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Abstract. Barnette’s conjecture states that every three connected cubic
bipartite planar graph (CPB3C) is Hamiltonian. In this paper we show
the existence of a family of CPB3C Hamiltonian graphs in which large
and large subgraphs are non-Hamiltonian.

1 Introduction

Barnette’s conjecture states that every three connected cubic bipartite planar
graph (CPB3C) is Hamiltonian. Goodey [7] proved that if all the faces of a
CPB3C graph are either quadrilaterals or hexagons, then the graph is Hamil-
tonian. Later Hertel [11] mentioned that if Barnette conjecture is true, then
perhaps Goodey’s result can be extended to show that successively large and
large subgraphs of Barnette graphs are Hamiltonian. We show that there exists
a family of CPB3C Hamiltonian graphs in which large and large subgraphs
are non-Hamiltonian.

Tait in (1884) conjectured that every cubic polyhedral graph is Hamilto-
nian, this came to be known as Tait’s conjecture. It was disproved by Tutte
(1946), who constructed a counter example with 46 vertices. Other researchers
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later found even smaller counterexamples, however none of these counterex-
amples is bipartite. Tutte himself conjectured that every cubic 3-connected
bipartite graph is Hamiltonian, but this was shown to be false by discovery of
a counterexample, the Horton graph [1]. David W. Barnett (1969) proposed
a weakened combination of Tait’s and Tutte’s conjecture, stating that every
cubic bipartite polyhedral graph is Hamiltonian. This conjecture was first an-
nounced in [3] and later in [8]. Tutte [18] proved that all planar 4-connected
graphs are Hamiltonian. Thomassen [14] extended this result by showing that
every planar 4-connected graph is Hamiltonian connected, that is, for any pair
of vertices, there is a Hamiltonian path with those vertices as end vertices. It
must be noted that if any one of the property of Barnette graph is deleted,
then it is non-Hamiltonian.

McKay et al. [15] confirmed through a combination of clever analysis and
computer search that all Barnette graphs with 64 or less vertices are Hamil-
tonian. In an announcement [2, 5], McKay used computer search to extend
this result to 84 vertices. This implies that if Barnette’s conjecture is indeed
false, then a minimal counterexample must contain at least 86 vertices, and
is therefore considerable larger than the minimal counterexample to Tait and
Tutte conjecture. This is not all we know about a possible counterexample,
another interesting result is that of Fowler, who in an unpublished manuscript
[6] provided a list of subgraphs that cannot appear in any minimal counterex-
ample to Barnette’s conjecture. For more definitions and notations of graph
theory, we refer to [16].

Goody [7] considers proper subgraphs of the Barnette graphs and proved
the following.

Theorem 1 Every Barnette graph which has faces consisting exclusively of
quadrilaterals and hexagons is Hamiltonian, and further more in all such
graphs, any edge that is common to both a quadrilateral and a hexagon is
a part of some Hamiltonian cycle.

Theorem 2 Every Barnette graph which has faces consisting of 7 quadrilat-
erals, 1 octagon and any number of hexagons is Hamiltonian, and any edge
that is common to both a quadrilateral and an octagon is a part of some Hamil-
tonian cycle.

Jensen and Toft [12] reported that Barnette conjecture is equivalent to the
following.

Theorem 3 Barnette’s conjecture is true if and only if for every Barnette
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graph G, it is possible to partition its vertices into two subsets so that each
induces an acyclic subgraph of G. ( This theorem is not correct)

Theorem 4 [10] Barnette’s conjecture holds if and only if any arbitrary edge
in a Barnette graph is a part of some Hamiltonian cycle.

Theorem 5 Barnette’s conjecture holds if and only if for any arbitrary face
in a Barnette graph there is a Hamiltonian cycle which passes through any two
arbitrary edges on that face.

Theorem 6 [13] Barnette’s conjecture holds if and only if for any arbitrary
face in a Barnette graph and for any arbitrary edges e1 and e2 on that face
there is a Hamiltonian cycle which passes through e1 and avoids e2.

Theorem 7 Barnette’s conjecture holds if and only if for any arbitrary path
P of length 3 that lies on a face in a Barnette graph, there is a Hamiltonian
cycle which passes through the middle edge in P and avoids both its leading
and trailing edges.

Theorem 8 [9] Barnette’s conjecture is true if and only if there is a constant
c > 0 such that each Barnette graph G contains a path on at least c|V(G)|
vertices.

Theorem 9 [14] The edges of any bipartite graph G can be colored with α
colors, where α is the minimum degree of vertices in G.

More than thirty papers have been published to strengthening the Barnette’s
conjecture, not only this, also several proofs of this conjecture have been put
forward so far but none of the proof is yet accepted universally. For references,
see [4].

2 Main result

The following theorem is the main result, which shows the existence of a family
of CPB3C Hamiltonian graphs in which large and large subgraphs are non-
Hamiltonian. The proof is by construction.

Theorem 10 There exist a family of CPB3C Hamiltonian graphs in which
large and large subgraphs are non-Hamiltonian.
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Proof. Suppose G is a graph of such family, see Figure 1. The vertex set of
graph G is colored with black and red as G is bipartite. If we remove a vertex
x (say) in G, we get a non-Hamiltonian graph G− x, see Figure 2. Since G is
cubic, let the edges incident on x be e1 = xu1, e2 = xu2, e3 = xu3. Since G is
Hamiltonian, so at least two of the three edges e1, e2, e3 are always included in
the Hamiltonian cycle of G. If vertex x is colored black, it is always adjacent
to red color vertices, as G is bipartite. Assume that the edges e1 and e2 are
included in the Hamiltonian cycle of G. If there is a cycle starting from x

to all other vertices of the graph G, then there exists a Hamiltonian path in
G− x beginning and ending with the vertices u1, u2 of the graph G− x. Thus
we get a non-Hamiltonian graph G − x. We form a large graph by taking 2n
copies of G−x (n as large as possible) with vertices of different copies colored
alternately, so that the vertices of two in different copies can be joined by
edges. The construction is done as follows.

e

x

e
e1
2

3

Figure 1: CPB3C Hamiltonian graph G
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Figure 2: CPB3C non-Hamiltonian graph G− x

Take two copies of G−x and we name them as G1 and H1. Let u11, u
1
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the vertices of degree two in G1 and v11, v
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1
3 be the vertices of degree two in
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H1. We assume u11, u
1
2, u

1
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1
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1
3 are colored black. (This

is possible since we can choose G1 and H1 in such a way so that the color of
vertices in G1 is interchanged with the color of vertices in H1). Consider the
graph S1 = G1∪H1∪{u11v
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the edges u11v
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3. Clearly S1 is CPB3C. Further S1 is Hamiltonian.

If any two edges from {u11v
1
1, u

1
2v
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1
3v
1
3} are removed, the resulting graph is

non-Hamiltonian. See Figure 3.

Figure 3: CPB3C Hamiltonian graph

Take four copies of G − x and we name them as G1, G2 and H1, H2. Let
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2
2, v

2
3 ∈ H2 be vertices

of degree 2. Further, we let u11, u
1
2, u

1
3, v

2
1, v

2
2, v

2
3 colored red and u21, u

2
2, u

2
3,

v11, v
1
2, v

1
3 colored black. Let C1 = w

1
1w

1
2w

1
3w

1
4 be a cycle of length four. Consider

the graph

S2 = G1 ∪G2 ∪H1 ∪H2 ∪C1 ∪ {u11u
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By the same argument as above, S2 is CPB3C Hamiltonian graph. Removal
of three edges makes the resulting graph non-Hamiltonian. See Figure 4.

Take 2n copies of G − x with n copies named as G1, G2, . . . Gn and n

copies named as H1, H2, . . . Hn. Let u11, u
1
2, u

1
3 ∈ G1, u

2
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3 ∈ G2 and so

on un1 , u
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3 ∈ Gn be vertices of degree 2. Similarly let v11, v
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n
2 , v

n
3 ∈ Hn be vertices of degree 2. Further

consider cycles of length four as C1, C2, . . . Cn−1. Continuing as in Case 2, we
form the graph Sn, which is clearly CPB3C Hamiltonian graph. The removal
of three edges joining any two adjacent copies of G − x produces a largest
non-Hamiltonian subgraph of Sn.
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Figure 4: CPB3C Hamiltonian graph

If we remove any of the edges which connects the different components of
G− x, we get a largest subgraph which is non-Hamiltonian. In this way, if we
continuously remove three such edges again and again, we get subgraphs all
of which are non-Hamiltonian. Since n is as large as possible, we get 2n such
non-Hamiltonian graphs. Not only this, if we further remove some edges from
all the smallest components of G − x), as shown in Figure 5, remaining large
subgraphs are non-Hamiltonian. In this way, we get large and large subsets of
CPB3C Hamiltonian graphs which are non- Hamiltonian. Thus we conclude
that there exist a family of CPB3C Hamiltonian graphs in which large and
large subsets are non-Hamiltonian.

Figure 5: Resulting graph
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In this way we construct a CPB3C Hamiltonian graph whose large and
large subsets are non-Hamiltonian. In other words, it is possible to construct
CPB3C Hamiltonian graph as large as possible, whose large and large subsets
are non-Hamiltonian. �
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