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Abstract. In the paper, the author discusses and computes bounds of
the sine and cosine along straight lines on the complex plane.

1 Motivations

In the theory of complex functions, the sine and cosine on the complex plane
C are denoted and defined respectively by

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
,

where z = x + iy, x, y ∈ R, and i =
√
−1 is the imaginary unit. When

z = x ∈ R, these two trigonometric functions become sin x and cos x which
satisfy the periodicity

sin(x+ 2kπ) = sin x, cos(x+ 2kπ) = cos x
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and the boundedness

0 ≤ | sin x| ≤ 1, 0 ≤ | cos x| ≤ 1 (1)

for k ∈ Z. On the other hand, when z = iy for y ∈ R,

sin(iy) =
e−y − ey

2i
→ ±i∞ and cos(iy) =

e−y + ey

2
→ +∞

as y → ±∞. These imply that the sine and cosine are bounded on the real
x-axis, but unbounded on the imaginary y-axis.

Motivated by the above boundedness, we naturally guess that the complex
functions sin z and cos z for z ∈ C are

1. bounded on all straight lines parallel to the real x-axis,

2. unbounded on all straight lines whose slopes are not horizontal.

In this paper, we will verify the above guesses and compute bounds for sin z
and cos z on all horizontal straight lines.

2 Unboundedness of sine and cosine on sloped and
vertical lines

On the sloped straight line y = α+ βx for constants α ∈ R and β 6= 0 on the
complex plane C, by the triangle inequality for complex numbers, we have

| sin z| = | sin(x+ i(α+ βx))|

=

∣∣∣∣ei[x+i(α+βx)] − e−i[x+i(α+βx)]2i

∣∣∣∣
=

∣∣∣∣e[ix−(α+βx)] − e−[ix−(α+βx)]

2i

∣∣∣∣
≥ 1
2

∣∣∣∣∣e[ix−(α+βx)]
∣∣− ∣∣e−[ix−(α+βx)]

∣∣∣∣∣
=
1

2

∣∣e−(α+βx) − e(α+βx)
∣∣

→ +∞, x→ ±∞
and

| cos z| = | cos(x+ i(α+ βx))|
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=

∣∣∣∣ei[x+i(α+βx)] + e−i[x+i(α+βx)]2

∣∣∣∣
=

∣∣∣∣e[ix−(α+βx)] + e−[ix−(α+βx)]

2

∣∣∣∣
≥ 1
2

∣∣∣∣∣e[ix−(α+βx)]
∣∣− ∣∣e−[ix−(α+βx)]

∣∣∣∣∣
=
1

2

∣∣e−(α+βx) − e(α+βx)
∣∣

→ +∞, x→ ±∞.
Consequently, the functions sin z and cos z are not bounded along any sloped
straight line.

On the vertical straight line x = γ for any constant γ ∈ R on the complex
plane, by the triangle inequality for complex numbers, we have

| sin z| = | sin(γ+ iy)| =

∣∣∣∣ei(γ+iy) − e−i(γ+iy)2i

∣∣∣∣
≥ 1
2

∣∣|ei(γ+iy)|− |e−i(γ+iy)|
∣∣ = 1

2
|e−y − ey| → +∞

and

| cos z| = | cos(γ+ iy)| =

∣∣∣∣ei(γ+iy) + e−i(γ+iy)2

∣∣∣∣
≥ 1
2

∣∣|ei(γ+iy)|− |e−i(γ+iy)|
∣∣ = 1

2
|e−y − ey| → +∞

as y→ ±∞. Consequently, the functions sin z and cos z are not bounded along
any vertical straight line.

3 Bounds of the sine on horizontal straight lines

On the horizontal straight line y = α for any constant α ∈ R on the complex
plane C, by the triangle inequality for complex numbers, we have

| sin z| = | sin(x+ iα)| =

∣∣∣∣ei(x+iα) − e−i(x+iα)2i

∣∣∣∣
=

∣∣∣∣e(ix−α) − e−(ix−α)

2i

∣∣∣∣ = 1

2

∣∣∣∣eixeα − e−ixeα
∣∣∣∣
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≤ 1
2

(∣∣∣∣eixeα
∣∣∣∣+ ∣∣e−ixeα∣∣) =

1

2

(
1

eα
+ eα

)
and

| sin z| = | sin(x+ iα)| =

∣∣∣∣ei(x+iα) − e−i(x+iα)2i

∣∣∣∣
=

∣∣∣∣e(ix−α) − e−(ix−α)

2i

∣∣∣∣ = 1

2

∣∣∣∣eixeα − e−ixeα
∣∣∣∣

≥ 1
2

∣∣∣∣∣∣∣∣eixeα
∣∣∣∣− ∣∣e−ixeα∣∣∣∣∣∣ = 1

2

∣∣∣∣ 1eα − eα
∣∣∣∣.

Therefore, it follows that

1

2

∣∣∣∣ 1eα − eα
∣∣∣∣ ≤ | sin(x+ iα)| ≤ 1

2

(
1

eα
+ eα

)
, x, α ∈ R.

When z = 2kπ+ iα for k ∈ Z, we have

sin z = sin(2kπ+ iα) =
ei(2kπ+iα) − e−i(2kπ+iα)

2i
= −

i

2

(
1

eα
− eα

)
.

When z = 2kπ+ π
2 + iα for k ∈ Z, we have

sin z = sin

(
2kπ+

π

2
+ iα

)
=
ei(2kπ+π/2+iα) − e−i(2kπ+π/2+iα)

2i

=
ei(π/2+iα) − e−i(π/2+iα)

2i
=
e−α + eα

2
=
1

2

(
1

eα
+ eα

)
.

When z = (2k+ 1)π+ iα for k ∈ Z, we have

sin z = sin((2k+ 1)π+ iα) =
ei((2k+1)π+iα) − e−i((2k+1)π+iα)

2i

=
ei(π+iα) − e−i(π+iα)

2i
=
1

2i

(
eα −

1

eα

)
= −

i

2

(
eα −

1

eα

)
.

When z = (2k+ 1)π+ π
2 + iα for k ∈ Z, we have

sin z = sin

(
(2k+ 1)π+

π

2
+ iα

)
=
ei((2k+1)π+π/2+iα) − e−i((2k+1)π+π/2+iα)

2i

=
ei(3π/2+iα) − e−i(3π/2+iα)

2i
= −

e−α + eα

2
= −

1

2

(
1

eα
+ eα

)
.
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4 Bounds of the cosine on horizontal straight lines

On the horizontal straight line y = α for any constant α ∈ R on the complex
plane C, by the triangle inequality for complex numbers, we have

| cos z| = | cos(x+ iα)| =

∣∣∣∣ei(x+iα) + e−i(x+iα)2

∣∣∣∣
=

∣∣∣∣e(ix−α) + e−(ix−α)

2

∣∣∣∣ = 1

2

∣∣∣∣eixeα + e−ixeα
∣∣∣∣

≤ 1
2

(∣∣∣∣eixeα
∣∣∣∣+ ∣∣e−ixeα∣∣) =

1

2

(
1

eα
+ eα

)
and

| cos z| = | cos(x+ iα)| =

∣∣∣∣ei(x+iα) + e−i(x+iα)2

∣∣∣∣
=

∣∣∣∣e(ix−α) + e−(ix−α)

2

∣∣∣∣ = 1

2

∣∣∣∣eixeα + e−ixeα
∣∣∣∣

≥ 1
2

∣∣∣∣∣∣∣∣eixeα
∣∣∣∣− ∣∣e−ixeα∣∣∣∣∣∣ = 1

2

∣∣∣∣ 1eα − eα
∣∣∣∣.

Therefore, it follows that

1

2

∣∣∣∣ 1eα − eα
∣∣∣∣ ≤ | cos(x+ iα)| ≤ 1

2

(
1

eα
+ eα

)
, x, α ∈ R.

When z = 2kπ+ iα for k ∈ Z, we have

cos z = cos(2kπ+ iα) =
ei(2kπ+iα) + e−i(2kπ+iα)

2
=
1

2

(
1

eα
+ eα

)
.

When z = 2kπ+ π
2 + iα for k ∈ Z, we have

cos z = cos

(
2kπ+

π

2
+ iα

)
=
ei(2kπ+π/2+iα) + e−i(2kπ+π/2+iα)

2

=
ei(π/2+iα) + e−i(π/2+iα)

2
=
ie−α − ieα

2
=
i

2

(
1

eα
− eα

)
.

When z = (2k+ 1)π+ iα for k ∈ Z, we have

cos z = cos((2k+ 1)π+ iα) =
ei((2k+1)π+iα) + e−i((2k+1)π+iα)

2
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=
ei(π+iα) + e−i(π+iα)

2
= −

1

2

(
1

eα
+ eα

)
.

When z = (2k+ 1)π+ π
2 + iα for k ∈ Z, we have

cos z = cos

(
(2k+ 1)π+

π

2
+ iα

)
=
ei((2k+1)π+π/2+iα) + e−i((2k+1)π+π/2+iα)

2

=
ei(3π/2+iα) + e−i(3π/2+iα)

2
=

−ie−α + ieα

2
= −

i

2

(
1

eα
− eα

)
.

5 Alternative proofs

Since sin
(
z + π

2

)
= cos z for z ∈ C, there is a similar behaviour of sine and

cosine in the complex plane C. Hence, in what follows, we just only consider
sine.

It is easy to see that sine, cosine, hyperbolic sine, and hyperbolic cosine have
relations

sin(it) = i sinh t, sinh(it) = i sin t, cos(it) = cosh t, cosh(it) = cos t.

Accordingly, we have

sin z = sin(x+ iy) = sin x cos(iy) + cos x sin(iy) = sin x coshy+ i cos x sinhy

and
| sin z|2 = sin2 x cosh2 y+ cos2 x sinh2 y.

On any horizontal line y = c, say, we have

| sin z|2 = sin2 x cosh2 c+ cos2 x sinh2 c

= sin2 x cosh2 c+ cos2 x
(
cosh2 c− 1

)
= cosh2 c− cos2 x

or
| sin z|2 = 1+ sinh2 c− cos2 x = sinh2 c+ sin2 x.

Consequently, sine is bounded on all horizontal lines.
Look at a non-horizontal line, where z = γ + αx + iβy for β 6= 0 (by non-

horizontality). Here

| sin z|2 = sin2(γ+ αx) cosh2(βy) + cos2(γ+ αx) sinh2(βy).
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If the line is sloped so that α 6= 0 (by non-verticality), then both terms in the
above equation are unbounded, so that sine is unbounded.

If the line is vertical, so that α = 0, we have to be a tad careful! If γ is not
a multiple of π, the term sin2(γ + αx) cosh2(βy) is unbounded; and if γ is a
multiple of π, then the term cos2(γ+ αx) sinh2(βy) is unbounded. In a word,
sine is unbounded on all non-horizontal lines.

6 Conclusions

On the sloped straight line y = α + βx for α ∈ R and β 6= 0 on the complex
plane C, the trigonometric functions sin z = sin(x + i(α + βx)) and cos z =
cos(x+ i(α+ βx)) are unbounded.

On the vertical straight line x = γ for any scalar γ ∈ R on the complex plane
C, the trigonometric functions sin z = sin(γ + iy) and cos z = cos(γ + iy) are
unbounded.

On the horizontal straight line y = α for any constant α ∈ R on the complex
plane C, the trigonometric functions sin z = sin(x+ iα) and cos z = cos(x+ iα)
are bounded by the double inequalities

| sinhα| ≤ | sin(x+ iα)| ≤ coshα, x, α ∈ R (2)

and
| sinhα| ≤ | cos(x+ iα)| ≤ coshα, x, α ∈ R (3)

whose equalities are respectively attained at points

2kπ+ iα, 2kπ+
π

2
+ iα, (2k+ 1)π+ iα, 2kπ+

3π

2
+ iα

with concrete values

sin(2kπ+ iα) = cos

(
2kπ+

3π

2
+ iα

)
= i sinhα,

sin

(
2kπ+

π

2
+ iα

)
= cos(2kπ+ iα) = coshα,

sin((2k+ 1)π+ iα) = cos

(
2kπ+

π

2
+ iα

)
= −i sinhα,

sin

(
2kπ+

3π

2
+ iα

)
= cos((2k+ 1)π+ iα) = − coshα

for k ∈ Z.
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Letting α → 0 in the double inequalities (2) and (3) recovers inequalities
in (1) for x ∈ R.

On the horizontal belt zones 0 ≤ A ≤ y ≤ B and −B ≤ y ≤ −A ≤ 0

on the complex plane C, the trigonometric functions sin z = sin(x + iy) and
cos z = cos(x+ iy) are bounded by the double inequalities

sinhA ≤ | cos(x± iy)| ≤ coshB

and

sinhA ≤ | sin(x± iy)| ≤ coshB

for x ∈ R.

7 An open problem

The inequalities in (1) can be refined as

2

π
x ≤ sin x ≤ x and 1−

2

π
x ≤ cos x ≤ 1− x2

π
(4)

for 0 ≤ x ≤ π
2 . See [1, p. 143], [3, p. 22], and [4, p. 33]. These two double

inequalities in (4) are respectively called as Jordan’s and Kober’s inequality.
These two double inequalities have been further refined, generalized, applied,
and surveyed in the papers [2, 5, 6, 8, 9, 10] and closely related references
therein. Motivated by these refinements, generalizations, and applications, we
pose an open problem: can one refine, generalize, and apply the double in-
equalities (2) and (3) for x ∈

[
0, π2

]
and α 6= 0?

Finally we remark that this paper is a revised version of the preprint [7].
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