

Proof. The proof of the lemma follows in a straight forward manner after
integration by parts. �

We list some examples of the results of the integrals in Theorems 1, 2 and 3.

Example 1

I0 (3, 3) =

1∫
0

(Li3 (−x))
2 dx =

9

16
ζ2 (3) +

5

8
ζ (4) −

3

4
ζ (2) ζ (3)

+ (3ζ (3) − 6ζ (2) − 40) ln 2+ 4ζ (2) + 12 ln2 2+ 20.

I0 (3, 4) =

1∫
0

Li3 (−x) Li4 (−x)dx =
3

4
η (4) + ζ (3) 2ζ (5) −

49

64
ζ (6) −

9

16
ζ2 (3)

+
5

4
ζ (3) −

15

2
ζ (2) +

(
10ζ (2) − 6ζ (3) +

7

4
ζ (4) + 70

)
ln 2

−
3

2
ζ (4) −

17

16
ζ (5) +

3

2
ζ (2) ζ (3) − 20 ln2 2− 35.

I1 (2m, 2m+ 1) =

1∫
0

Li2m (−x) Li2m+1 (−x)

x
dx =

1

2
η2 (2m+ 1)
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for m ∈ N.

I1 (4, 7) =

1∫
0

Li4 (−x) Li7 (−x)

x
dx = η (5)η (7) −

1

2
η2 (6) .

I2 (3, 4) =

1∫
0

Li3 (−x) Li4 (−x)

x2
dx = 2ζ (5) −

49

64
ζ (6) +

23

8
ζ (4) −

9

16
ζ2 (3)

+ 10ζ (3) −

(
10ζ (2) + 6ζ (3) +

7

4
ζ (4)

)
ln 2

+ 10ζ (2) −
3

2
ζ (2) ζ (3) − 20 ln2 2−

21

32
ζ (3) ζ (4) ,

I2 (3, 3) =

1∫
0

(
Li3 (−x)

x

)2
dx =

9

8
ζ (4) −

9

16
ζ2 (3) + 6ζ (3)

+ 6ζ (2) −
3

4
ζ (2) ζ (3) − (6ζ (2) + 3ζ (3)) ln 2− 12 ln2 2.

These results build on the work of [16] and [25] where they explored integrals
of polylogarithmic functions with positive arguments only. Freitas gives many

particular examples of identities for
1∫
0

Liq(x) Lit(x)
x2

dx, but no explicit identity

of the form (16) is given. Therefore in the interest of presenting a complete
record we list the following theorem.

Theorem 4 For positive integers q and t, the integral of the product of two
polylogarithmic functions with positive arguments,

P (q, t) =

1∫
0

Liq (x) Lit (x)

x2
dx = (−1)qHG (q, t)

+

q−1∑
j=1

(−1)j+1 ζ (t+ j)G (j, t) ,

where G (·, ·) and HG (·, ·) are given by (10) and (11) respectively.

Proof. The proof follows the same technique as that used in Theorem 3. �
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Example 2

P (4, 5) =

1∫
0

Li4 (x) Li5 (x)

x2
dx = 70ζ (2) − 35ζ (3) −

114

5
ζ (4) − 10ζ (5)

− ζ (4) ζ (5) −
31

4
ζ (6) −

5

2
ζ2 (3) − 5ζ (2) ζ (3) − 3ζ (3) ζ (4)

− ζ (2) ζ (5) −
7

6
ζ (8) − ζ (3) ζ (5) ,

1∫
0

Li4
(
x3
)

Li4
(
x3
)

x
dx =

2

3
ζ (4) ζ (5) +

2

3
ζ (2) ζ (7) −

5

3
ζ (9) .

It is interesting to note the degenerate case, that is when t = 0, of theorems
1, 2 and 3. The following results are noted.

Remark 2 For t = 0, Li0 (−x) = − x
1+x , hence

I0 (q, 0) =

1∫
0

Liq (−x) Li0 (−x)dx = (−1)q (1− η (q+ 1))

+

q−1∑
j=1

(−1)j+1 η (q− j+ 1) (1− η (j)) − (−1)q (2− ζ (q) − η (q)) ln 2

+ (−1)q
(
1

2q
− 1

)
(EU (q) − ζ (q+ 1)) + (−1)q


HO (q) , forq odd

HE (q) , forq even
.

I1 (q, 0) =

1∫
0

Liq (−x) Li0 (−x)

x
dx =

q−1∑
j=1

(−1)j+1 η (q− j+ 1)η (j)

+ (−1)q+1
(
1

2q
− 1

)
EU (q) + (−1)q+1 (ζ (q) + η (q)) ln 2

+ (−1)q+1


HO (q) , forq odd

HE (q) , forq even
.
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I2 (q, 0) =

1∫
0

Liq (−x) Li0 (−x)

x2
dx =

q−1∑
j=1

(−1)j η (q− j+ 1)η (j)

+ η (q+ 1) + (−1)q
(
1

2q
− 1

)
EU (q) + (−1)q (ζ (q) + η (q)) ln 2

+ (−1)q


HO (q) , forq odd

HE (q) , forq even
.

Here we notice that

I2 (q, 0) = η (q+ 1) − I1 (q, 0) .

There are some special cases of polylogarithmic integrals which are worthy
of a mention and we list two in the following corollary.

Corollary 1 Let q, t ∈ N then,

S1 (q, t) =

1∫
0

Liq
(
− 1
x

)
Lit (−x)

x
dx =

q−1∑
j=1

η (t+ j)η (q− j+ 1)

+ η (q+ t+ 1) + (η (q+ t) + ζ (q+ t)) ln 2

+

(
1

2q+t
− 1

)
EU (q+ t) +


HE (q+ t) , forq+ t even

H0 (q+ t) , forq+ t odd
.

(18)

S2 (q) =

1∫
0

Li2 (1− x) Liq (x)

x
dx = ζ (2) ζ (q+ 1) − BW (2, q+ 1) , (19)

where BW (2, q+ 1) is given by (5).

Proof. If we follow the same procedure as in theorem 2, we obtain

S1 (q, t) =

1∫
0

Liq
(
− 1
x

)
Lit (−x)

x
dx =

q−1∑
j=1

η (q− j+ 1)η (t+ j) + η (q+ t+ 1)

+
∑
n≥1

(−1)n+1

nt+q

(
Hn −Hn

2

)
.
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simplifying as in Theorem 2, we arrive at the identity (18).
From Euler’s reflection formula we now that

Li2 (1− x) + Li2 (x) + ln x ln (1− x) = ζ (2)

so that

S2 (q) =

1∫
0

(−Li2 (x) − ln x ln (1− x) + ζ (2)) Liq (x)

x
dx.

Integrating term by term as in theorem 2, we obtain (19) �

Example 3 Some examples of the corollary follow.

S1 (2, 5) =

1∫
0

Li2
(
− 1
x

)
Li5 (−x)

x
dx =

2345

768
ζ (8) − η (3)η (5) ,

S1 (q, q) =

1∫
0

Liq
(
− 1
x

)
Liq (−x)

x
dx = qζ (2q+ 1) ,

S1 (9, 5) =

1∫
0

Li9
(
− 1
x

)
Li5 (−x)

x
dx = 7ζ (15) − η (6)η (9) − η (7)η (8) .

S2 (3) =

1∫
0

Li2 (1− x) Li3 (x)

x
dx =

25

12
ζ (6) − ζ2 (3)

S2 (8) =

1∫
0

Li2 (1− x) Li8 (x)

x
dx

= 27ζ (11) − 8ζ (2) ζ (9) − 6ζ (4) ζ (7) − 4ζ (6) ζ (5) − 2ζ (8) ζ (3) .

Summary In this paper we have developed new Euler sum identities (7)
and (8) of general weight p + 1 for p ∈ N. Moreover, we have developed the
new identities (16) and (18). In a series of papers [2], [5], [6], the authors
explore linear combinations of associated harmonic polylogarithms and nested
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harmonic numbers. The multiple zeta value data mine, computed by Blumlein
et. al. [7], is an invaluable tool for the evaluation of harmonic numbers. Values
with weights of twelve, for alternating sums and weights above twenty for
non-alternating sums are presented.
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