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Universidad Nacional de Colombia,
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Abstract. In the present article we introduce two new combinatorial
interpretations of the r-Whitney numbers of the second kind obtained
from the combinatorics of the differential operators associated to the
grammar G := {y → yxm, x → x}. By specializing m = 1 we obtain
also a new combinatorial interpretation of the r-Stirling numbers of the
second kind. Again, by specializing to the case r = 0 we introduce a new
generalization of the Stirling number of the second kind and through
them a binomial type family of polynomials that generalizes Touchard’s
polynomials. Moreover, we recover several known identities involving the
r-Dowling polynomials and the r-Whitney numbers using the combinato-
rial differential calculus. We construct a family of posets that generalize
the classical Dowling lattices. The r-Withney numbers of the first kind
are obtained as the sum of the Möbius function over elements of a given
rank. Finally, we prove that the r-Dowling polynomials are a Sheffer
family relative to the generalized Touchard binomial family, study their
umbral inverses, and introduce [m]-Stirling numbers of the first kind.
From the relation between umbral calculus and the Riordan matrices we
give several new combinatorial identities
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1 Introduction

The r-Whitney numbers of the second kind Wm,r(n, k) were defined by Mező
[24] as the connecting coefficients between some particular polynomials. For
non-negative integers n, k and r with n ≥ k ≥ 0 and for any integer m > 0

(mx+ r)n =

n∑

k=0

mkWm,r(n, k)x
k,

where xn = x(x− 1) · · · (x− n+ 1) for n ≥ 1 and x0 = 1.
Cheon and Jung [8] showed that the numbers Wm,r(n, k) are related to

the Dowling lattices as follows. Let Qn(G) be the Dowling lattice of rank n,
where G is a finite group of order m. The coefficient of rs of the polynomial∑n
k=0Wm,r(n, k) is equal to the number of elements of Qn(G) containing n−s

distinct unit functions. This sequence generalizes the Whitney numbers of the
second kind, Wm(n, k) =Wm,1(n, k), that count the total number of elements
of corank k in Qn(G) [11].

Mihoubi and Rahmani [27] found an interesting combinatorial interpretation
for the r-Whitney numbers of the second kind by using colored set partitions.
Recall that a partition of a set A is a class of disjoint subsets of A such that the
union of them covers A. The subsets are called blocks. Let r, n ≥ 0 be integers,
and let An,r be the set defined by An,r := {1, 2, . . . , r, r + 1, . . . , n + r}. The
elements 1, 2, . . . , r will be called special elements. A block of a partition of
the above set is called special if it contains special elements. Then Wm,r(n, k)
counts the number of the set partitions of An,r in k+r blocks, such that the el-
ements 1, 2, . . . , r are in distinct blocks (i.e., any special block contains exactly
one special element). All the elements but the last one in non-special blocks
are coloured with one of m colours independently and neither the elements in
the special blocks nor the special blocks are coloured.

The r-Whitney numbers satisfy the following recurrence relation [24]

Wm,r(n, k) =Wm,r(n− 1, k− 1) + (km+ r)Wm,r(n− 1, k).

Moreover, these numbers have the exponential generating function [24]:

∞∑
n=k

Wm,r(n, k)
zn

n!
=
erz

k!

(
emz − 1

m

)k
. (1)

Note that if (m, r) = (1, 0) we obtain the Stirling numbers of the second
kind, if (m, r) = (1, r) we have the r-Stirling (or noncentral Stirling) numbers
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[4], and if (m, r) = (m, 1) we have the Whitney numbers [1, 2]. Many proper-
ties of the r-Whitney numbers and their connections to elementary symmet-
ric functions, matrix theory, special polynomials, combinatorial identities and
generalizations can be found in [9, 10, 12, 18, 20, 21, 24, 25, 26, 28, 29, 37].

The combinatorial differential calculus was introduced by Joyal in the frame-
work of combinatorial species (see for example [15, 3, 16]). However, by using
directly exponential formal power series and the combinatorics of their coeffi-
cients (see [19]), the fundamentals of the approach can be explained without
the use of the categorical framework involved in the theory of species. The com-
binatorial differential calculus is closely related to Chen context-free grammar
method [6]. However, they are not equivalent. Differential operators that are
not derivations can be combinatorially interpreted, and algebraic formulas ob-
tained from that interpretation. Only derivations have a counterpart in the
context of Chen grammars. The substitution rules in a context-free grammar
can be translated into a differential operator. By the iterated application of
the combinatorial version of it, the associated combinatorial objects emerge,
and not infrequently, in a simple and natural way.

Using the combinatorial differential calculus we present a new combinato-
rial interpretation to the r-Whitney numbers of the second kind. As a special
case we get a new combinatorial interpretation for the r-Stirling numbers of
the second kind and introduce the [m]-Stirling numbers of the second kind,
S[m](n, k). Through them we define the [m]-Touchard polynomials, that gen-
eralize the classical family and are also of binomial type. Their umbral inverse
give us the [m]-Stirling numbers of the first kind. The combinatorial inter-
pretation of the r-Whitney numbers (and of the generalization of the Stirling
numbers) of the second kind we present here are very natural. We construct a
family of posets Qn,r(G), G a group of order m, that generalize the Dowling
lattices. Our interpretation of r-Withney numbers directly count the number
of elements of a given rank on those posets, and by Möbius inversion we get the
r-Whitney numbers of the first kind, as the sum of their Möbius function eval-
uated at elements of a given rank (Theorem 2 bellow). The r-Stirling numbers
of the first and second kind are interpreted in a similar way by specializing G
to the trivial group G = {e}. Also a similar interpretation is given in terms of
a subposet Qn,0(G) of Qn,r(G) for the [m]-Stirling numbers (see Remark 2).

By using classical results of umbral calculus we get that the r-Dowling poly-
nomials are of Sheffer type relative to the [m]-Touchard binomial family. Fi-
nally, from the relation between umbral calculus and the Riordan matrices we
give several new combinatorial identities involving the r-Whitney number of
both kinds, Bernoulli polynomials and Euler polynomials.
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2 New combinatorial models for r-Whitney,
r-Stirling, and new [m]-Stirling numbers

Chen [6] introduced a combinatorial method by means of context-free grammar
to study exponential structures. A context-free grammar G over an alphabet
X, whose symbols are commutative indeterminates, is a set of productions or
substitutions rules that replace a symbol of X by a formal function (formal
power series) in the set of indeterminates X, x→ φx(X), x ∈ A.

Here A is a subset of the alphabet X. The formal derivative D is a linear
operator defined with respect to a context-free grammar G such that for a
letter x ∈ A acts by substitution by φ(X), and it is extended recursively as a
derivation. For any formal functions u and v we have:

D(u+v) = D(u)+D(v), D(uv) = D(u)v+uD(v), D(f(u)) =
∂f(u)

∂u
D(u),

where f(x) is a formal power series. For more applications of the context-free
grammar method see for example [5, 7, 13, 17].

The grammar formal derivativeD can be equivalently written as a derivation
in the algebra of formal power series over a ring R containing Q, R[[X]].

D =
∑

x∈A
φx(X)∂x.

For A infinite, we have to make a summability assumption over the family of
formal power series {φx(X)}x∈A. The variables in X are thought of as colors.
Each operator φx(X)∂x is combinatorially interpreted as a corolla having as
root a ghost vertex of color x and weighted with the coefficients of the series
φ(X) according with the distribution of colors of the leaves in the corolla. A
formal power series F(X) are also represented by corollas in a similar way but
without the ghost vertex. The combinatorial representation of the operator
acting over a series F(X) is obtained by dropping over the combinatorial rep-
resentation of F(X) corollas whose ghost vertices replace vertices of the same
color on corollas representing F (see Figure 1). Details and proofs of why this
combinatorial approach works can be seen in [19].

As an example let us consider the Stirling grammar ([6])

G :=

{
y→ xy

x→ x.
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Figure 1: Corolla operator φ(X)∂i applied to F.

Applying the associated formal operator n times to y, it is known that

Dny =

n∑

k=1

S(n, k)xky, (2)

where S(n, k) are the Stirling numbers of the second kind. The differential
operator associated to that grammar is D = xy∂y+x∂x. We call it the Stirling
operator. The variables x and y are represented by vertices in two colors,
yellow and white. The operator D has as combinatorial representation the
sum of two corollas. The operator xy∂y acts over a white vertex replacing it
by a ‘ghost’ vertex ∗ and connecting it to a yellow vertex x and to white one
y. The operator x∂x places a ghost vertex in a yellow vertex and connects it
to another yellow vertex (see Figure 2).

Figure 2: Combinatorial operator D = xy∂y + x∂x.

When applying the operator more than one time, for simplicity, we replace
the ghost vertices by numbers to keep track of the order in which the operator
was applied. If we apply it n times to y (combinatorially represented as a
singleton vertex of color white) we obtain an increasing tree with a path (spine)
from the root to the white vertex on the top. Along each node of the spine
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there are linear branches having in the top of each of them one yellow vertex
with weight y. The elements of the branches along the spine form a partition
π of [n]. The weight of each such tree is equal to x to the number of branches
(blocks of π) times y, the weight of the white vertex on top of the spine (see
Figure 3). In this way we get a visual proof of Equation (2).

Figure 3: A tree enumerate by D7y = (xy∂y + x∂x)
7y that corresponds to the

partition π = {{1, 3}{2, 5, 7}{4, 6}}.

Let us now consider the context-free grammar G defined in [13].

G :=

{
y→ yxm,

x→ x.

Hao et al. [13] proved as a particular case that

Dnyx =

n∑

k=0

Wm(n, k)yx
mk+1.

This grammar G corresponds to the differential operator D = yxm∂y+ x∂x.
In Figure 4 we show the combinatorial interpretation of this operator for

m = 2. Moreover, by the main theorem of [13] we have

Dnyxr =

n∑

k=0

Wm,r(n, k)yx
mk+r. (3)

In Figures 5 and 6, we show the first and second derivative for m = 2 and
r = 3, respectively.

By the iterated application of the combinatorial version of the operator
D, dropping the corollas over one white vertex and r yellow vertices (yxr)
we obtain the following combinatorial structure. A forest consisting of one



A new approach to the r-Whitney numbers 393

∗ ∗

yx2∂y x∂x

Figure 4: Combinatorial interpretation for the operator D = yxm∂y + x∂x,
with m = 2.

Dyx3 = yx5 + 3yx3

1 11 1

Figure 5: The first derivative.

increasing tree, grown from the initial white vertex y, followed by r linearly
ordered branchless increasing trees (grown from the r yellow initial vertices,
xr). The trees of this forest are characterized as follows (see Figure 7).

1. The first tree has a spine of white vertices with an unlabeled white vertex
at the top having weight y. There are m (totally ordered) branches of
yellow vertices that sprout from each vertex on the spine. Each branch
has an unlabeled yellow vertex at the top, with weight x.

2. Each of the r branchless increasing trees consists of a set of internal
vertices (that may be empty) with an unlabeled yellow vertex at the
top, having weight x.

The total weight of each of this forests is equal to yxmk+r, where k is the
number of vertices in the spine. Then, from Equation (3) we have that the
r-Whitney numbers Wm,r(n, k) count the number of forests as above, having
k vertices in the spine, and n internal vertices in total.

Reinterpreting the forests of increasing trees we obtain the following com-
binatorial interpretation of Wm,r(n, k).

Theorem 1 The r-Whitney numbers Wm,r(n, k) count pairs of the form
({(B, fB)}B∈π,V) where

1. The first component is a partial partition of {1, 2, . . . , n}, having exactly
k blocks, ]B∈πB = A ⊆ {1, 2, . . . , n}, plus a coloring on each block,
fB : B → [m]. The coloring on fB assign to the minimum element of B
the color 1.
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D2y3x = yx7 + 8yx5 + 9yx3

1

2

2 2

2

2

1 1

1

11

1 1 1

1 1 1

1 1 1

1 1 1

2 2

2

2 2

2

2 2

2

2 2

22

Figure 6: The second derivative.

2. The second component V = (B1, B2, . . . , Br) is a weak r-composition of
[n] −A

r⊎

j=1

Br = [n] −A.

Proof. We are going to prove that the first tree is in bijection with the colored
partitions described in Item (1). We assign to each vertex of the spine of a
given tree the set of vertices of the m branches attached to it plus the vertex
itself. In this way we obtain the partial partition π with k blocks in total. Then
color the vertices on the ith branch of each block with color i, i = 1, 2, . . . ,m,
and assign color 1 to the vertex on the spine. Observe that, since the tree is
increasing, the vertex on the spine has the minimum label of its block. This
construction is clearly reversible (see Figure 7). The r branchless trees are
naturally associated to the composition V by assigning the ith tree its set of
internal vertices Bi.
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Figure 7: Whitney forest for m = 2 and r = 3.

�

We represent a colored set (B, fB) by placing the color of each element as its
exponent (B, fB) ≡ {bf(b)|b ∈ B}. In this way, the colored partition associated
to the tree in Figure 7 is {{11, 81, 132}, {21, 31, 52, 72}, {61, 91}}. The composition
is equal to V = ({4, 10}, ∅, {11, 12}).

Example 1 The r-Whitney number W2,2(2, 2) = 1, the pair being
({{11}, {21}}, (∅, ∅)). For W2,3(2, 1) = 8, it enumerates pairs, the first compo-
nent is a 2-colored partition on a subset A of {1, 2} having one block. The
second component a weak 3-composition of [2] −A. The pairs being

1. ({{11, 21}}, (∅, ∅, ∅)),

2. ({{11, 22}}, (∅, ∅, ∅)),

3. ({{11}}, ({2}, ∅, ∅)),

4. ({{11}}, (∅, {2}, ∅)),

5. ({{11}}, (∅, ∅, {2})),

6. ({{21}}, ({1}, ∅, ∅)),

7. ({{21}}, (∅, {1}, ∅)),

8. ({{21}}, (∅, ∅, {1})).
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Remark 1 We get the following combinatorial interpretation for the gener-
alized Stirling numbers of the second kind obtained by specializing r and m.

1. For m = 1 we get a combinatorial interpretation for the r-Stirling num-
bers of the second kind Sr(n, k). They count the pairs (π,V), π a parti-
tion of some subset A of [n], V a weak r-composition of [n] −A.

2. For r = 0 we get a new generalization S[m](n, k) of the Stirling num-
bers of the second kind. It counts the number of colored partitions, as in
Theorem 1, Item (1), but over the whole set [n].

Definition 1 We define the [m]-Touchard polynomials, T
[m]
n (x), by

T
[m]
n (x) :=

n∑

k=1

S[m](n, k)xk.

The polynomial family {T
[m]
n (x)}∞n=0 is of binomial type, i.e.,

T
[m]
0 (x) = 1,

T
[m]
n (x+ y) =

n∑

k=0

(
n

k

)
T
[m]
k (x)T

[m]
n−k(y).

We shall prove it in Section 5.

3 The r-Dowling posets

Let B1 and B2 be two disjoint sets, and fi two functions, fi : Bi → C, i = 1, 2.
Recall that the disjoint union of f1 and f2, f1 ] f2 : B1 ] B2 → C is defined as
follows:

f1 ] f2(x) =
{
f1(x), if x ∈ B1;
f2(x), if x ∈ B2.

Let G be a finite group of order m. We consider the set of pairs as in Theorem
1, but where each function fB, B ∈ π, colors the elements of the block B with
elements of the group G (instead of [m]) in such a way that it assigns to the
minimum element of B the identity of G. We call that kind of colorations
unital. Consider functions f : [n] → G of the form f = ]B∈πfB, where each
coloring fB : B→ G is unital. By simplicity, the pair (π, f) will be denoted by
πf and will be called a (unital) colored partition. Let Qn,r(G, k) be the set of
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unital colored partitions-composition pairs on [n], where the colored partition
has exactly k blocks. Denote by Qn,r(G) the union ]nk=0Qn,r(G, k), i.e., the set
of colored partition-composition pairs (πf,V) having π an arbitrary number of
blocks, k = 0, 1, 2, . . . , n. Clearly, by Theorem 1, the number of unital colored
partition-composition pairs in Qn,r(G, k) is the r-Whitney number Wm,r(n, k),
that is Wm,r(n, k) = |Qn,r(G, k)|. We are going to define a partial order on
Qn,r(G) such that its ranked Möbius function gives us the r-Whitney numbers
of the first kind,

wm,r(n, k) =
∑

(πf,V), |π|=k

µ(0̂, (πf,V)). (4)

This construction generalizes the classical Dowling lattice [11], recovered as
a particular case of this by making r = 1.

For a coloration f : A→ G, and an element g of the group, we define a new
coloration f ∗ g by

(f ∗ g)(x) := f(x) ∗ g, x ∈ A,
where ∗ is the operation of the group.

We introduce two kind of operations on the set Qn,r(G). Let (πf,V) ∈
Qn,r(G). We obtain another colored partition-composition pair (τh,V ′) ∈
Qn,r(G) by the following two kinds of operations.

1. The compositions remain unchanged, i.e., V = V ′, and τ is obtained
from π by joining some blocks of π, B1, B2, . . . , B`, B = ]`i=1Bi (we assume
that the family is listed according with the minimum element of the
blocks; minBi < minBi+1). The rest of blocks remain the same. The
coloring h is obtained in the block B as a unital linear combination

hB = fB1 ∗ g1 ] fB2 ∗ g2 ] · · · ] fB` ∗ g`, (5)

where g1 = e is the identity ofG, and g2, g3, . . . , g` are arbitrary elements
of G. The coloring on the rest of the blocks of τ remain the same, hB ′ =
fB ′ , for B ′ 6= B. It is clear that hB is again unital.

2. The components of V ′ are the same as the components of V except one,
say Vj, which is augmented by some blocks of π; while π is reduced by
these blocks. Precisely:

V ′i = Vi, for i 6= j, and V ′j = Vj ∪
⋃̀

i=1

Bi,

π ′ = π− {B1, B2, . . . , B`}
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From now on we follow the convention, for concrete examples, of separating
the colored partition-composition pair (πf,V) with double bars,

πf||V := (πf,V)

A colored partition πf can be represented as a factored monomial with expo-
nents in G

πf ≡
∏

B∈π

(∏

b∈Bi
bf(b)

)
. (6)

For example, if G = F×5 is the multiplicative group of the Galois field F5 =
Z/(5), the colored partition {{11, 83, 132}, {21, 34, 53, 72}, {61, 93}} is represented
as the factored monomial (11 83 132)(21 34 53 72)(61 93). A unital linear combi-
nation as in Equation (5) can be represented as the expansion of a monomial
of monomials,

∏

b∈B
bh(b) =

∏̀

i=1

(∏

b∈Bi
bfBi (b)

)gi
=
∏

b∈B
b]

`
i=1fBi (b)∗gi .

For example, 11 83 132 22 33 51 74 64 92 = (11 83 132)1(21 34 53 72)2(61 93)4 repre-
sents the unital linear combination g1 = 1, g2 = 2, g3 = 1 and g4 = 2, with
B1 = {1}, B2 = {2, 3, 5, 7}, B3 = {6, 9}, B4 = {8, 13}. The operations (1) and (2)
are clearly closed on Qn,r(G). Now we can define the partial order on Qn,r(G).

Definition 2 Let (πf,V) and (τh,V ′) be two elements of Qn,r(G). We say
that

(πf,V) ≤ (τh,V ′)

if (τh,V ′) can be obtained from (πf,V) by any sequence of operations (1) or
(2) above. It includes de empty sequence, that gives us (πf,V) = (τh,V ′).
In other words, ≤ is defined to be the transitive and reflexive clousure of the
union of the binary relations defined by operations (1) and (2).

The resulting relation is antisymmetric because the operations (1) and (2)
are directed. If (τh,V ′) is obtained from (πf,V) by any non empty set of
operation, we can not reverse those changes and go back to (πf,V) by using
any sequence of these operations. This is because each of them increases the
quantity max{|B| : B ∈ π} ∪ {|Vj| : j = 1, 2, . . . , r}, the maximum of the sizes
of blocks of the partition together with those of the composition. The poset
Qn,r(G) has a least element 0̂ = 1|2| . . . |n||(∅, ∅, . . . , ∅). The maximal elements
are of the form ∅||V, V being a composition of [n].
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Example 2 Consider the set Q11,2(G), where G = F×5 . Its element

2 52|3 43|6 74 83 9|10 112||({1}, ∅)

comes from
πf||V = 2 52|3 43|6 74| 8 92|10 112||({1}, ∅)

by an operation of type (1), because 6 74 83 9 = (6 72)(8 92)3. Similarly,

3 43|6 74|8 92||({1, 2, 5, 10, 11}, ∅)

is obtained from πf||V by an operation of type (2).

It is easy to check the following proposition, that gives an equivalente way of
defining the partial order on Qn,r(G).

Proposition 1 Let (πf,V) and (τh,V ′) be two elements of Qn,r(G). We have
that (πf,V) ≤ (τh,V ′) if and only if

1. For every s = 1, 2, . . . , r, Vs ⊆ V ′s .

2. Every block Bi of π = {B1, B2, . . . , Bk} is either contained in V ′s for some
s ∈ [r] or in some block B of τ. In the second case, we have that B =
]Bi⊆BBi, and for each i; Bi ⊆ B, there exists a gi ∈ G such that h|Bi =
fBi ∗ gi. In the case in which minBi = minB, then gi = e.

Lemma 1 Let (πf,V) be an element of Qn,r(G), π having exactly k blocks.
Then the set of elements (τh,V ′) greater than or equal to (πf,V), such that τ
has exactly j ≤ k blocks, is equal to the r-Whitney number Wm,r(k, j).

Proof. Order de blocks of π according with their minimum elements, π =
{B1, B2, . . . , Bk}, minBi < minBi+1. For each block B of τ and s = 1, 2, . . . , r,
define the sets (subsets of [k]), B̂ := {i|Bi ⊆ B} and V̂ ′s = {i|Bi ⊆ V ′s}. By
part (2) of Proposition 1, we have hB = ]

i∈B̂fBi ∗ gi. We define the quotient

coloration hq by hq
B̂
(i) = gi, i ∈ B̂. Let i0 be the minimum element of B̂.

Since the elements of π are listed according with their minimum element, the
minimum of Bi0 is also the minimum of the whole set B. Let x = minBi0 . Since
hB and fBi0 are both unital, we have

e = hB(x) = fBi0 (x) ∗ gi0 = e ∗ gi0 = gi0 = h
q

B̂
(i0).

Then, hq
B̂

is unital for every B̂ ∈ τ̂, and uniquely obtained from h and f. By

part (2) of Proposition 1, (τ̂h
q
, V̂ ′) is a colored partition-composition pair on
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[k]. The correspondence (τh,V ′) 7→ (τ̂h
q
, V̂ ′) is a bijection, and we have that

|τ| = j = |τ̂|. The inverse (τ̂h
q
, V̂ ′) 7→ (τh,V ′) is obtained by making

B := ]
i∈B̂Bi

hB := ]
i∈B̂fBi ∗ h

q(i)

V ′s := Vs ] (]
i∈V̂ ′sBi), s = 1, 2, . . . , r.

�

Example 3 As an example of the bijection in Lemma 1, let

πf||V = 2 52|3 43|6 74| 8 92|10 112||({1}, ∅)

and
τh||V ′ = 6 74 83 9 102 114||({1, 2, 5}, {3, 4}).

We shall verify that πf||V ≤ τh||V ′ and construct τ̂h
q
||V̂ ′.

Enumerating the blocks of π we have B1 = {2, 5}, B2 = {3, 4}, B3 = {6, 7},
B4 = {8, 9}, B5 = {10, 11}. Since

6 74 83 9 102 114 = (6 74)1(8 92)3(10 112)2

and
({1, 2, 5}, {3, 4}) = ({1} ∪ {2, 5}, ∅ ∪ {3, 4}) = ({1} ∪ B1, ∅ ∪ B2),

we have that πf||V ≤ τh||V ′, and get τ̂h
q
||V̂ ′ = 31 43 52||({1}, {2}).

The poset Qn,r(G) is ranked. The rank of an element is n − k, k being the
number of blocks of the colored partition.

Theorem 2 The sum of the Möbius function over the elements of rank n−k in
Qn,r(G) gives us the r-Withney number of the first kind wm,r(n, k). Denoting
by µ the Möbius function of the poset Qn,r(G), we have

wm,r(n, k) =
∑

(πf,V), |π|=k

µ(0̂, (πf,V)). (7)

Proof. Define the matrix C(n, k) to be the right hand side of Eq. (7). It is
enough to prove that

∑

0≤k≤n
C(n, k)Wm,r(k, j) = δn,j.
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Let (τh,V ′) be an element of Qn,r(G, j). By properties of the Möbius function
we have that

∑

0̂≤(πf,V)≤(τh,V ′)

µ(0̂, (πf,V)) = δ(0̂, (τh,V ′)) = δn,j. (8)

Summing over all the elements ofQn,r(G, j), interchanging sums and classifying
by the size of π, we get

δn,j =
∑

(τh,V ′)∈Qn,r(G,j)

∑

0̂≤(πf,V)≤(τh,V ′)

µ(0̂, (πf,V))

=

n∑

k=0

∑

(πf,V)∈Qn,r(G,k)




∑

(τh,V ′)≥(πf,V)

(τh,V ′)∈Qn,r(G,j)

µ(0̂, (πf,V))




=

n∑

k=0

∑

(πf,V)∈Qn,r(G,k)
µ(0̂, (πf,V))




∑

(τh,V ′)≥(πf,V)

(τh,V ′)∈Qn,r(G,j)

1




=

n∑

k=0

∑

(πf,V)∈Qn,r(G,k)
µ(0̂, (πf,V))|{(τh,V ′)|(τh,V ′) ≥ (πf,V), |τ| = j}|

=

n∑

k=0

C(n, k)Wm,r(k, j).

The last equality obtained by Lemma 1. �

Example 4 The poset of colored partition-set pairs, Qn,1(G), is isomorphic
to the classical Dowling lattice. See Figure 8 for the Hasse diagram of the poset
Q2,2(G), G being the group with two elements G = {−1, 1} (writing 2 instead
of 2−1). From the diagram we get its Möbius function and obtain w2,2(2, 2) =
1, w2,2(2, 1) = −6, and w2,2(2, 0) = 8. Qn,r({−1, 1}) generalizes the signed
partitions poset, Π[n] obtained for r = 1, Π[n] = Qn,1({−1, 1}).

4 The r-Dowling polynomials

Cheon and Jung [8] defined the r-Dowling polynomials of degree n by

Dm,r(n,u) :=
n∑

k=0

Wm,r(n, k)u
k.
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Figure 8: Poset Q2,2(G), G = {−1, 1}.

They found some combinatorial identities by means of Riordan arrays. Let us
define the following generating function

Hm,r(t) = H(t; x, y) = etDyxr =
∞∑
n=0

tn

n!
Dnyxr =

∞∑
n=0

tn

n!

n∑

k=0

Wm,r(n, k)yx
km+r.

It is easy to show the following

Lemma 2 We have the identities

Dnyxr = yxrDm,r(n, xm),

Hm,r(t) = etDyxr = yxr
∞∑
n=0

tn

n!
Dm,r(n, xm).

Theorem 3 The exponential generating function for the r-Dowling polyno-
mials is

∞∑
n=0

Dm,r(n,u)
tn

n!
= exp

(
rt+ u

emt − 1

m

)
.

Proof. Since D is a derivation, it is easy to show that the operator etD is
multiplicative. Hence

H ′m,r(t) = etDDyxr = etD(yxm+r + ryxr) = (etDyxr) · (etDx)m + retDyxr

= Hm,r(t)(xmemt + r).

From that,
H ′m,r(t)
Hm,r(t)

=
d

dt
ln(Hm,r(t)) = xmemt + r.
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Integrating and using the initial condition Hm,r(0) = yxr, we get:

Hm,r(t) = yxr exp{rt+
xm

m
(emt − 1)}.

By Lemma 2, making u = xm we get the result. �

Theorem 4 The r-Dowling polynomials satisfy the following relation for any
integers r, ` ≥ 0

Dm,r+`(n,u) =
n∑

k=0

(
n

k

)
`n−kDm,r(k, u).

Proof. Let D̂m,r(n, x, y) :=
∑n
k=0Wm,r(n, k)yx

km+r. Then

Hm,r+`(t) = etDyxr+` =
(
etDyxr

)(
etDx`

)

= x`e`tHm,r(t) = x`
∞∑
n=0

tn

n!




n∑

j=0

(
n

j

)
`n−jD̂m,r(j, x, y)


 .

Therefore

D̂m,r(n, x, y) = x`
n∑

j=0

(
n

j

)
`n−jD̂m,r(j, x, y).

Modifying a bit this equality we obtain the desired result. �

In particular, if ` = 1 then

Dm,r+1(n,u) =
n∑

k=0

(
n

k

)
Dm,r(k, u). (9)

In Theorem 5 we generalize the beautiful relation given by Spivey [34] for
the Bell numbers Bn. The Spivey’s formula says that:

Bn+m =

n∑

k=0

m∑

j=0

jn−kS(m, j)

(
n

k

)
Bk,

where S(n, j) is the Stirling number of the second kind. We generalize this
identity for the r-Whitney numbers by using differential operators.



404 M. A. Méndez, J. L. Ramı́rez

Theorem 5 The r-Dowling polynomials satisfy the following formula

Dm,r(n+ h, u) =

n∑

k=0

h∑

j=0

(
n

k

)
Dm,r(k, u)Wm,r(h, j)u

jjn−kmn−k.

Proof. We compute the derivative in two ways. First, in a direct way

dh

dth
Hm,r(t) = yxr

∞∑
n=0

Dm,r(n+ h, xm)
tn

n!
,

and secondly, by using the identity dh

dth
etD = etDDh and Lemma 2

dh

dth
Hm,r(t) =

dh

dth
etDyxr = etDDhyxr = etDyxrDm,r(h, xm)

= yxr

( ∞∑
n=0

Dm,r(n, xm)
tn

n!

)
(
Dm,r(h, xmemt)

)
.

(10)

Making the change u = xm and from the generating functions in Equations
(4) and (10), we obtain

∞∑
n=0

Dm,r(n+ h, u)
tn

n!
=

( ∞∑
n=0

Dm,r(n,u)
tn

n!

)
(
Dm,r(h, uemt)

)
. (11)

Expanding Dm,r(h, uemt),

Dm,r(h, uemt) =
h∑

j=0

Wm,r(h, j)u
jemjt

=

h∑

j=0

Wm,r(h, j)u
j

∞∑
k=0

mkjk
tk

k!
=

∞∑
k=0




h∑

j=0

Wm,r(h, j)m
kujjk


 tk

k!
.

By plugging it into Equation (11), computing the Cauchy product and equat-
ing coefficients, we obtain the result. �

The above identity was proved by using a different approach in [37]. Moreover,
this identity is a particular case of the main result of [36].

From Theorem 5 we obtain the following convolution formula.

Corollary 1 For 0 ≤ s ≤ n+ h, we have

Wm,r(n+ h, s) =

n∑

k=0

h∑

j=0

(
n

k

)
Wm,r(h, j)Wm,r(k, s− j)(jm)n−k.
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In particular, if r = 1 we obtain the Theorem 4.3 of [13]. By setting h = 1 in
Theorem 5 and Corollary 1 we obtain the Corollary 2.

Corollary 2 The r-Dowling polynomials satisfy the following recursive for-
mula

Dm,r(n+ 1, u) = rDm,r(n,u) + u
n∑

j=0

(
n

j

)
mn−jDm,r(j, u).

Therefore, the r-Whitney numbers of the second kind satisfy the recursive for-
mula

Wm,r(n+ 1, k) = rWm,r(n, k) +

n∑

j=k−1

(
n

j

)
mn−jWm,r(j, k− 1).

The above corollary was proved in [8] by using Riordan arrays.

Theorem 6 The r-Dowling polynomials satisfy the following formula

Dm,r(n,u) =
n∑

j=0

(
n

j

)
(r− s)n−jDm,s(j, u).

Proof. From Lemma 2 we have

Hm,r(t) = etDyxr = etDyxsetDxr−s = xr−se(r−s)tHm,s(t). (12)

By the Cauchy product we obtain

D̂m,r(n, x, y) = xr−s
n∑

j=0

(
n

j

)
(r− s)n−jD̂m,s(j, x, y).

Therefore, we get the desired result. �

In particular if s = 1 we have (see Theorem 5.2 of [8])

Dm,r(n, x) =
n∑

j=0

(r− 1)n−j
(
n

j

)
Dm(j, x),

where Dm(n,u) are the Dowling polynomials, i.e.,

Dm(n,u) =

n∑

k=0

Wm(n, k)u
k.
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Corollary 3 The r-Whitney numbers satisfy the following formula

Wm,r(n, k) =

n∑

j=0

(
n

j

)
(r− s)n−jWm,s(j, k). (13)

In particular, if s = 1 we have

Wm,r(n, k) =

n∑

j=0

(
n

j

)
(r− 1)n−jWm(j, k). (14)

Proof. From Theorem 6

n∑

k=0

Wm,r(n, k)yx
mk+r = xr−s

r∑

j=0

(
n

j

)
(r− s)n−j

j∑

k=0

Wm,s(j, k)yx
km+s

=

n∑

k=0

n∑

j=0

(
n

j

)
(r− s)n−jWm,s(j, k)yx

km+r.

By equating coefficients, we obtain the result. �

5 The Sheffer family of [m]-Touchard polynomials
and r-Dowling polynomials

From the generating function of the r-Dowling polynomials (Theorem 3), mak-
ing r = 0, we get the generating function of the [m]-Touchard polynomials

∞∑
n=0

T
[m]
n (x)

tn

n!
= exp

(
x
emt − 1

m

)
. (15)

From this is immediate that they are of binomial type ([32]). From Equation
(9) we have the following identity relating them with the classical Dowling
polynomials

Dm,1(n, x) = Dm(n, x) =
n∑

k=0

(
n

k

)
T
[m]
k (x).

and hence,

T
[m]
n (x) =

n∑

k=0

(
n

k

)
(−1)n−kDm(k, x).
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Our goal is to find the umbral inverse of [m]-Touchard sequence, i.e., the

polynomial family T̂
[m]
n (x) =

∑n
k=1 cn,kx

k satisfying

T
[m]
n (T̂[m](x)) :=

n∑

k=1

S[m](n, k)T̂
[m]
k (x) = xn, ∀n = 0, 1, 2 . . . .

T̂
[m]
n (T[m](x)) :=

n∑

k=1

cn,kT
[m]
k (x) = xn, ∀n = 0, 1, 2 . . . .

Let O(t) := (emt − 1)/m, and consider its compositional inverse

O(t) = ln(1+mx)
1
m .

Let ∂x be the derivative operator acting on the polynomial ring C[x]. Let
O(∂x) and O(∂x) be the shift-invariant operators acting also on the polynomial
ring C[x],

O(∂x) =
em∂x − I

m
=
1

m

∞∑
k=1

mk∂
k
x

k!
=
Em − I

m
,

O(∂x) = ln(1+m∂x)
1
m =

1

m

∞∑
k=1

(−1)kmk(k− 1)!
∂kx
k!

=

∞∑
k=1

(−1)kmk−1(k−1)!
∂kx
k!
.

Here we denote by Ea the shift operator Eap(x) = p(x+a). By the classical

theory of umbral calculus, T̂
[m]
n (x) and T

[m]
n (x) are the sequences associated to

the operators Em−I
m , and ln(1+m∂x)

1
m , respectively. So

Em − I

m
T̂
[m]
n (x) =

T̂
[m]
n (x+m) − T̂

[m]
n (x)

m
= nT̂

[m]
n−1(x)

ln(1+m∂x)
1
m T

[m]
n (x) = nT

[m]
n−1(x).

The derivatives of the formal power series O(x) and O(x) are O ′(x) = emx and
(O(x)) ′ = 1

1+mx , respectively. The recurrence formula for families of binomial
type ([32] Corollary 1 of Theorem 8), gives us

T̂
[m]
n (x) = xE−mT̂

[m]
n−1(x) = xT̂

[m]
n−1(x−m), (16)

T
[m]
n (x) = x(1+m∂x)T

[m]
n−1(x) = xT

[m]
n−1(x) +mx∂xT

[m]
n−1(x). (17)
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From Equation (16) we obtain the polynomial family

T̂
[m]
n (x) = x(x−m)(x− 2m) · · · (x− (n− 1)m). (18)

From Equation (16) we also have the recurrence for [m]-Stirling numbers of
the second kind

S[m](n, k) = S[m](n− 1, k− 1) + kmS[m](n− 1, k). (19)

We define the [m]-Stirling numbers of the first kind as the coefficients con-

necting T̂
[m]
n (x) with the powers.

Definition 3 We define the [m]-Stirling numbers of the first kind s[m](n, k) as

the coefficients in the expansion of T̂
[m]
n (x) = x(x−m)(x−2m) · · · (x−(n−1)m)

in terms of the power sequence, that is,

x(x−m)(x− 2m) · · · (x− (n− 1)m) =

n∑

k=1

s[m](n, k)xk.

Remark 2 The [m]-Stirling numbers of the first kind have the following com-
binatorial interpretation in terms of the Möbius function. Considering Qn,0(G),
the subposet of Qn,r of elements of the form (πf, (∅, ∅, . . . , ∅)), s[m](n, k) is the
sum of its Möbius function over the elements of rank n− k. The proof of this
fact is completely analogous of that of Theorem 2.

Remark 3 From the generating function in Theorem 3,∞∑
n=0

Dm,r(n, x)
tn

n!
= erx exp

(
x
emt − 1

m

)
,

we have that the r-Dowling polynomials, D[m,r]
n (x) := Dm,r(n, x) are a Shef-

fer family relative to the [m]-Touchard, associated to the pair of generating

functions
(

1
(1+mx)r/m

, ln(1+mx)1/m
)

,

〈
1

(1+mx)r/m
, ln(1+mx)1/m

〉
=

〈
erx,

emx − 1

m

〉−1

,

being the inverse of
〈
erx, e

mx−1
m

〉
as an exponential Riordan array, see Equation

(23) bellow. For that, see [32], and [31] Theorem 2.3.4. Hence, we have the
binomial identity (see [31], Theorem 2.3.9)

D[m,r]
n (x+ y) =

n∑

k=0

(
n

k

)
D[m,r]
k (x)T

[m]
n−k(y). (20)



A new approach to the r-Whitney numbers 409

Its umbral inverse D̂[m,r]
n (x) is Sheffer relative to T̂

[m]
n (x). It is associated to the

pair
(
erx, e

mx−1
m

)
.

From that we get next theorem

Theorem 7 The umbral inverse of the r-Dowling Sheffer sequence is equal to

D̂[m,r]
n (x) = E−rT̂

[m]
n (x) = (x− r)(x− r−m) · · · (x− r− (k− 1)m). (21)

The r-Dowling sequence satisfies the identity

D[m,r]
n (x) =

n∑

k=0

r(r−m)(r− 2m) · · · (r− (k− 1)m)

k!
∂kxT

[m]
n (x). (22)

Proof. Since D̂[m,r]
n (x) is associated to (erx, e

mx−1
m ), it is equal to the inverse

of the operator er∂x = Er applied to T̂
[m]
n (x) (see [31], Theorem 2.3.6). For the

same reason we have that D[m,r]
n (x) = (1 + m∂x)

r/mT
[m]
n (x). Expanding the

operator (1+m∂x)
r/m by the binomial formula we obtain the result. �

6 Some applications from Riordan arrays

The r-Whitney numbers can be defined using exponential Riordan arrays. An
infinite lower triangular matrix is called a Riordan array [33] if its kth column
satisfies the generating function g(z) (f(z))k for k ≥ 0, where g(z) and f(z)
are formal power series with g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0. The matrix
corresponding to the pair f(z), g(z) is denoted by (g(z), f(z)). The product of
two Riordan arrays (g(z), f(z)) and (h(z), l(z)) is defined by

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h (f(z)) , l (f(z))) .

The set of the Riordan matrices is a group under the operator ‘‘ ∗ " [33]. The
identity element is I = (1, z), and the inverse of (g(z), f(z)) is

(g(z), f(z))−1 =
(
1/
(
g ◦ f

)
(z), f(z)

)
, (23)

Sometimes, it is useful to use exponential generating functions instead of ordi-
nary generating functions when we apply a Riordan array method. We call the
resulting array an exponential Riordan array and we denote it by 〈g(z), f(z)〉.
Its column k has generating function g(z) (f(z))k /k!, k = 0, 1, 2, . . . (cf. [35]).
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The r-Whitney numbers of the second kind are given by the exponential
Riordan array:

W2 := [Wm,r(n, k)]n,k≥0 =
〈
erx,

emx − 1

m

〉
.

Therefore, as we have already seen in Remark 3, the r-Dowling polynomial

D[m,r]
n (x) is a Sheffer sequence for

(
(1+mx)−r/m, ln(1+mx)1/m

)
.

In this section we give some explicit relations between the r-Dowling poly-
nomials and the Bernoulli and Euler polynomials by using the connection con-
stants an,k in the expression rn(x) =

∑n
k=0 an,ksk(x), where the polynomials

rn(x) and sn(x) are Sheffer sequences. These constants can be determined by
the umbral method [31, pp. 131] or equivalent by Riordan arrays [35, Theorem
6.4]. In particular, let sn(x) and rn(x) be Sheffer for (g(t), f(t)) and (h(t), l(t)),
respectively. If rn(x) =

∑n
k=0 an,ksk(x), then an,k is the entry (n, k)-th of the

Riordan array

(
g(l(t))

h(l(t))
, f(l(t))

)
. (24)

The Bernoulli polynomials, Bn(x), are defined by the exponential generating
function ∞∑

n=0

Bn(x)
tn

n!
=

text

et − 1
.

The Bernoulli numbers, Bn, are define by Bn := Bn(0). Moreover, the polyno-

mials Bn(x) are Sheffer for
(
et−1
t , t

)
(cf. [31, 14]). The r-Whitney numbers of

the first kind are defined by exponential generating function [24]:

∞∑
n=k

wm,r(n, k)
zn

n!
= (1+mz)−

r
m

lnk(1+mz)

mkk!
. (25)

Theorem 8 For n ≥ 0 we have

Bn(x) =
n∑

k=0

n∑

`=k

(
n

`

)
Bn−`wm,r(`, k)D[m,r]

k (x). (26)
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Proof. If Bn(x) =
∑n
k=0 an,kD

[m,r]
k (x), then from (24) and (25) we get

an,k =
1

k!
[tn]

(
(1+mt)−r/m

t

et − 1
·
(

ln(1+mt)1/m
)k)

= [tn]

(
(1+mt)−r/m

lnk(1+mt)

mkk!

t

et − 1

)

= [tn]

(( ∞∑
n=k

wm,r(n, k)
tn

n!

)( ∞∑
n=0

Bn(x)
tn

n!

))

= [tn]

( ∞∑
n=0

n∑

`=0

(
n

`

)
Bn−`wm,r(`, k)

)
zn

n!
.

Therefore, it is clear (26). �

The Euler polynomials, En(x), are defined by the exponential generating
function ∞∑

n=0

En(x)
tn

n!
=

2ext

et + 1
.

The numbers En, are define by En := En(0). Moreover, the polynomials En(x)
are Sheffer for

(
et+1
2 , t

)
.

From a similar argument as in above theorem we get the following theorem.

Theorem 9 For n ≥ 0 we have

En(x) =
n∑

k=0

n∑

`=k

(
n

`

)
En−`wm,r(`, k)D[m,r]

k (x).

In the following theorem we analyze the connecting coefficients

D[m,r]
n (x) =

n∑

k=0

an,kBk(x).

Theorem 10 For n ≥ 0 we have

D[m,r]
n (x) =

1

n+ 1

n∑

k=0

n−k∑

`=0

∑̀

s=0

(
n+ 1

`+ 1

)(
`+ 1

s+ 1

)
Wm,r(n− `, k)m`−sT

[m]
s+1(1)B`−sBk(x). (27)
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Proof. From Equations (24), (1) and (15) we get

an,k =
1

k!
[tn]

(
e
em−1
m

−1

emt−1
m

ert
(
emt − 1

m

)k)

= [tn]

(
ert

k!

(
emt − 1

m

)k
e
em−1
m

−1

t

mt

emt−1

)

= [tn]

(( ∞∑
n=k

Wm,r(n, k)
tn

n!

)( ∞∑
n=0

T
[m]
n (1)

tn

(n+ 1)!

)( ∞∑
n=0

mnBn
tn

n!

))

= [tn]

(( ∞∑
n=k

Wm,r(n, k)
tn

n!

)( ∞∑
n=0

∑̀

s=0

(
`

s

)
m`−sB`−s

T
[m]
s+1(1)

s+ 1

tn

n!

))

= [tn]

( ∞∑
n=0

(
n−k∑

`=0

∑̀

s=0

(
n

`

)(
`

s

)
Wm,r(n− `, k)m`−sB`−s

T
[m]
s+1(1)

s+ 1

)
tn

n!

)

= [tn]

(
1

n+ 1

∞∑
n=0

(
n−k∑

`=0

∑̀

s=0

(
n+ 1

`+ 1

)(
`+ 1

s+ 1

)

Wm,r(n− `, k)m`−sB`−sT [m]
s+1(1)

) tn
n!

)

Therefore, it is clear (26). �

From a similar argument we get the following theorem.

Theorem 11 For n ≥ 0 we have

D[m,r]
n (x) =

n∑

k=0

(
1

2

n−k∑

`=0

(
n

`

)
Wm,r(n− `, k)T

[m]
` (1) +

1

2
Wm,r(n, k)

)
Ek(x).

6.1 Some recurrence relations

The entries in a Riordan array can be expressed as linear combination of the
elements in the preceding row. That is, if dn+1,k+1 is the (n+1, k+1)-th entry
in a Riordan array, then there is a sequence A = (an)n≥0 such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , a0 6= 0

The sequence A is called the A-sequence [30]. Additionally, any element in
column 0, except the element d0,0, can be expressed as

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · ·
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The sequence Z = (zn)n≥0 is called the Z-sequence [22]. In general, the A and
Z sequences, and the element d0,0 completely characterize a proper Riordan
array.

The above conditions can be write in terms of generating function. In par-
ticular, a triangular array D = [dn,k]n,k∈N is a Riordan array if and only if

g(z) =
g(0)

1− zZ(g(z))
and f(z) = z(A(f(z))),

where A and Z are the generating functions of the A-sequence and Z-sequence,
respectively.

The generating function for the A-sequence of the exponential Riordan array
of the r-Whitney numbers is given by

t

f(t)
=

t

ln(1+mt)1/m
=

mt

ln(1+mt)
=

∞∑
k=0

ckm
k t
k

k!
,

where ck are the Cauchy numbers of first kind. They are defined by cn =∫1
0 x

ndx. See [23] for general information about Cauchy numbers. Taking in
count that any exponential Riordan array 〈g(x), f(x)〉 = (dn,k)n,k≥0 satisfies
the recurrence relations (see [35, Corollary 5.7])

dn+1,k+1 =

∞∑
j=0

n+ 1

k+ 1

(
k+ j

j

)
j!ajdn,k+j,

dn,k − d̃n−1,k =

n∑

`=k

(
n− 1

`− 1

)
fn−`+1d`−1,k−1,

kdn,k =

n∑

`=k

(
n

`− 1

)
fn−`+1d`−1,k−1,

where (aj) is the A-sequence and (d̃n,k)n,k≥0 = 〈g ′(x), f(x)〉. Then we obtain
the following corollary.

Corollary 4 The r-Whitney numbers of the second kind satisfy the following
recurrence relations

Wm,r(n+ 1, k+ 1) =

∞∑
j=0

n+ 1

k+ 1

(
k+ j

j

)
cjm

jWm,r(n, k+ j),

Wm,r(n, k) − rWm,r(n− 1, k) =

n∑

`=k

(
n− 1

`− 1

)
mn−`Wm,r(`− 1, k− 1), n ≥ 1,
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kWm,r(n, k) =

n∑

`=k

(
n

`− 1

)
mn−`Wm,r(`− 1, k− 1).

From the generating function (25) we obtain that the r-Whitney numbers
of the first kind are given by the exponential Riordan array

W1 := [wm,r(n, k)] =
〈
(1+mz)−r/m, ln(1+mz)1/m

〉
.

In this case, the generating function for the A-sequence of the exponential
Riordan array W1 is given by

t

f(t)
=

t
emt−1
m

=
mt

emt − 1
=

∞∑
k=0

Bkmk t
k

k!
,

where Bn are the Bernoulli numbers.
Therefore we obtain the following corollary.

Corollary 5 The r-Whitney numbers of the first kind satisfy the following
recurrence relations

wm,r(n+ 1, k+ 1) =

∞∑
j=0

n+ 1

k+ 1

(
k+ j

j

)
Bjmjwm,r(n, k+ j),

wm,r(n, k) + r

n−1∑

`=0

(
n− 1

`

)
(n− `− 1)!wm,r(`, k)(−m)n−`−1

=

n∑

`=k

(
n− 1

`− 1

)
(−m)n−`(n− `)!wm,r(`− 1, k− 1), n ≥ 1,

kwm,r(n, k) =

n∑

`=k

(
n

`− 1

)
(−m)n−`(n− `)!wm,r(`− 1, k− 1).

6.2 Determinantal identity

The r-Whitney numbers of both kinds satisfy the following orthogonality re-
lation (cf. [24]):

n∑

i=s

Wm,r(n, i)wm,r(i, s) =

n∑

i=s

wm,r(n, i)Wm,r(i, s) = δs,n,
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where δs,n = 1 if s = n and 0, otherwise. From above relations we obtain the
inverse relation:

fn =

n∑

s=0

wm,r(n, s)gs ⇐⇒ gn =

n∑

s=0

Wm,r(n, s)fs.

Moreover, we have the identity W1 = W−1
2 , where W2 is the exponential

Riordan array for the r-Whitney numbers of the second kind.
From definition of the r-Dowling polynomials we obtain the equalityW2·X =

Dm,r, where X = [1, x, x2, . . . ]T and Dm,r = [D[m,r]
0 (x),D[m,r]

1 (x),D[m,r]
2 (x), . . . ]T .

Then X =W1Dm,r and

xn =

n∑

k=0

wm,r(n, k)D[m,r]
k (x).

Therefore

D[m,r]
n (x) = xn −

n−1∑

k=0

wm,r(n, k)D[m,r]
k (x), n ≥ 0. (28)

From the above equation we obtain the following determinantal identity.

Theorem 12 The r-Dowling polynomials polynomials satisfy

D[m,r]
n (x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

1 wm,r(1, 0) · · · wm,r(n− 1, 0) wm,r(n, 0)
0 1 · · · wm,r(n− 1, 1) wm,r(n, 1)
... · · · ...
0 0 · · · 1 wm,r(n,n− 1)

∣∣∣∣∣∣∣∣∣∣∣

Proof. This identity follows from Equation (28) and by expanding the deter-
minant by the last column. �
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