

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 12, 1 (2020) 5-13

DOI: 10.2478/ausm-2020-0001

On weak (σ, δ) -rigid rings over Noetherian rings

Vijay Kumar Bhat School of Mathematics, SMVD University, India email: vijaykumarbhat2000@yahoo.com Pradeep Singh School of Mathematics, SMVD University, India email: pradeep333singh@gmail.com

Sunny Sharma School of Mathematics, SMVD University, India email: sunnysrrm940gmail.com

Abstract. Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q} (\mathbb{Q} is the field of rational numbers). Let σ be an endomorphism of R and δ a σ -derivation of R. We recall that a ring R is a weak (σ, δ) -rigid ring if $a(\sigma(a) + \delta(a)) \in N(R)$ if and only if $a \in N(R)$ for $a \in R$ (N(R) is the set of nilpotent elements of R). With this we prove that if R is a Noetherian integral domain which is also an algebra over \mathbb{Q} , σ an automorphism of R and δ a σ -derivation of R such that R is a weak (σ, δ) -rigid ring, then N(R) is completely semiprime.

1 Introduction and preliminaries

Throughout this paper R will denote an associative ring with identity $1 \neq 0$, unless otherwise stated. The prime radical of a ring R denoted by P(R) is the intersection of all prime ideals of R. The set of nilpotent elements of R is denoted by N(R). The ring of integers, the field of rational numbers, the field

²⁰¹⁰ Mathematics Subject Classification: 16N40, 16P40, 16W20

Key words and phrases: automorphism, derivation, nilpotent element, completely semiprime ideal

of real numbers and the field of complex numbers are denoted by \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} respectively, unless otherwise stated.

Krempa [4] introduced σ -rigid rings and proved that if σ is a rigid endomorphism of \mathbb{R} , then it is a monomorphism preserving every minimal prime ideal and annihilator in \mathbb{R} . Several properties of σ -rigid rings have been studied in [2, 3]. Weak σ -rigid rings were studied by Ouyang [7]. Bhat [1] gave a necessary and sufficient condition for a commutative Noetherian ring to be weak (σ, δ) -rigid ring.

In this article we investigate weak (σ, δ) -rigid rings over Noetherian rings.

Now let R be a ring, σ an endomorphism of R and δ a σ -derivation of R. Recall that $\delta: R \to R$ an additive map such that

$$\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$$
, for all $a, b \in R$

is called a σ -derivation of R.

Example 1 Let F be a field, R=F[x] be the polynomial ring over F. Then $\sigma:R\to R$ defined as

 $\sigma(f(x)) = f(-x)$ is an automorphism.

Define $\delta : \mathbf{R} \to \mathbf{R}$ by

$$\delta(f(x)) = f(x) - \sigma(f(x)).$$

Then δ is a σ -derivation of R.

1.1 σ -rigid ring

Recall that in Krempa [4], an endomorphism σ of a ring R is said to be rigid if $a\sigma(a) = 0$ implies that a = 0, for all $a \in R$. A ring R is said to be σ -rigid if there exists a rigid endomorphism σ of R.

Example 2 Let
$$R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$$
, where F is a field. Let $\sigma : R \to R$ be defined by $\sigma \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ for $a, b, c \in F$.

Then it can be seen that σ is an endomorphism of R.

Let
$$0 \neq a \in F$$
. Then $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \sigma \left(\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
But $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Hence R is not a σ -rigid ring.

We recall that σ -rigid rings are reduced rings by Hong et. al. [3]. Recall that a ring R is reduced if it has no non-zero nilpotent elements. Observe that reduced rings are abelian.

1.2 Weak σ-rigid ring

Note that as in Ouyang [7], a ring R with an endomorphism σ is called a weak σ -rigid ring if $a\sigma(a) \in N(R)$ if and only if $a \in N(R)$ for $a \in R$.

Example 3 (Example 2.1 of [7]) Let σ be an endomorphism of a ring R. Let

$$A = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \mid a, b, c, d \in R \right\}$$

be a subring of $T_3(R)$, the ring of upper triangular matrices over R. Now σ can be extended to an endomorphism say $\overline{\sigma}$ of A by $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$. Then it can be seen that A is a weak $\overline{\sigma}$ -rigid ring.

Example 4 Let F be a field and R = F(x), the field of rational polynomials in one variable x over F. Then $N(R) = \{0\}$. Let $\sigma : R \to R$ be an endomorphism defined by

$$\sigma(f(\mathbf{x})) = f(\mathbf{0}).$$

Then R is not a weak σ -rigid ring. For let f(x) = xa, f(0) = 0 and $f(x)\sigma(f(x)) = xa.0 = 0 \in N(R)$. But $0 \neq f(x) \notin N(R)$.

Clearly the notion of a weak σ -rigid ring generalizes that of a σ -rigid ring. Also in [5], it has been shown that if R is a weak σ -rigid ring, then N(R) is completely semi-prime where R is a Noetherian ring and σ an automorphism of R.The converse is not true.

Example 5 [6] Let F be a field, $R = F \times F$ and σ an automorphism of R defined by

$$\sigma((a, b)) = (b, a), \text{ for } a, b \in F.$$

Then R is a reduced ring and so $N(R) = \{0\}$ is completely semi-prime. But R is not a weak σ -rigid ring. Since $(1,0)\sigma((1,0)) = (0,0) \in N(R)$, but $(1,0) \notin N(R)$.

1.3 Weak (σ, δ) -rigid rings

We generalize the above mentioned notions by involving σ and δ together as follows:

1.3.1 (σ, δ) -ring

Definition 1 (Definition 7 of [1]) Let R be a ring, σ an endomorphism of R and δ a σ -derivation of R. Then R is said to be a (σ, δ) -rigid ring if

 $a(\sigma(a) + \delta(a)) \in P(R)$ implies that $a \in P(R)$ for $a \in R$.

Definition 2 Let R be a ring, σ an endomorphism of R and δ a σ -derivation of R. Then R is said to be a (σ, δ) -rigid ring if

 $a(\sigma(a) + \delta(a)) = 0$ implies that a = 0 for $a \in R$.

Example 6 Let $R = \mathbb{C}$ and $\sigma : R \to R$ be defined by

 $\sigma(a+ib) = a-ib$, for all $a, b \in \mathbb{R}$.

Then σ is an automorphism of R. Define δ a σ -derivation of R as

 $\delta(z) = z - \sigma(z)$ for $z \in \mathbb{R}$.

i.e., $\delta(a+ib) = a+ib - \sigma(a+ib) = a+ib - (a-ib) = 2ib$.

Let A = a + ib. Then $A[\sigma(A) + \delta(A)] = 0$ implies that

 $(a+ib)[\sigma(a+ib)+\delta(a+ib)]=0$

i.e. (a + ib)[(a - ib) + 2ib] = 0 or (a + ib)(a + ib) = 0 which implies that a = 0, b = 0. Therefore, A = a + ib = 0. Hence R is a (σ, δ) -rigid ring.

1.3.2 Weak (σ, δ) -rigid rings

Definition 3 Let R be a ring. Let σ be an endomorphism of R and δ a σ -derivation of R. Then R is said to be a weak (σ, δ) -rigid ring if $\mathfrak{a}(\sigma(\mathfrak{a})+\delta(\mathfrak{a})) \in N(\mathbb{R})$ implies and is implied by $\mathfrak{a} \in N(\mathbb{R})$ for $\mathfrak{a} \in \mathbb{R}$.

Example 7 Let $R = \mathbb{Z}[\sqrt{2}]$. Then $\sigma : R \to R$ defined as

$$\sigma(a + b\sqrt{2}) = (a - b\sqrt{2}) \text{ for } a + b\sqrt{2} \in R$$

is an endomorphism of R. For any $s \in R$. Define $\delta_s : R \to R$ by

$$\delta_{s}(a+b\sqrt{2}) = (a+b\sqrt{2})s - s\sigma(a+b\sqrt{2})$$
 for $a+b\sqrt{2} \in \mathbb{R}$.

Then δ_s is a σ -derivation of R. Here $N(R) = \{0\}$. Further,

$$(a + b\sqrt{2})\{\sigma(a + b\sqrt{2}) + \delta_s(a + b\sqrt{2})\} \in N(R)$$

implies that

$$(a+b\sqrt{2})\{(a-b\sqrt{2})+(a+b\sqrt{2})s-s\sigma(a+b\sqrt{2})\}\in N(\mathbb{R})$$

or

$$(a + b\sqrt{2}){a - b\sqrt{2} + as + bs\sqrt{2} - sa + sb\sqrt{2}} \in N(R)$$

i.e.

$$(a + b\sqrt{2})\{a + (2s - 1)b\sqrt{2}\} \in N(R) = \{0\}$$

which gives a = 0, b = 0. Hence $a + b\sqrt{2} = 0 + 0\sqrt{2} \in N(R)$. Thus R is a weak (σ, δ) -rigid ring.

With this we prove the following:

Theorem A: Let R be Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R and δ a σ -derivation of R. Then R a weak (σ, δ) -rigid ring implies that N(R) is completely semi-prime.

The statement is proven in Theorem 1, to be found below.

2 Proof of the main result

We have the following before we prove the main result of this paper:

Recall that an ideal I of a ring R is called completely semi-prime if $a^2 \in I$ implies that $a \in I$ for $a \in R$.

Example 8 Let
$$\mathbf{R} = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbf{0} & \mathbb{Z} \end{bmatrix}$$
. Then $\mathbf{P}_1 = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$, $\mathbf{P}_2 = \begin{bmatrix} \mathbf{0} & \mathbb{Z} \\ \mathbf{0} & \mathbb{Z} \end{bmatrix}$, $\mathbf{P}_3 = \begin{bmatrix} \mathbf{0} & \mathbb{Z} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ are prime ideals of \mathbf{R} .

It can be easily seen that P_1, P_2, P_3 are completely semi-prime ideals.

Proposition 1 Let R be a ring, σ an automorphism of R and δ a σ -derivation of R. Then for $u \neq 0$, $\sigma(u) + \delta(u) \neq 0$.

Proof. Let $0 \neq u \in R$, we show that $\sigma(u) + \delta(u) \neq 0$. Let for $0 \neq u$, $\sigma(u) + \delta(u) = 0$. This implies that

$$\delta(\mathfrak{u}) = -\sigma(\mathfrak{u}), \ \forall \mathfrak{0} \neq \mathfrak{u} \in \mathsf{R}.$$
(1)

We know that for

$$0 \neq a, 0 \neq b \in R, \ \delta(ab) = \delta(a)\sigma(b) + a\delta(b).$$

By using equation 1, we have

$$-\sigma(ab) = -\sigma(a)\sigma(b) + a(-\sigma(b))$$

$$\Rightarrow -\sigma(ab) = -[\sigma(a) + a]\sigma(b)$$

$$\Rightarrow \sigma(a)\sigma(b) = -[\sigma(a) + a]\sigma(b)$$

$$\Rightarrow \sigma(a) = \sigma(a) + a$$

Therefore, a = 0 which is not possible. Hence $\sigma(u) + \delta(u) \neq 0$.

We now prove the main result of this paper in the form of the following Theorem:

Theorem 1 Let R be a Noetherian integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R and δ a σ -derivation of R. Then R a weak (σ, δ) -rigid ring implies that N(R) is completely semi-prime.

Proof.Let R be a weak (σ, δ) -rigid ring. Then we will show that N(R) is completely semi-prime. Let $a \in R$. Since R is a weak (σ, δ) -rigid ring. Let

$$\{\mathfrak{a}(\sigma(\mathfrak{a}) + \delta(\mathfrak{a}))\}^2 \in N(\mathbb{R}).$$

Then there exists a positive integer n such that $[a^2(\sigma(a) + \delta(a))^2]^n = 0$ which implies that $a^{2n}(\sigma(a) + \delta(a))^{2n} = 0$. But by Proposition (1), $\sigma(a) + \delta(a) \neq 0$. Hence $a^{2n} = 0$ which implies that $a^n = 0$, because R is an integral domain. Therefore, $a^n(\sigma(a) + \delta(a))^n = 0$ or $\{a(\sigma(a) + \delta(a))\}^n = 0$. Thus $a(\sigma(a) + \delta(a)) \in N(R)$. Hence N(R) is completely semi-prime.

The converse is not true.

Example 9 Let F be a field. Let $R=F\times F$ and σ an automorphism of R defined by

 $\sigma((a, b)) = (b, a)$ for $a, b \in F$.

Then R is a reduced ring and so $N(R) = \{0\}$ and therefore, it is completely semi-prime. Let $r \in F$. Define $\delta_r : R \to R$ by

 $\delta_r((a,b)) = (a,b)r - r\sigma((a,b)) \text{ for } a,b \in F.$

Then δ_r is a σ -derivation of R. Also R is not a weak (σ, δ) -rigid ring. For take $(1, -1) \in R$, $r = \frac{1}{2}$. Then

$$\begin{split} \delta_{\rm r}((1,-1)) &= (1,-1)\frac{1}{2} - \frac{1}{2}\sigma((1,-1)) \\ &= (1,-1) \ and \ (1,-1)[\sigma(1,-1) + \delta_{\rm r}(1,-1)] \\ &= (1,-1)[(-1,1) + (1,-1)] \\ &= (1,-1)(0,0) = (0,0) \in {\sf N}({\sf R}). \end{split}$$

But $(1, -1) \notin N(R)$.

Corollary 1 Let R be a commutative Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R and δ a σ -derivation of R. Then R a weak (σ, δ) -rigid ring implies that N(R) is completely semiprime.

Also we note that if R is a (σ, δ) -rigid ring then it is a weak (σ, δ) -rigid ring, but the converse need not be true as in the following example:

Example 10 Let σ be an endomorphism of a ring R and δ a σ -derivation of R. Let R be a (σ, δ) -rigid ring. Then

$$\mathsf{R}_{3} = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} : a, b, c, d \in \mathsf{R} \right\}$$

is a subring of $T_3(R)$. The endomorphism σ of R can be extended to the endomorphism $\overline{\sigma}: R_3 \to R_3$ defined by $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$ and δ can be extended to $\overline{\delta}: R_3 \to R_3$ by $\overline{\delta}((a_{ij})) = (\delta(a_{ij}))$. Let

$$\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \left\{ \overline{\sigma} \left(\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \right) + \overline{\delta} \left(\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \right) \right\} \in N(R).$$

Then there is some positive integer n such that

$$\left(\begin{bmatrix}a & b & c\\0 & a & d\\0 & 0 & a\end{bmatrix}\left\{\begin{bmatrix}\sigma(a) & \sigma(b) & \sigma(c)\\0 & \sigma(a) & \sigma(d)\\0 & 0 & \sigma(a)\end{bmatrix} + \begin{bmatrix}\delta(a) & \delta(b) & \delta(c)\\0 & \delta(a) & \delta(d)\\0 & 0 & \delta(a)\end{bmatrix}\right\}\right)^{n} = 0$$

which implies that

$$\left(\begin{bmatrix}a & b & c\\0 & a & d\\0 & 0 & a\end{bmatrix}\left\{\begin{bmatrix}\sigma(a) + \delta(a) & \sigma(b) + \delta(b) & \sigma(c) + \delta(c)\\0 & \sigma(a) + \delta(a) & \sigma(d) + \delta(d)\\0 & 0 & \sigma(a) + \delta(a)\end{bmatrix}\right\}\right)^{n} = 0$$

or

$$\begin{bmatrix} a(\sigma(a) + \delta(a)) & a(\sigma(b) + \delta(b)) + b(\sigma(a) + \delta(a)) & a(\sigma(c) + \delta(c)) + b(\sigma(d) + \delta(d)) + c(\sigma(a) + \delta(a)) \\ 0 & a(\sigma(a) + \delta(a)) & a(\sigma(d) + \delta(d)) + d(\sigma(a) + \delta(a)) \\ 0 & 0 & a(\sigma(a) + \delta(a)) \end{bmatrix}^n$$

= 0, which gives

$$\mathfrak{a}(\sigma(\mathfrak{a}) + \delta(\mathfrak{a})) \in \mathsf{N}(\mathsf{R}).$$

Since R is reduced, we have

$$a(\sigma(a) + \delta(a)) = 0$$

which implies that a = 0, since R is a (σ, δ) -rigid ring. Hence

$$\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} = \begin{bmatrix} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{bmatrix} \in N(R).$$

Conversely, assume that

$$\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \in N(R).$$

Then there is some positive integer n such that

$$\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix}^{n} = \begin{bmatrix} a^{n} & * & * \\ 0 & a^{n} & * \\ 0 & 0 & a^{n} \end{bmatrix} = 0$$

which implies that a = 0, because R is reduced (Here * are non-zero terms involving summation of powers of some or all of a, b, c, d). So

$$\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \left\{ \overline{\sigma} \left(\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \right) + \overline{\delta} \left(\begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \right) \right\}$$

$=\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	b 0 0	$ \begin{bmatrix} c \\ d \\ 0 \end{bmatrix} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right. $	$ \begin{array}{c} \sigma(b) & \sigma(c) \\ 0 & \sigma(d) \\ 0 & 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	δ(b) 0 0	$\left.\begin{array}{c} \delta(c)\\ \delta(d)\\ 0 \end{array}\right\}$
$= \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$	b 0 0	$ \begin{bmatrix} c \\ d \\ 0 \end{bmatrix} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right. $	$\sigma(b) + \delta(b) \\ 0 \\ 0 \\ 0$) $\sigma(c) - \sigma(d) - \sigma(d)$	$+ \delta(c)$ + $\delta(d)$ 0]}
$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 0	$b(\sigma(d) + 0 \\ 0 \\ 0$	$\delta(d)) \biggr] \in N$	(R).		

Therefore, R_3 is a weak $(\overline{\sigma}, \overline{\delta})$ -rigid ring. Also since R_3 is not reduced, R_3 is not a $(\overline{\sigma}, \overline{\delta})$ -rigid ring.

References

- M. Abrol, V. K. Bhat, Ore Extensions Over (σ, δ)-Rings, Eur. J. Pure Appl. Math., 8 (4) (2015), 462-468.
- [2] Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen, 54 (3, 4) (1999), 489–495.
- C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p rings, J. Pure Appl. Algebra, 151 (3) (2000), 215–226.
- [4] J. Krempa, Some examples of reduced rings, Algebra Colloq., 3 (4) (1996), 289–300.
- [5] N. Kumari, S. Gosani, V. K. Bhat, Skew polynomial rings over weak σrigid rings and σ(*)-rings, Eur. J. Pure Appl. Math., 6 (1) (2003), 59–65.
- [6] T. K. Kwak, Prime radicals of Skew polynomial rings, Int. J. Math. Sci., 2 (2) (2003), 219–227.
- [7] L. Ouyang, Extensions of generalized α-rigid rings, Wiley, Int. Electron. J. Algebra, 3 (2008), 103–116.

Received: December 16, 2019