

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 11, 2 (2019) 264-270

DOI: 10.2478/ausm-2019-0020

Commutative feebly nil-clean group rings

Peter V. Danchev Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria email: danchev@math.bas.bg; pvdanchev@yahoo.com

Abstract. An arbitrary unital ring R is called *feebly nil-clean* if any its element is of the form q + e - f, where q is a nilpotent and e, f are idempotents with ef = fe. For any commutative ring R and any abelian group G, we find a necessary and sufficient condition when the group ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our result refines establishments due to McGovern et al. in J. Algebra Appl. (2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on weakly nil-clean rings, respectively.

1 Introduction and background

Throughout the text of this short paper, all rings R are assumed to be associative and commutative, containing identity element which differs from the zero element. Our terminology and notations are mainly in agreement with [10] and [11]. For instance, J(R) denotes the Jacobson radical of R, and N(R) denotes the nil-radical of R. Also, let everywhere in the text G be a multiplicative abelian group, and let R(G) be the group ring of G over R. As usual, G_p stands for the p-torsion component of the group G with p-socle $G[p] = \{a \in G \mid a^p = 1\}$, and we shall say that the group G is a p-group, provided $G = G_p$. Likewise, we set $G^p = \{g^p \mid g \in G\}$ to be the p-th power subgroup of the group G.

A ring R is known to be *nil-clean* if, for every $r \in R$, there are a nilpotent $q \in R$ and an idempotent $e \in R$ such that r = q + e. The next necessary and

²⁰¹⁰ Mathematics Subject Classification: 16D60; 16S34; 16U60

Key words and phrases: nil-clean rings, weakly nil-clean rings, feebly nil-clean rings, group rings

sufficient condition for a commutative group ring to be nil-clean was recently obtained in [9]. Specifically, the following holds: The commutative group ring R(G) is nil-clean if, and only if, the ring R is nil-clean and the group G is a 2-group.

Generalizing this, a ring R is known to be *weakly nil-clean* if, for every $r \in R$, there are a nilpotent $q \in R$ and an idempotent $e \in R$ such that r = q + e or r = q - e. Alternatively, a necessary and sufficient condition for a commutative group ring to be weakly nil-clean was recently obtained in [4]. Precisely, the following holds: *The commutative group ring* R(G) *is weakly nil-clean if, and only if, either* G = {1} *and* R *is weakly nil-clean, or* R *is nil-clean and* G *is a non-trivial* 2-group, or $R/N(R) \cong \mathbb{Z}_3$ and G *is a non-trivial* 3-group.

As a common generalization of these two definitions for nil-clean and weakly nil-clean rings, a ring R is known to be *feebly nil-clean* (see, for example, [1] and [2]) if, for every $r \in R$, there are a nilpotent $q \in R$ and two idempotents $e, f \in R$ such that r = q + e - f. So, the leitmotif of writing up this brief article is to generalize somewhat the above two claims by obtaining a criterion for an arbitrary commutative group ring to be feebly nil-clean.

For completeness of the exposition, it is worthwhile noticing that an extension of the aforementioned nil-clean rings are the so-called UU rings that are rings whose units are unipotents (i.e., the sum of 1 and some nilpotent). In [3] were examined commutative UU group rings. Exactly, it was proved in Corollary 2.3 there that R(G) is a commutative UU ring if, and only if, R is a commutative UU ring and G is an abelian 2-group.

2 Main results

Before proving our chief statement, we need the following two key formulas from [7] and [8], respectively. In fact, appealing to [7], one writes the formula

$$J(R(G)) = J(R)(G) + \langle r(g-1) \mid g \in G_p, pr \in J(R) \rangle.$$

In that aspect, consulting with [8], one writes the formula

$$N(R(G)) = N(R)(G) + \langle r(g-1) \mid g \in G_p, pr \in N(R) \rangle.$$

Standardly, I(R(G); G) designates the fundamental (augmentation) ideal of R(G) with respect to G with basis consisting of all elements of the type 1 - g, where $g \in G$. It is well known that the isomorphisms

$$R(G)/[N(R)(G) + I(R(G);G)] \cong R/N(R)$$

and

 $R(G)/I(R(G);G) \cong R$

are valid. We will now prove something similar and helpful for us for further use.

Proposition 1 Let R be a ring and G a group. Then the following isomorphism is fulfilled:

$$\mathbf{R}(\mathbf{G})/\mathbf{N}(\mathbf{R})(\mathbf{G}) \cong (\mathbf{R}/\mathbf{N}(\mathbf{R}))(\mathbf{G}).$$

Proof. There is the natural ring surjection $R \to R/N(R)$ which induces by the usual element-wise manipulation the ring surjective homomorphism $R(G) \to (R/N(R))(G)$. This epimorphism obviously has kernel N(R)G and henceforth the well-known Homomorphism Theorem applies to get the desired assertion.

A ring is *boolean* if each its element is an idempotent. Let us recall that a ring is said to be *tripotent* if each its element x satisfies the equation $x^3 = x$. These rings are necessarily commutative being also a subdirect product of a family of single or isomorphic copies of the fields \mathbb{Z}_2 and \mathbb{Z}_3 (see, e.g., [6]). Likewise, as 6 = 0 here, any tripotent ring R can be decomposed as the direct product of two rings $R_1 \times R_2$, where R_1 is boolean and R_2 is tripotent of characteristic 3. It is pretty evident that reduced feebly nil-clean rings are themselves tripotent.

We begin our work with a few useful technicalities.

Lemma 1 The next two statements are true:

(i) A direct factor of a feebly nil-clean ring is a feebly nil-clean ring as well.

(ii) The direct product of two feebly nil-clean rings is also a feebly nil-clean ring.

Proof. Straightforward by a direct check, so that we leave it to the interested reader. \Box

Lemma 2 An epimorphic image of a feebly nil-clean ring is too a feebly nilclean ring.

Proof. Since nilpotents and idempotents map under any homomorphism again into nilpotents and idempotents, respectively, the claim follows elementarily. \Box

Proposition 2 Suppose that R is a commutative ring. Then the following three points are equivalent:

- (i) R is feebly nil-clean.
- (ii) J(R) is nil and R/J(R) is tripotent.
- (iii) R/N(R) is tripotent.

Proof. It suffices to prove only the equivalence (i) \iff (iii), because whenever J(R) is nil we will have that J(R) = N(R) as well as, in accordance with [1] or [2], R being feebly nil-clean yields that J(R) is nil. To this purpose, the implication (i) \Rightarrow (iii) follows at once by the usage of Lemma 2.

As for the converse implication (i) \Leftarrow (iii), we may write by consulting with [6, Theorem 1] accomplished with a simple trick that every element of R/N(R) is the difference of two idempotents, say $r+N(R) = (e_1+N(R))-(e_2+N(R)) = e_1 - e_2 + N(R)$, where $r \in R$ is an arbitrary element and $e_1, e_2 \in R$ are some elements. But as it is well-known as a folklore fact, we may choose these e_1 and e_2 to be idempotents. Consequently, one follows that $r = t + e_1 - e_2$ for some nilpotent t in R, as expected.

As an immediate consequence, one yields the following.

Corollary 1 Let I be a nil ideal of a ring R. Then R is feebly nil-clean if, and only if, R/I is feebly nil-clean.

Proof. The "necessity" follows by virtue of Lemma 2. As for the "sufficiency", because of the inclusion $I \subseteq N(R)$, there exists an epimorphism $R/I \rightarrow R/N(R)$ with kernel N(R)/I = N(R/I). Hence R/N(R) is feebly nil-clean, i.e., tripotent. Furthermore, we apply Proposition 2 to conclude the claim.

We now have all the ingredients necessary to proceed by proving the following chief assertion, which gives a necessary and sufficient condition when a commutative group ring will be feebly nil-clean.

Theorem 1 Suppose R is a commutative ring and G is an abelian group. Then the group ring R(G) is feebly nil-clean if, and only if, exactly one of the following three items is valid:

(1) $G = \{1\}$ and R is feebly nil-clean.

(2) $G \neq \{1\}$ and $R/N(R) \cong R_1 \times R_2$, where R_1 is boolean and R_2 is tripotent of characteristic 3 such that

(a) $R_1 = \{0\}$, or $R_1 \neq \{0\}$ and G is a 2-group;

(b) $R_2 = \{0\}$, or $R_2 \neq \{0\}$ and either $G = G_3$ or $G = G_3 \times G[2]$.

Proof. "Left-to-right". The assumption that G is the trivial group leads to $R(G) \cong R$, so that we may assume without loss of generality that G is non-trivial.

The epimorphism $R(G) \rightarrow R$ implies that R is feebly nil-clean and thus Proposition 2 (iii) enables us that R/N(R) is tripotent. Therefore, the main result in [6] allows us to write that $R/N(R) \cong R_1 \times R_2$, where R_1 is a boolean ring and R_2 is a tripotent ring of characteristic 3.

On the other hand, as in the proof of Proposition 1, the surjection $R \to R/N(R)$ induces a surjection $R(G) \to (R/N(R))(G)$ and so in view of Lemma 2 the group ring $(R/N(R))(G) \cong R_1(G) \times R_2(G)$ has to be feebly nil-clean, too. Since 2 = 0 in R_1 , with the aid of Lemma 1 (i) it must be that $R_1(G)$ is feebly nil-clean of characteristic 2 whence it is necessarily nil-clean, because under these circumstances the sum of two idempotents is again an idempotent. Employing now the quoted above result from [9], we derive that either R_1 is zero, or R_1 is non-trivial and $G = G_2$ is a 2-primary group.

Further, concerning the second direct factor R_2 , let us assume that it is non-zero and hence a subdirect product of the field \mathbb{Z}_3 . Since there exist two epimorphisms, namely $R_2 \to \mathbb{Z}_3$ and $G \to G/G_3$, one infers that there is an induced epimorphism $R_2(G) \to \mathbb{Z}_3(G/G_3)$ which gives with the help of Lemma 2 that the epimorphic image $\mathbb{Z}_3(G/G_3)$ is feebly nil-clean as so is $R_2(G)$ being a direct factor of $(\mathbb{R}/\mathbb{N}(\mathbb{R}))(G)$. According to the listed above formula of May from [8], we obtain that $\mathbb{Z}_3(G/G_3)$ is reduced and thus it is certainly tripotent by using once again Proposition 2 (iii). Consequently, the equation $z^3 = z$ holds in the factor-group G/G_3 , that is, $z^2 = 1$. We may have $G/G_3 = \{\overline{1}\}$, that is, $G = G_3$. If now $G \neq G_3$, letting g be an arbitrary element in G, one deduces that $(gG_3)^2 = G_3$, i.e., $g^2G_3 = G_3$, i.e., $g^2 \in G_3$. But the 3-component G_3 is always 2-divisible, that is, $G_3 = G_3^2$ (see, e.g., [5]). This, in turn, forces that $g = g_3 \mathfrak{a} \subseteq G_3 G[2]$ for some $g_3 \in G_3$ and $\mathfrak{a} \in G[2]$ assuring the direct decomposition $G = G_3 \times G[2]$, as wanted.

"**Right-to-left**". Because item (1) implies at once that $R(G) \cong R$, the claim follows immediately.

We, therefore, will be concentrated on the non-trivial case for G, which is exactly point (2). With Proposition 1 at hand, we have that R(G)/N(R)(G)is isomorphic to $(R/N(R))(G) \cong R_1(G) \times R_2(G)$ with nil $N(R)(G) \subseteq N(R(G))$. Therefore, applying Corollary 1, one needs to show the feebly nil-cleanness of (R/N(R))(G) only. To that aim, condition (a) along with the major result from [9] rich us that the group ring $R_1(G)$ is nil-clean and so feebly nil-clean.

On the other side, concerning condition (b), the two possibilities $G = G_3$ and $G = G_3 \times G[2]$ will imply that either $R_2(G) \cong R_2(G_3)$ or $R_2(G) \cong$ $R_2(G_3) \times R_2(G[2])$, where the validity of the latter isomorphism is formally assumed. Moreover, as the characteristic of R_2 is 3 and the equality $x^3 = x$ holds both in R_2 and in G[2], it is readily verified by utilizing only technical arguments that it will hold in the group ring $R_2(G[2])$ as well. Thus $R_2(G[2])$ is feebly nil-clean. We claim, besides, that $R_2(G_3)$ is also feebly nil-clean. Indeed, referring to the noticed above formula of May from [8], one detects by using routine argumentation that $N(R_2(G_3)) = I(R_2(G_3);G_3)$. However, as noted before, $R_2(G_3)/N(R_2(G_3)) = R_2(G_3)/I(R_2(G_3);G_3) \cong R_2$ implies the tripotent property, which invoking Proposition 2 substantiates our claim, as expected. We, finally, just need to apply once again Lemma 1 (ii) to get the desired feebly nil-cleanness of the group ring $R_2(G)$, thus concluding the initial assertion for feebly nil-cleanness of the group ring R(G), as promised.

As a new and somewhat more direct and comfortable confirmation that the group ring $R_2(G)$ is feebly nil-clean in the case when G is a decomposable group as stated above, we may process like this: Since $G = G_3 \times G[2]$, it follows at once that $R_2(G) \cong (R_2(G[2]))(G_3) = R'_2(G_3)$, where we putted $R'_2 := R_2(G[2])$. As we already showed above, R'_2 is a ring of characteristic 3 in which the equality $x^3 = x$ holds for all its elements. Thus, in particular, it should be reduced as well. Furthermore, as we have demonstrated, $N(R'_2(G_3)) = I(R'_2(G_3);G_3)$ and, consequently, $R'_2(G_3)/N(R'_2(G_3)) = R'_2(G_3)/I(R'_2(G_3);G_3) \cong R'_2$ is tripotent (i.e., reduced feebly nil-clean), as expected. This gives the desired feebly nil-cleanness of the group ring $R'_2(G_3)$ which, in turn, substantiates the promised feebly nil-cleanness of $R_2(G)$ after all.

We close with some more comments.

Remark 1 Utilizing the stated above formula of Karpilovsky from [7], we can deduce an equivalent necessary and sufficient condition for a commutative group ring to be feebly nil-clean in terms of J(R) instead of N(R).

We end the work with a problem of interest.

Problem 1 Find a criterion when an arbitrary (not necessarily commutative) group ring is feebly nil-clean.

Acknowledgement

The present paper is partially supported by the scientific project of the Bulgarian National Science Fund under Grant KP-06 N 32/1 of Dec. 07, 2019.

References

- P. V. Danchev, Feebly nil-clean unital rings, *Proc. Jangjeon Math. Soc.*, 21 (1) (2018), 155–165.
- [2] P. V. Danchev, Feebly invo-clean unital rings, Ann. Univ. Sci. Budapest (Sect. Math.), 60 (2017), 85–91.
- [3] P. V. Danchev and O. Al-Mallah, UU group rings, *Eurasian Bull. Math.*, 1 (3) (2018), 85–88.
- [4] P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra, 425 (5) (2015), 410–422.
- [5] L. Fuchs, *Abelian Groups*, Springer Monographs in Math., Springer Internat. Publishing (Switzerland), 2015, 747 pp.
- [6] Y. Hirano, H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc., 37 (1988), 161–164.
- [7] G. Karpilovsky, The Jacobson radical of commutative group rings, Arch. Math., 39 (1982), 428–430.
- [8] W. L. May, Group algebras over finitely generated rings, J. Algebra, 39 (2) (1976), 483–511.
- [9] W. Wm. McGovern, S. Raja and A. Sharp, Commutative nil clean group rings, J. Algebra Appl., 14 (6) (2015), 1550094.
- [10] C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, vol. 1, Springer Science and Business Media, 2002.
- [11] D. Passman, The Algebraic Structure of Group Rings, Dover Publications, 2011.

Received: January 15, 2019