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Abstract. In this paper, we study generalized quasi-Einstein warped
products with respect to quarter symmetric connection for dimension n ≥
3 and Ricci-symmetric generalized quasi-Einstein manifold with quarter
symmetric connection. We also investigate that in what conditions the
generalized quasi-Einstein manifold to be nearly Einstein manifold with
respect to quarter symmetric connection. Example of warped product on
generalized quasi-Einstein manifold with respect to quarter symmetric
connection are also discussed.

1 Introduction

A Riemannian manifold (Mn, g), (n > 2) is Einstein if its Ricci tensor S of
type (0,2) is of the form S = αg, where α is smooth function, which turns

2010 Mathematics Subject Classification: 53C25, 53B30, 53C15
Key words and phrases: Einstein manifold, quasi-Einstein manifold, nearly quasi-Einstein
manifold, generalized quasi-Einstein manifold, warped product manifold

332



On a non flat Riemannian warped product manifold 333

into S = r
ng, r being the scalar curvature of the manifold. The notion of quasi

Einstein manifold was introduced by M. C. Chaki and R. K. Maity [2]. A non-
flat Riemannian manifold (Mn, g), (n > 2) is defined to be a quasi Einstein
manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies
the condition

S(X, Y) = αg(X, Y) + βA1(X)A1(Y) (1)

where α, β are scalars of which β 6= 0 and A1 is a non-zero 1-form such
that g(X,U) = A1(X) for all vector fields X with g(U,U) = 1. Such an n-
dimensional quasi-Einstein manifold is denoted by (QE)n.

In [5], De and Ghosh introduced generalized quasi-Einstein manifold, de-
noted by G(QE)n, where the Ricci tensor S of type (0,2) which is not identi-
cally zero satisfies the condition

S(X, Y) = αg(X, Y) + βA1(X)A1(Y) + γB1(X)B1(Y), (2)

where α,β, γ are scalars such that β, γ are nonzero and A1, B1 are two nonzero
1-forms such that

g(X, µ) = A1(X) and g(X, ρ) = B1(X),

µ, ρ being unit vectors which are orthogonal, i.e., g(µ, ρ) = 0.
Here α,β, γ are called the associated scalars, and A1, B1 are called the

associated main and auxiliary 1-forms respectively, µ, ρ are called the main
and the auxiliary generators of the manifold.

The notion of warped product generalizes that of a surface of revolution.
It was introduced in [1] for studying manifolds of negative curvature. Let
(B, gB) and (F, gF) be two Riemannian manifolds and f is a positive differen-
tiable function on B. Consider the product manifold B×F with its projections
π : B×F→ B and σ : B×F→ F. The warped product B×fF is the manifold B×F
with the Riemannian structure such that ||X||2 = ||π∗(X)||2+ f2(π(p))||σ∗(X)||2,
for any vector field X on M. Thus we have

g = gB + f
2gF (3)

holds on M. The function f is called the warping function of the warped
product [9].

Since B×f F is a warped product, then we have ∇XZ = ∇ZX = (Xlnf)Z for
unit vector fields X, Z on B and F, respectively. Hence, we find K(X ∧ Z) =
g(∇Z∇XX−∇X∇ZX,Z) = (1/f){(∇XXf−X2f}. If we chose a local orthonormal
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frame e1, . . . , en such that e1, . . . , en1
are tangent to B and en1+1, . . . , en are

tangent to F, then we have

∆f

f
=

n∑
i=1

K(ei ∧ ej), (4)

for each s = n1 + 1, . . . , n [9].
In 1924, Friedmann and Schouten introduced the notion of a semi-symmetric

linear connection on a differentiable manifold [15]. In 1975, Golab introduced
the definition of a quarter-symmetric linear connection on a differentiable man-
ifold which is a generalization of semi-symmetric connection in [8]. Many au-
thors like Q. Qu and Y. Wang [14], S. Pahan et al. [16, 17] and S. Dey et al.
[18] studied on warped product manifolds with affine connections.

In this paper we study generalized quasi-Einstein warped products with re-
spect to quarter symmetric connection. We discuss some preliminary concepts
and results which are useful for proving our main results. We obtain a necessary
and sufficient condition for the warped product manifold to be a generalized
quasi-Einstein manifold with respect to a quarter-symmetric connection. Next
we prove generalized quasi-Einstein manifold with respect to quarter symmet-
ric connection to be nearly quasi Einstein manifold with respect to quarter
symmetric connection under some certain conditions. In the last section we
give an example of warped product on generalized quasi-Einstein manifold
with respect to quarter symmetric connection.

2 Preliminaries

Let (Mn, g) be a Riemannian manifold with the Levi-Civita connection ∇. A
linear connection ∇̆ on (Mn, g) is said to be a quarter-symmetric connection
if its torsion tensor T with respect to the connection ∇̆ defined by

T(X, Y) = ∇̆XY − ∇̆YX− [X, Y],

satisfies

T(X, Y) = ω(Y)φX−ω(X)φY,

where ω is a 1-form on Mn with the associated vector field P defined by
ω(X) = g(X, P), for all vector field X, and φ is a (1, 1) tensor field.

A quarter-symmetric connection ∇̆ is called a quarter-symmetric metric
connection if ∇̆g = 0. ∇̆ is called a quarter-symmetric non-metric connection
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if ∇̆g 6= 0. The relation between a quarter-symmetric connection ∇̆ and the
Levi-Civita connection ∇ of Mn is given by [19]

∇̆XY = ∇XY + λ1ω(Y)X− λ2g(X, Y)P, (5)

where g(X, P) = ω(X) and λ1 6= 0, λ2 6= 0 are scalar functions.
We can easily see that: when λ1 = λ2 = 1, ∇̆ is a semi-symmetric metric

connection.
When λ1 = λ2 6= 1, ∇̆ is a quarter-symmetric metric connection.
When λ1 6= λ2, ∇̆ is a quarter-symmetric non-metric connection.
Further, a relation between the curvature tensors R and R̆ of type (1,3) of

the connections ∇ and ∇̆ respectively is given by [19],

R̆(X, Y)Z = R(X, Y)Z+ λ1g(Z,∇XP)Y − λ2g(Z,∇YP)X+ λ2[g(X,Z)∇YP
− g(Y, Z)∇XP] + λ1λ2ω(P)[g(X,Z)Y − g(Y, Z)X]

+ λ22[g(Y, Z)ω(X) − g(X,Z)ω(Y)]P + λ21ω(Z)[ω(Y)X

−ω(X)Y],

(6)

for vector fields X, Y, Z on M.

3 Generalized quasi-Einstein manifold with respect
to quarter-symmetric connection

In this section, we consider the following propositions from Proposition 3.5.,
Proposition 3.6., Proposition 3.7., Proposition 3.8. of [14], which will be helpful
to prove our main results. Here we consider generalized quasi-Einstein warped
product manifolds and prove some results concerning these type manifolds.

Theorem 1 Let (M,g) be a warped product I×f F where I is an open interval
in R, dimI = 1 and dimF = n̄ − 1, n̄ ≥ 3. Then (M,g) is a generalized
quasi-Einstein manifold with respect to a quarter-symmetric connection if and
only if F is a generalized quasi-Einstein manifold for P = ∂

∂t with respect to
the Levi-Civita connection or the warping function f is a constant on I for
P ∈ χ(F), λ2 6= (n̄− 1)λ1.

Proof. Assume that P ∈ χ(B) and taking f = e
q
2 and using the Proposition

3.1. of [16], we get

S̆

(
∂

∂t
,
∂

∂t

)
= (1− n̄)

[
1

2
q′′ +

1

4
q′

2

−
1

2
λ2q

′ + λ1λ2 − λ
2
1

]
gI

(
∂

∂t
,
∂

∂t

)
, (7)



336 B. Pal, S. Dey, S. Pahan

S̆

(
∂

∂t
, V

)
= 0, (8)

S̆(V,W) = SF(V,W) + eq
[
n̄− 1

4
(q′)2 +

1

2

[
(n̄− 1)λ1 + (n̄− 2)λ2

]
q′

+ λ22 +
1

2
q′′ + (1− n̄)λ1λ2

]
gF(V,W),

(9)

for vector fields V,W on F.
Since M is generalized quasi-Einstein admitting quarter-symmetric connec-

tion, from (2) we have

S̆M

(
∂

∂t
,
∂

∂t

)
= αg

(
∂

∂t
,
∂

∂t

)
+ βA1

(
∂

∂t

)
A1(

∂

∂t
) + γB1

(
∂

∂t

)
B1

(
∂

∂t

)
, (10)

and
S̆M(V,W) = αg(V,W) + βA1(V)A1(W) + γB1(V)B1(W). (11)

Decomposing the vector fields U and Ú uniquely into its components UI, UF
and ÚI, ÚF on I and F, respectively, we can write U = UI+UF and Ú = ÚI+ÚF
and also Ú = η2

∂
∂t + UF, where η1 and η2 are functions on M. Then we can

write

A1

(
∂

∂t

)
= g

(
∂

∂t
,U

)
= η1,

B1

(
∂

∂t

)
= g

(
∂

∂t
, Ú

)
= η2.

(12)

On the other hand, by the use of (3) and (12), the equations (10) and (11)
reduce to

S̆M

(
∂

∂t
,
∂

∂t

)
= α+ βη21 + γη

2
2 (13)

and
S̆M(V,W) = αeqgF(V,W) + βA1(V)A1(W) + γB1(V)B1(W). (14)

Comparing the right hand side of the equations (7) and (13) we get

α+ βη21 + γη
2
2 = −

n− 1

4
[2q

′′
+ (q

′
)2]. (15)

Similarly, comparing the right hand sides of (9) and (14) we obtain

SF(V,W) = eq
[
α−

{
n̄− 1

4
(q′)2 +

1

2
{(n̄− 1)λ1 + (n̄− 2)λ2}q

′

+ λ22 +
1

2
q′′ + (1− n̄)λ1λ2

}]
gF(V,W)

+ βA1(V)A1(W) + γB(V)1B1(W),

(16)
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which gives that F is a generalized quasi-Einstein manifold with respect to the
Levi-Civita connection for P ∈ χ(B).

Taking P ∈ χ(F) and by the use of Proposition 3.1. of [16], we get

S̆

(
∂

∂t
, V

)
=
q′

2

[
(n̄− 1)λ1 − λ2

]
ω(V) (17)

and

S̆

(
V,
∂

∂t

)
=
q′

2

[
λ2 − (n̄− 1)λ1

]
ω(V), (18)

for any vector field V ∈ χ(F).
Since M is a generalized quasi-Einstein manifold, we have

S̆

(
∂

∂t
, V

)
= S̃

(
V,
∂

∂t

)
= αg

(
V,
∂

∂t

)
+βA1(V)A1

(
∂

∂t

)
+γB1(V)B1

(
∂

∂t

)
. (19)

Now g(V, ∂∂t) = 0 as ∂
∂t ∈ χ(B) and V ∈ χ(F).

Hence, from the last equation, we get

S̆

(
∂

∂t
, V

)
= S̆

(
V,
∂

∂t

)
= βA1(V)A1

(
∂

∂t

)
++γB1(V)B1

(
∂

∂t

)
. (20)

Therefore, we have

βA1(V)A1

(
∂

∂t

)
+ γB1(V)B1

(
∂

∂t

)
=
q′

2
[(n̄− 1)λ1 − λ2]ω(V), (21)

βA1(V)A1

(
∂

∂t

)
+ γB1(V)B1

(
∂

∂t

)
=
q′

2
[λ2 − (n̄− 1)λ1]ω(V). (22)

From the equations (21) and (22), we get

q′ = 0,

when λ2−(n̄−1)λ1 6= 0. It follows that q is a constant on I. Then f is constant
on I. This completes the proof. �

Now, we consider the warped product M = B ×f I with dimB = n̄ − 1,
dimI = 1, n̄ ≥ 3. Under this assumption, we obtain the following theorem.

Theorem 2 Let (M,g) be a warped product B ×f I, where dimI = 1 and
dimB = n− 1, n ≥ 3, then
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i) if (M,g) is a generalized quasi-Einstein manifold with respect to a quarter-
symmetric connection, P ∈ χ(B) is parallel on B with respect to the Levi-
Civita connection on B and f is a constant on B, then,

α = [(n− 1)λ1λ2 − λ
2
2)]ω(P).

ii) If (M,g) is a generalized quasi-Einstein manifold with respect to a quarter-
symmetric connection for P ∈ χ(I), and λ2 6= (n − 1)λ1 then f is a
constant on B.

iii) If f is a constant on B and B is a generalized quasi-Einstein manifold
with respect to the Levi-Civita connection for P ∈ χ(I), then M is a
generalized quasi-Einstein manifold with respect to a quarter-symmetric
connection.

Proof. Assume that (M,g) is a generalized quasi-Einstein manifold with re-
spect to a quarter-symmetric connection. Then we write

S̆(X, Y) = αg(X, Y) + βA1(X)1A(Y) + γB1(X)B1(Y). (23)

Decomposing the vector field U and V uniquely into its components UB and
UI on B and I, respectively, we have

U = UB +UI, V = VB + VI (24)

Since dimI = 1, we can take U = UB + η1
∂
∂t and V = VB + η2

∂
∂t , where η1, η2

is a functions on M. From (23), (24) and Proposition 3.1. of [16], we have

S̆B(X, Y) = αgB(X, Y) + βgB(X,UB)gB(Y,UB) + γgB(X,VB)gB(Y, VB)

−

[
Hf(X, Y)

f
+ λ2

Pf

f
g(X, Y) + λ1λ2ω(P)g(X, Y)

+ λ1g(Y,∇XP) − λ21ω(X)ω(Y)

]
.

(25)

By contraction over X and Y, we get

r̆B = α(n− 1) + βgB(UB, UB) + γgB(X,VB)gB(Y, VB)

−

[
∆Bf

f
+ λ2(n− 1)

Pf

f
+ [(n− 1)λ1λ2 − λ

2
1]ω(P) + λ1

n−1∑
i=1

g(ei,∇eiP)
]
.

(26)
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Also from (23), we have

r̆M = αn+ βgB(UB, UB) + γgB(X,VB)gB(Y, VB). (27)

Now, putting the value of (27) in (26), we get

r̆B = r̆M − α−
∆Bf

f
− λ2(n− 1)

Pf

f
− [(n− 1)λ1λ2 − λ

2
1]ω(P)

− λ1

n−1∑
i=1

g(ei,∇eiP)].
(28)

On the other hand, from Proposition 1., we get

r̆M = r̆B + (n− 1)(λ1 + λ2)
Pf

f

+ 2
∆Bf

f
+ [2(n− 1)λ1λ2 − (λ21 + λ

2
2)]ω(P) + (λ1 + λ2)

n−1∑
i=1

g(∇eiP, ei).

Then from the above two relations, we get

α+
∆Bf

f
+ λ2(n− 1)

Pf

f
+

[
(n− 1)λ1λ2 − λ

2
1]ω(P) + λ1

n−1∑
i=1

g(ei,∇eiP)
]

= (n− 1)(λ1 + λ2)
Pf

f
+ 2

∆f

f
+ [2(n− 1)λ1λ2 − (λ21 + λ

2
2)]ω(P)

+ (λ1 + λ2)

n−1∑
i=1

g(∇eiP, ei).

Since P ∈ χ(B) is parallel and f is a constant on B, then we get

α = [(n− 1)λ1λ2 − λ
2
2)]ω(P).

ii) Let P ∈ χ(I). By the use of Proposition 3.1. of [16], we get

S̆(X, P) = [(n− 1)λ1 − λ2]ω(P)
Xf

f
, (29)

and

S̆(P, X) = [λ2 − (n− 1)λ1]ω(P)
Xf

f
. (30)
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Since M is a generalized quasi-Einstein manifold, we have

S̆(X, P) = S̆(P, X) = αg(P, X) + βA1(P)A1(X) + γB1(P)B1(X).

Again, we have g(P, X) = 0 for X ∈ χ(B) and P ∈ χ(I). Hence, we have

Xf = 0,

where λ2 6= (n− 1)λ1. This implies that f is a constant on B.
iii) Assume that B is a generalized quasi-Einstein manifold with respect to

the Levi-Civita connection. Then we have

SB(X, Y) = αg(X, Y) + βA1(X)A1(Y) + γB1(X)B1(Y), (31)

for vector fields X, Y tangent to B.
From Proposition 3.1. of [16], we get

S̆M(X, Y) = SB(X, Y) + [(n− 1)λ1λ2 − λ
2
2]ω(P)g(X, Y) +

Hf(X, Y)

f
,

for any vector field P ∈ χ(I). Since f is a constant, Hf(X, Y) = 0 for all X, Y ∈
χ(B).

The above equation reduces to

S̆M(X, Y) = SB(X, Y) + [(n− 1)λ1λ2 − λ
2
2]ω(P)g(X, Y). (32)

Using the value of (31) in (32), we get

S̆M(X, Y) = {α+[(n−1)λ1λ2−λ
2
2]ω(P)}g(X, Y)+βA1(X)A1(Y)+γB1(X)B1(Y),

(33)
which shows that M is a generalized quasi-Einstein manifold with respect to
a quarter-symmetric connection. �

Next we find the relation between scalars of generalized quasi-Einstein man-
ifold with respect to a quarter-symmetric connection.

Suppose the generator U is a parallel vector field, then R̆(X, Y)U = 0. Hence

S̆(X,U) = 0. (34)

Let

U = UB + f
2UF, V = VB + f

2VF. (35)
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From (2), we have

S̆M(X, Y) = αg(X, Y) + βA1(X)A1(Y) + γB1(X)B1(Y).

Putting Y = U and using (35), we have

S̆M(X,U) = αg(X,U) + βA1(X)A1(U) + γB1(X)B1(U)

= {α+ β(f4 + 1)}gF(X,UF)f
2,

(36)

where X ∈ χ(F) and Y ∈ χ(B). From (9), we have

S̆M(X, Y) = SF(X, Y) + eq
[
n− 1

4
(q′)2 +

1

2
{(n− 1)λ1 + (n− 2)λ2}q

′

+ λ22 +
1

2
q′′ + (1− n)λ1λ2

]
gF(X, Y),

(37)

for vector fields X, Y on F.
As U is parallel to F, we have from (37)

S̆M(X,U) = eq
[
n− 1

4
(q′)2 +

1

2
{(n− 1)λ1 + (n− 2)λ2}q

′ + λ22 +
1

2
q′′

+ (1− n)λ1λ2

]
gF(X,UB + f

2UF),

= f2eq
[
n− 1

4
(q′)2 +

1

2
{(n− 1)λ1 + (n− 2)λ2}q

′

+ λ22 +
1

2
q′′ + (1− n)λ1λ2

]
gF(X,U)

(38)

Now comparing (36) and (38), we have

{α+ β(f4 + 1)} = eq
[
n− 1

4
(q′)2 +

1

2
{(n− 1)λ1 + (n− 2)λ2}q

′

+ λ22 +
1

2
q′′ + (1− n)λ1λ2

] (39)

So, we get the relation between two non-zero smooth functions a and b of the
manifold M with respect to a quarter-symmetric connection. Similarly, if V is
parallel to F, we have

{α+ γ(f4 + 1)} = eq
[
n− 1

4
(q′)2 +

1

2
{(n− 1)λ1 + (n− 2)λ2}q

′

+ λ22 +
1

2
q′′ + (1− n)λ1λ2

] (40)
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So, we also get the relation between two non-zero smooth functions α and γ
of the manifold M with respect to a quarter-symmetric connection. Now we
have a following proposition:

Proposition 1 Let (M,g) be a warped product manifold B ×f I. If the gen-
erators U,V are parallel to F in a generalized quasi-Einstein manifold with
respect to a quarter-symmetric connection, then we get the relation between
three non-zero smooth functions α, β and γ of the manifold M with respect to
a quarter-symmetric connection given by (39) and (40).

4 Ricci-semisymmetric G(QE)n with respect to quar-
ter symmetric connection

A Riemannian manifold is said to be Ricci-semisymmetric if R · S = 0 holds.
In this section we study Ricci-semisymmetric G(QE)n with respect to quarter
symmetric connection and prove the following theorem:

Theorem 3 A Ricci-semisymmetric G(QE)n with respect to quarter symmet-
ric connection is nearly quasi-Einstein manifold with respect to quarter sym-
metric connection under the following condition holds:

(i) P ∈ χ(F) i.e., parellel vector field.

(ii) f is constant.

Proof. Suppose that R̆ · S̆ = 0. Then we get

S̆(R̆(X, Y)Z,W) + S̆(Z, R̆(X, Y)W) = 0, (41)

where X,W ∈ χ(F), Y, Z ∈ χ(B).
From (2), we have

S̆(R̆(X, Y)Z,W) = αg(R̆(X, Y)Z,W) + βg(R̆(X, Y)Z,U)g(W,U)

+ γg(R̆(X, Y)Z,V)g(W,V).
(42)

Now using (35), we have

S̆(R̆(X, Y)Z,W) = αg(R̆(X, Y)Z,W) + βg(R̆(X, Y)Z,UB + f
2UF)g(W,UF)

+ γg(R̆(X, Y)Z,VB + f
2VF)g(W,VF),

(43)
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i. e.,

S̆(R̆(X, Y)Z,W) = αg(R̆(X, Y)Z,W) + βf4g(W,UF)g(Y, Z)[λ
2
2Γ(X)g(P,UF)

− λ1λ2Γ(P)g(X,UF)] + cf
4g(W,VF)g(Y, Z)[λ

2
2Γ(X)

g(P, VF) − λ1λ2Γ(P)g(X,VF)]

(44)

Now, using the proposition 1 and proposition 3.3 in [14], we have

S̆(Z, R̆(X, Y)W) = −αg(Z,−λ1λ2Γ(P)g(X,W)Y + λ21Γ(X)Γ(W)Y

+ βg(Z,UB)g(Y,UB)[−λ1λ2Γ(P)g(X,W)

+ λ21Γ(X)Γ(W)] + γg(Z,VB)g(Y, VB)

[−λ1λ2Γ(P)g(X,W) + λ21Γ(X)Γ(W)].

(45)

Let ei be an orthonormal basis of the tangent space at each point of the
manifold where 1 ≤ i ≤ n. Now putting X = W = ei in (44) and (45) and
using the equation (41) and proposition 1 and proposition 3.3 in [14], we get

αS̆(Y, Z) + g(Y, Z)βf4[λ22g(P,UF)g(P,UF) − λ1λ2Γ(P).1]

+ γg(Y, Z)f4[λ22g(P, VF)g(P, VF) + α[λ1λ2Γ(P)ng(Y, Z)

− λ21Γ(P)g(Y, Z)] + βg(Z,UB)g(Y,UB)[λ
2
1Γ(P)

− λ1λ2Γ(P)] + γg(Z,VB)g(Y, VB)[λ
2
1Γ(P)

− λ1λ2Γ(P)] = 0,

(46)

i. e.,
S̆(Y, Z) = A ′g(Y, Z) + B ′E(Y, Z), (47)

where A ′, B ′ are non-zero functions and E(Y, Z) is a symmetric tensor function.
So, the manifold becomes nearly quasi Einstein manifold with respect to quar-
ter symmetric connection. This completes the proof. �

5 G(QE)n with the condition P̆ · S̆ = 0 with respect
to quarter symmetric connection

The projective curvature tensor P̆ of type (1, 3) of an n-dimensional Rieman-
nian manifold (Mn, g), (n > 3) with respect to quarter symmetric connection
is defined by

P̆(X, Y)Z = R̆(X, Y)Z−
1

n− 1
[S̆(Y, Z)X− S̆(X,Z)Y] (48)
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for any vector fields X, Y, Z ∈ χ(M).
In this section, we consider a generalized quasi-Einstein manifold satisfying

the condition P̆ · S̆ = 0 with respect to quarter symmetric connection and we
have a following theorem.

Theorem 4 A G(QE)n satisfying P̆ · S̆ = 0 with respect to quarter symmetric
connection is nearly quasi-Einstein manifold with respect to quarter symmetric
connection under the following condition holds:

(i) P ∈ χ(F) i.e., parallel vector field.

(ii) f is constant, B is one-dimensional base and X,W ∈ χ(F), Y, Z ∈ χ(B).

Proof. Suppose that

P̆ · S̆ = 0. (49)

Now using the equation (2), (44) and (35), we have

S̆(P̆(X, Y)Z,W) = αg(R̆(X, Y)Z,W) −
α

(n− 1)
[S̆(Y, Z)g(X,W)]

+ f2βg(W,UF)A(P̆(X, Y)Z)

+ γf2g(W,VF)B(P̆(X, Y)Z),

(50)

as S̆(X,Z) = 0.
Again using (48) and proposition 1 and proposition 3.3 in [14], we have

S̆(P̆(X, Y)Z,W) = αg(Y, Z)[λ1λ2Γ(P)g(X,W) − λ22Γ(X)g(P,W)]

−
α

(n− 1)
[S̆B(Y, Z) + {(n− 1)λ1λ2 − λ

2
2}Γ(P)g(Y, Z)]g(X,W)

− βg(W,UF)f
4[g(Y, Z){λ1λ2Γ(P)g(X,UF) − λ

2
2Γ(X)g(P,UF)}

+
g(X,UF)

(n− 1)
{S̆B(Y, Z) + {(n− 1)λ1λ2 − λ

2
2}Γ(P)g(Y, Z)}]

− γg(W,VF)f
4[g(Y, Z){λ1λ2Γ(P)g(X,VF) − λ

2
2Γ(X)g(P, VF)}

+
g(X,VF)

(n− 1)
{S̆B(Y, Z) + {(n− 1)λ1λ2 − λ

2
2}Γ(P)g(Y, Z)}].

(51)

Similarly using the equation (2), (48), (35) and we have proposition 1 and
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proposition 3.3 in [14], we have

S̆(Z, P̆(X, Y)W) = αg(Y, Z)[λ1λ2Γ(P)g(X,W) − λ21Γ(W)Γ(X)]

+
α

(n− 1)
g(Y, Z)[S̆F(X,W) + {(n− 1)λ1λ2 − λ

2
2}Γ(P)g(X,W)]

+ {(1− n)λ21 + λ
2
2}Γ(W)Γ(X)] + βg(Z,UB)g(Y,UB)[λ1λ2g(X,W)Γ(P)

− λ21Γ(W)Γ(X)] +
β

(n− 1)
g(Z,UB)g(Y,UB)[S̆F(X,W) + {(n− 1)λ1λ2

− λ22}Γ(P)g(X,W) + {(1− n)λ21 + λ
2
2}Γ(W)Γ(X)]

+ γg(Z,VB)g(Y, YB)[λ1λ2g(X,W)Γ(P) − λ21Γ(W)Γ(X)]

+
γ

(n− 1)
g(Z,VB)g(Y, VB)[[S̆F(X,W) + {(n− 1)λ1λ2

− λ22}Γ(P)g(X,W) + {(1− n)λ21 + λ
2
2}Γ(W)Γ(X)].

(52)

Since, S̆(X, Y) = 0, from (51) and (52), we have

S̆(X,W) = A ′′g(X,W) + B ′′E(X,W), (53)

where A ′′, B ′′ are non-zero functions and E(Y, Z) is a symmetric tensor func-
tion.

So, the manifold becomes nearly quasi-Einstein manifold with respect to
quarter symmetric connection. This completes the proof. �

6 Example of warped product on generalized quasi-
Einstein manifold with respect to quarter sym-
metric connection

Taking a local coordinate system in M such that g,∇, ∇̆,ω, φ, T have the local
expression, respectively, gij, Γ

h
ji , Γ̆

h
ji , ωi, φ

h
j , Thji then, by a direct computation,

we have

Thji = ωjφ
h
i −ωiφ

h
j .

In a local coordinate, the relation between a quarter-symmetric metric con-
nection and the Levi-Civita connection is [13],

Γ̆hji = Γ
h
ji +

1

2
ωj(φki + φik)g

kh −
1

2
ωi(φkj + φjk)g

kh −
1

2
ωk(φji + φij)g

kh (54)
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Now, we define a Riemannian metric g on M4 by the formula

ds2 = gijdx
idxj = (1+ 2p)

[
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

]
, (55)

where i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the standard coordinates of R4 and

p = ex
1

k2
and k is a non-zero constant. Then the only non-vanishing components

of the Christoffel symbols, the curvature tensor, the Ricci tensor and scalar
curvature are given by

Γ 122 = −
p

1+ 2p
= Γ 133 = Γ

1
44 = −Γ 111 = −Γ 212 = −Γ 313 = −Γ 414,

R1221 = R1331 = R1441 =
p

1+ 2p
, S11 =

3p

(1+ 2p)2
,

S22 = S33 = S44 =
p

(1+ 2p)2
, r =

6p

(1+ 3p)3
6= 0.

Let us consider the 1-form and the associated tensor φ as follows:

ω1 = c1,ω2 = 0,ω3 = 0,ω4 = 0,

where c1 is arbitrary scalar and

φ = (φij)


0 φ12 φ13 φ14

−φ12 0 φ23 φ24
−φ13 −φ23 0 φ34
−φ14 −φ24 −φ34 0,


where φij 6= 0, where i, j ∈ {1, 2, 3, 4}, and i 6= j.

From (54), we have Γ̆hji = Γ
h
ji .

The non-vanishing curvature tensors and the Ricci tensors with respect to
a quarter symmetric metric connection are

R̆1221 = R1221, R̆1331 = R1331, R̆1441 = R1441 =
p

1+ 2p

and

S̆11 = S11 =
3p

(1+ 2p)2
, S̆22 = S̆33 = S̆44 =

p

(1+ 2p)2
.

Let us now consider the associated scalars as follows:

α =
p

(1+ 2p)3
, β = −3, γ = 5p.
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In terms of local coordinate system, let us consider the 1-forms A and B as
follows:

Ai(x) =

{ √
p

1+2p , if i = 1

0, otherwise

and

Bi(x) =

{
1

1+2p , if i = 1

0, otherwise

then we have

S̆11 = αg11 + βA1A1 + γB1B1,

S̆22 = αg22 + βA2A2 + γB2B2,

S̆33 = αg33 + βA3A3 + γB3B3,

S̆44 = αg44 + βA4A4 + γB4B4.

Since all the cases other than (i)-(iv) are trivial, we can say that

Sij = αgij + βAiAj + γBiBj, for i, j = 1, 2, 3, 4.

Example 1 Let (M4, g) be a Riemannian manifold endowed with the metric
given by

ds2 = gijdx
idxj = (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the standard coordinates of R4 and

p = ex
1

k2
and k is a non-zero constant. Then (M4, g) is an G(QE)4 with respect

to quarter symmetric connection and also with nonvanishing and nonconstant
scalar curvature.

So, (M4, g) be a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where (i, j = 1, 2, 3, 4), p = ex
1

k2
, k constant is G(QE)4 with respect to quarter

symmetric connection.
Now, to define warped product on G(QE)4, we consider the warping function

f : R3 −→ (0,∞) by f(x1, x2, x3) =
√
(1 + 2p) and we observe that f > 0 is
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a smooth function. The line element defined on R3 × R which is of the form
B×f F, where B = R3 is the base and F = R is the fibre.

Therefore the metric ds2M can be expressed as ds2B + f
2ds2F i.e.,

ds2 = gijdx
idxj = (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2] + [

√
(1+ 2p)]2(dx4)2,

which is the example of warped product on generalized quasi-Einstein manifold
with respect to quarter symmetric connection.
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