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Abstract. An arbitrary unital ring R is called feebly nil-clean if any
its element is of the form q + e — f, where q is a nilpotent and e, f are
idempotents with ef = fe. For any commutative ring R and any abelian
group G, we find a necessary and sufficient condition when the group
ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our
result refines establishments due to McGovern et al. in J. Algebra Appl.
(2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on
weakly nil-clean rings, respectively.

1 Introduction and background

Throughout the text of this short paper, all rings R are assumed to be associa-
tive and commutative, containing identity element which differs from the zero
element. Our terminology and notations are mainly in agreement with [10] and
[11]. For instance, J(R) denotes the Jacobson radical of R, and N(R) denotes the
nil-radical of R. Also, let everywhere in the text G be a multiplicative abelian
group, and let R(G) be the group ring of G over R. As usual, G, stands for
the p-torsion component of the group G with p-socle Glp] ={a € G | a? = 1},
and we shall say that the group G is a p-group, provided G = G,. Likewise,
we set GP ={gP | g € G} to be the p-th power subgroup of the group G.

A ring R is known to be nil-clean if, for every r € R, there are a nilpotent
g € R and an idempotent e € R such that r = q + e. The next necessary and
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sufficient condition for a commutative group ring to be nil-clean was recently
obtained in [9]. Specifically, the following holds: The commutative group ring
R(G) is nil-clean if, and only if, the ring R is nil-clean and the group G is a
2-group.

Generalizing this, a ring R is known to be weakly nil-clean if, for every r € R,
there are a nilpotent q € R and an idempotent e € R such that r = q + e or
T = q—e. Alternatively, a necessary and sufficient condition for a commutative
group ring to be weakly nil-clean was recently obtained in [4]. Precisely, the
following holds: The commutative group ring R(G) is weakly nil-clean if, and
only if, either G = {1} and R is weakly nil-clean, or R is nil-clean and G is a
non-trivial 2-group, or R/N(R) = Z3 and G is a non-trivial 3-group.

As a common generalization of these two definitions for nil-clean and weakly
nil-clean rings, a ring R is known to be feebly nil-clean (see, for example, [1]
and [2]) if, for every r € R, there are a nilpotent q € R and two idempotents
e,f € R such that r = q+e—f. So, the leitmotif of writing up this brief article
is to generalize somewhat the above two claims by obtaining a criterion for an
arbitrary commutative group ring to be feebly nil-clean.

For completeness of the exposition, it is worthwhile noticing that an ex-
tension of the aforementioned nil-clean rings are the so-called UU rings that
are rings whose units are unipotents (i.e., the sum of 1 and some nilpotent).
In [3] were examined commutative UU group rings. Exactly, it was proved in
Corollary 2.3 there that R(G) is a commutative UU ring if, and only if, R is
a commutative UU ring and G is an abelian 2-group.

2 Main results

Before proving our chief statement, we need the following two key formulas
from [7] and [8], respectively. In fact, appealing to [7], one writes the formula

JR(G)) =JR)(G) +(r(g—1) | g € Gp,pr € J(R)).
In that aspect, consulting with [8], one writes the formula
N(R(G)) = N(R)(G) + (r(g—1) | g € Gp,pr € N(R)).

Standardly, I(R(G); G) designates the fundamental (augmentation) ideal of
R(G) with respect to G with basis consisting of all elements of the type 1 —g,
where g € G. It is well known that the isomorphisms

R(G)/IN(R)(G) + I(R(G); G)] = R/N(R)
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and
R(G)/I(R(G); G) =R

are valid. We will now prove something similar and helpful for us for further
use.

Proposition 1 Let R be a ring and G a group. Then the following isomor-
phism is fulfilled:
R(G)/N(R)(G) = (R/N(R))(G).

Proof. There is the natural ring surjection R — R/N(R) which induces by the
usual element-wise manipulation the ring surjective homomorphism R(G) —
(R/N(R))(G). This epimorphism obviously has kernel N(R)G and henceforth
the well-known Homomorphism Theorem applies to get the desired asser-
tion. ]

A ring is boolean if each its element is an idempotent. Let us recall that a ring
is said to be tripotent if each its element x satisfies the equation x> = x. These
rings are necessarily commutative being also a subdirect product of a family
of single or isomorphic copies of the fields Z; and Z3 (see, e.g., [6]). Likewise,
as 6 = 0 here, any tripotent ring R can be decomposed as the direct product of
two rings Ry x Ry, where Ry is boolean and R; is tripotent of characteristic 3. It
is pretty evident that reduced feebly nil-clean rings are themselves tripotent.

We begin our work with a few useful technicalities.

Lemma 1 The next two statements are true:
(i) A direct factor of a feebly nil-clean ring is a feebly nil-clean ring as well.
(ii) The direct product of two feebly nil-clean rings is also a feebly nil-clean
TIng.

Proof. Straightforward by a direct check, so that we leave it to the interested
reader. g

Lemma 2 An epimorphic image of a feebly nil-clean ring is too a feebly nil-
clean ring.

Proof. Since nilpotents and idempotents map under any homomorphism again
into nilpotents and idempotents, respectively, the claim follows elementarily. [

Proposition 2 Suppose that R is a commutative ring. Then the following
three points are equivalent:



Feebly nil-clean group rings 267

(i) R is feebly nil-clean.
(ii) J(R) is nil and R/J(R) is tripotent.
(iii) R/N(R) is tripotent.

Proof. It suffices to prove only the equivalence (i) <= (iii), because when-
ever J(R) is nil we will have that J(R) = N(R) as well as, in accordance with
[1] or [2], R being feebly nil-clean yields that J(R) is nil. To this purpose, the
implication (i) = (iii) follows at once by the usage of Lemma 2.

As for the converse implication (i) < (iii), we may write by consulting with
[6, Theorem 1] accomplished with a simple trick that every element of R/N(R)
is the difference of two idempotents, say T+N(R) = (e;+N(R))—(e2+N(R)) =
e; — ey + N(R), where v € R is an arbitrary element and ej,e; € R are some
elements. But as it is well-known as a folklore fact, we may choose these e;
and ey to be idempotents. Consequently, one follows that r =t + e; — e, for
some nilpotent t in R, as expected. O

As an immediate consequence, one yields the following.

Corollary 1 Let I be a nil ideal of a ring R. Then R is feebly nil-clean if, and
only if, R/1 is feebly nil-clean.

Proof. The “necessity” follows by virtue of Lemma 2. As for the “sufficiency”,
because of the inclusion I € N(R), there exists an epimorphism R/I — R/N(R)
with kernel N(R)/I = N(R/I). Hence R/N(R) is feebly nil-clean, i.e., tripotent.
Furthermore, we apply Proposition 2 to conclude the claim. ]

We now have all the ingredients necessary to proceed by proving the fol-
lowing chief assertion, which gives a necessary and sufficient condition when
a commutative group ring will be feebly nil-clean.

Theorem 1 Suppose R is a commutative ring and G is an abelian group.
Then the group ring R(G) is feebly nil-clean if, and only if, exactly one of the
following three items is valid:

(1) G ={1} and R is feebly nil-clean.

(2) G #{1} and R/N(R) = Ry x Ry, where Ry is boolean and R; is tripotent
of characteristic 3 such that

(a) Ry ={0}, or Ry #{0} and G is a 2-group;

(b) Rz ={0}, or Ry # {0} and either G = G3 or G = G3 x G[2].

Proof. “Left-to-right”. The assumption that G is the trivial group leads
to R(G) = R, so that we may assume without loss of generality that G is
non-trivial.
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The epimorphism R(G) — R implies that R is feebly nil-clean and thus
Proposition 2 (iii) enables us that R/N(R) is tripotent. Therefore, the main
result in [6] allows us to write that R/N(R) = R; x Ry, where Ry is a boolean
ring and R; is a tripotent ring of characteristic 3.

On the other hand, as in the proof of Proposition 1, the surjection R —
R/N(R) induces a surjection R(G) — (R/N(R))(G) and so in view of Lemma 2
the group ring (R/N(R))(G) = R;(G) x Ry(G) has to be feebly nil-clean, too.
Since 2 = 0 in Ry, with the aid of Lemma 1 (i) it must be that R{(G) is
feebly nil-clean of characteristic 2 whence it is necessarily nil-clean, because
under these circumstances the sum of two idempotents is again an idempotent.
Employing now the quoted above result from [9], we derive that either R is
zero, or Ry is non-trivial and G = G; is a 2-primary group.

Further, concerning the second direct factor Ry, let us assume that it is
non-zero and hence a subdirect product of the field Z3. Since there exist two
epimorphisms, namely Ry — Z3; and G — G/Gs, one infers that there is
an induced epimorphism R;(G) — Z3(G/G3) which gives with the help of
Lemma 2 that the epimorphic image Z3(G/Gj3) is feebly nil-clean as so is
R2(G) being a direct factor of (R/N(R))(G). According to the listed above
formula of May from [8], we obtain that Z3(G/Gj3) is reduced and thus it is
certainly tripotent by using once again Proposition 2 (iii). Consequently, the
equation z3 = z holds in the factor-group G/Gj, that is, z2 = 1. We may have
G/G; = {1}, that is, G = G3. If now G # Gj3, letting g be an arbitrary element
in G, one deduces that (gG3)? = G3, i.e., g?G3 = G3, i.e., g> € G3. But the
3-component Gj is always 2-divisible, that is, G3 = G% (see, e.g., [5]). This, in
turn, forces that g = gza C G3GI[2] for some g3 € G3 and a € G[2] assuring
the direct decomposition G = G3 x G[2], as wanted.

“Right-to-left”. Because item (1) implies at once that R(G) = R, the claim
follows immediately.

We, therefore, will be concentrated on the non-trivial case for G, which is
exactly point (2). With Proposition 1 at hand, we have that R(G)/N(R)(G)
is isomorphic to (R/N(R))(G) = Ry(G) x Ry(G) with nil N(R)(G) C N(R(G)).
Therefore, applying Corollary 1, one needs to show the feebly nil-cleanness
of (R/N(R))(G) only. To that aim, condition (a) along with the major result
from [9] rich us that the group ring R;(G) is nil-clean and so feebly nil-clean.

On the other side, concerning condition (b), the two possibilities G = G3
and G = G3 x G[2] will imply that either Ry(G) = Ry(G3) or Ry(G) =
R2(G3) x R2(GI[2]), where the validity of the latter isomorphism is formally
assumed. Moreover, as the characteristic of R, is 3 and the equality x> = x
holds both in Ry and in G[2], it is readily verified by utilizing only technical
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arguments that it will hold in the group ring R(G[2]) as well. Thus Ry(GI[2]) is
feebly nil-clean. We claim, besides, that Ry(G3) is also feebly nil-clean. Indeed,
referring to the noticed above formula of May from [8], one detects by using
routine argumentation that N(R2(G3)) = I(R2(G3); G3). However, as noted
before, R2(G3)/N(R2(G3)) = R2(G3)/I(R2(G3); G3) = Ry implies the tripotent
property, which invoking Proposition 2 substantiates our claim, as expected.
We, finally, just need to apply once again Lemma 1 (ii) to get the desired fee-
bly nil-cleanness of the group ring Ry(G), thus concluding the initial assertion
for feebly nil-cleanness of the group ring R(G), as promised.

As a new and somewhat more direct and comfortable confirmation that the
group ring Ry(G) is feebly nil-clean in the case when G is a decomposable group
as stated above, we may process like this: Since G = G3x G[2], it follows at once
that Ry(G) = (R2(G[2]))(G3) = R5(G3), where we putted R) = R,(G[2]). As
we already showed above, R} is a ring of characteristic 3 in which the equality
x3 = x holds for all its elements. Thus, in particular, it should be reduced as
well. Furthermore, as we have demonstrated, N(R5(G3)) = I(R}(G3); G3) and,
consequently, R}(G3)/N(R5(G3)) = R3(G3)/I(R5(G3);G3) = Rj is tripotent
(i.e., reduced feebly nil-clean), as expected. This gives the desired feebly nil-
cleanness of the group ring R5(G3) which, in turn, substantiates the promised
feebly nil-cleanness of Ry(G) after all. ]

We close with some more comments.

Remark 1 Utilizing the stated above formula of Karpilovsky from [7], we
can deduce an equivalent necessary and sufficient condition for a commuta-
tive group ring to be feebly nil-clean in terms of J(R) instead of N(R).

We end the work with a problem of interest.

Problem 1 Find a criterion when an arbitrary (not necessarily commutative)
group ring is feebly nil-clean.
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