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Abstract. In this paper, we present some fixed point results satisfying
generalized contractive condition with new auxiliary function in complete
metric spaces. More precisely, the structure of the paper is the following.
In the first section, we present some useful notions and results. The main
aim of second section is to establish some new fixed point results in
complete metric spaces. Finally, in the third section, we show the validity
and superiority of our main results by suitable example. Also, as an
application of our main result, some interesting corollaries have been
included, which make our concepts and results effective. Our main result
generalizes some well known existing results in the literature.

1 Introduction and preliminaries

The Banach contraction principle [10] is one of the revolutionary results of the
fixed point theory, and it plays an imperative role to solve existence problems
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in many branches of nonlinear analysis. Inspired from the impact of this natu-
ral idea to functional analysis, a number of researchers have been extended and
generalized this principle for different kinds of contractions in various spaces.

Let us denote:
Ψ1 =

{
ψ1 : [0,∞) → [0,∞) is a continuous and non-decreasing function

such that ψ1(t) = 0 if and only if t = 0.
}

(Altering distance function)
Ψ2 =

{
ψ2 : [0,∞) → [0,∞) is a continuous function such that ψ2(0) ≥ 0

and ψ2(t) > 0, t > 0.
}

(Ultra-altering distance function)
Ψ3 =

{
ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable function, summable

on each compact subset of R+, non-negative, and such that for each ε > 0,∫ε
0 ϕ(t)dt > 0.

}
In 2002, Branciari [3] introduced one of the genuine contraction, known as

integral type contraction, as an analogue of Banach contraction principle [10].

Theorem 1 [3] Let (E, d) be a complete metric space, k ∈ (0, 1), and A : E→
E is such that for each x, y ∈ E∫d(Ax,Ay)

0

ϕ(t)dt ≤ k
∫d(x,y)
0

ϕ(t)dt, (1)

where ϕ ∈ Ψ3. Then A has a unique fixed point of z ∈ E.

Rhoades [5], in 2003, gave an extension of the result of Branciari [3] and proved
following theorems.

Theorem 2 [5] Let (E, d) be a complete metric space and A : E → E be a
mapping such that, ∫d(Ax,Ay)

0

ϕ(t)dt ≤ β
∫M(x,y)

0

ϕ(t)dt,

where

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
(2)

for all x, y ∈ E, β ∈ [0, 1) and ϕ ∈ Ψ3. Then A has a unique fixed point z ∈ E.

Theorem 3 [5] Let us consider a complete metric space (E, d) and A : E→ E

is a mapping such that,∫d(Ax,Ay)
0

ϕ(t)dt ≤ β
∫N(x,y)

0

ϕ(t)dt,
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where

N(x, y) = max {d(x, y), d(x,Ax), d(y,Ay), d(x,Ay), d(y,Ax)} (3)

for each x, y ∈ E, β ∈ [0, 1) and ϕ ∈ Ψ3. Then there exist a unique fixed point
z ∈ E such that Az = z.

In 2010, Babu and Alemayehu [7] proved following theorem in complete metric
spaces by using generalized φ− weak contraction.

Theorem 4 [7] Let us consider a complete metric space (E, d) and A : E→ E

is such that for all x, y ∈ E it satisfies

d (Ax,Ay) ≤M (x, y) − φ(M (x, y)),

where

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
, (4)

and φ : [0,+∞)→ [0,+∞) such that φ(t) = 0 if and only if t = 0. Then there
is a unique fixed point of A in E.

In 2011, Samet and Yazidi [6] gave an extension of the result of Dass and
Gupta [4] in the sense of Branciari integral type contraction, as follows

Theorem 5 [6] Let (E, d) be a complete metric space and A be a self-map of
E such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ α
∫M(x,y)

0

ϕ(t)dt+ β

∫d(x,y)
0

ϕ(t)dt

and

M (x, y) =
d (y,Ay) [1+ d(x,Ax)]

[1+ d(x, y)]
,

where α,β > 0 are constants such that α+ β < 1 and ϕ ∈ Ψ3.
Then A admits a unique fixed point z ∈ E such that for each z ∈ E, Anx→ z

as n→∞.

In 2011, Gupta and Mani [14] proved a common fixed point theorem for two
weakly compatible mappings using control functions ψ1 and ψ2 satisfying a
contractive condition of integral type.
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Theorem 6 Let A and B be self compatible maps of a complete metric space
(E, d) satisfying the following conditions:

(i). A(E) ⊂ B(E)

(ii). ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ ψ1

(∫d(Bx,By)
0

ϕ(t)dt

)
−ψ2

(∫d(Bx,By)
0

ϕ(t)dt

)
,

where ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3. Then there exist a unique common fixed
point of A and B in E.

In 2013, Gupta and Mani [16] proved another generalization of the result of
Branciari [3] using real valued function.

Theorem 7 [16] Let A be a self map on complete metric space (E, d) such
that for each x, y ∈ E∫d(Ax,Ay)

0

ϕ(t)dt ≤ γ (d (x, y))
∫m(x,y)

0

ϕ(t)dt

and

m (x, y) = max

{
d(x,Ax)d(y,Ay)

d(x, y)
, d(x, y)

}
,

where ϕ ∈ Ψ3 and γ : R+ → [0, 1) is a function with

lim
δ→t supγ (δ) < 1, ∀ t > 0.

Then A has a unique fixed point in E.

Some other results in complete metric spaces satisfying integral type contrac-
tions are mentioned in [8, 9, 11, 12, 13, 17, 18]

In 2014-15, Ansari [1] introduced the notion of C -class function as a major
generalization of Banach contraction principle. Currently this finding is one of
the most attractive research topics in fixed point theory. Some other special
cases of C-class functions can be found in [2]. Ansari [1] gave the following
definitions and examples.

Definition 1 [1] A mapping F : [0,∞)2 → R is called C-class function if it is
continuous and satisfies following axioms:

1. F(r, t) ≤ r for all r, t ∈ [0,∞);
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2. F(r, t) = r implies that either r = 0 or t = 0;

Let us denote C the family of C-class functions.

Remark 1 Clearly, for some F we have F(0, 0) = 0.

Example 1 [1] The following functions F : [0,∞)2 → R are elements of C,
for all r, t ∈ [0,∞):

1. F(r, t) = r− t, F(r, t) = r⇒ t = 0;

2. F(r, t) = mr, 0<m<1, F(r, t) = r⇒ r = 0;

3. F(r, t) = r
(1+t)h

; h ∈ (0,∞), F(r, t) = r ⇒ r = 0 or t = 0;

4. F(r, t) = log(t+ ar)/(1+ t), a > 1, F(r, t) = r ⇒ r = 0 or t = 0;

5. F(r, t) = ln(1+ ar)/2, a > e, F(r, t) = r ⇒ r = 0;

6. F(r, t) = (r+ l)(1/(1+t)
p) − l, l > 1, p ∈ (0,∞), F(r, t) = r ⇒ t = 0;

7. F(r, t) = r logt+a a, a > 1, F(r, t) = r⇒ r = 0 or t = 0;

8. F(r, t) = r− ( 1+r2+r)(
t
1+t), F(r, t) = r⇒ t = 0;

9. F(r, t) = rβ(r), β : [0,∞)→ [0, 1), F(r, t) = r⇒ r = 0;

10. F(r, t) = r− t
k+t , F(r, t) = r⇒ t = 0;

11. F(r, t) = r − ϕ(r), F(r, t) = r ⇒ r = 0,here ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0⇔ t = 0;

12. F(r, t) = rh(r, t), F(r, t) = r⇒ r = 0,here h : [0,∞)× [0,∞)→ [0,∞) is
a continuous function such that h(r, t) < 1 for all t, s > 0;

13. F(r, t) = r− ( 2+t1+t)t, F(r, t) = r⇒ t = 0.

14. F(r, t) = n
√

ln(1+ rn), F(r, t) = r⇒ r = 0.

15. F(r, t) = φ(r), F(r, t) = r ⇒ r = 0,here φ : [0,∞) → [0,∞) is a upper
semi-continuous function such that φ(0) = 0, and φ(t) < t for t > 0,
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16. F(r, t) = r
(1+r)s ; s ∈ (0,∞), F(r, t) = r implies r = 0.

Remark 2 We assume that is F increasing with respect to the first variable
and decreasing with respect to the second variable.

The aim of this contribution is to investigate some fixed point results using
the concept of C -class function and control functions in the set up of complete
metric spaces satisfying a generalized weak contraction. Our result mainly
generalized the result of Rhoades [5] and Gupta and Mani [15].

2 Main result- fixed point results with auxiliary
functions

The main result of this paper is the following theorem.

Theorem 8 Let (E, d) be a complete metric space and A : E→ E be a mapping
such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ F

(
ψ1

(∫M(x,y)

0

ϕ(t)dt

)
, ψ2

(∫M(x,y)

0

ϕ(t)dt

))
,

(5)

where F is a C-class function, ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3 and

M(x, y) = max

{
d(x, y), d(x,Ax), d(y,Ay),

d(x,Ay) + d(y,Ax)

2

}
. (6)

Then A has a unique fixed point.

Proof. Let x0 ∈ E be an arbitrary point. Choose a point x1 in E such that
x1 = Ax0. In general, choose xn+1 such that xn+1 = Axn for n = 0, 1, 2 · · · .
Suppose that xn 6= xn+1 for each integer n > 1, then from (5)

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

 ψ1

(∫M(xn−1,xn)
0 ϕ(t)dt

)
,

ψ2

(∫M(xn−1,xn)
0 ϕ(t)dt

)  , (7)

where from (6),

M (xn−1, xn) =max

{
d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1) ,

d(xn−1,xn+1)+d(xn,xn)
2

}



Fixed point theorem for new type 103

=max

{
d (xn−1, xn) , d (xn, xn+1) ,

d (xn−1, xn+1)

2

}
=max {d (xn−1, xn) , d (xn, xn+1)} . (8)

If d(xn, xn+1) ≥ d(xn−1, xn) for some n, then on combining equation (7) and
(8), we get

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

 ψ1

(∫d(xn,xn+1)
0 ϕ(t)dt

)
,

ψ2

(∫d(xn,xn+1)
0 ϕ(t)dt

)  . (9)

Thus by definition of F ∈ C, we get

either ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
= 0 or ψ2

(∫d(xn,xn+1)
0

ϕ(t)dt

)
= 0

From definition of ψ1 and ψ2, it is possible only if∫d(xn,xn+1)
0

ϕ(t)dt = 0.

This is a contradiction to our hypothesis . Thus d(xn, xn+1) < d(xn−1, xn),
this implies

ψ1

(∫d(xn,xn+1)
0

ϕ(t)dt

)
≤ F

(
ψ1

∫d(xn−1,xn)
0

ϕ(t)dt,ψ1

∫d(xn−1,xn)
0

ϕ(t)dt

)

≤ ψ1
∫d(xn−1,xn)
0

ϕ(t)dt

Since ψ1 is continuous and non-decreasing, therefore∫d(xn,xn+1)
0

ϕ(t)dt ≤
∫d(xn−1,xn)
0

ϕ(t)dt,

thus
{∫(d(xn,xn+1)

0 ϕ(t)dt
}

is monotone decreasing and lower bounded sequence.

Therefore there exist r ≥ 0 such that

lim
n→∞

∫d(xn,xn+1)
0

ϕ(t)dt = r. (10)
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Suppose that r > 0. Taking limit as n→∞ on both sides of eq. (9) and using
eq. (10), we get

ψ1(r) ≤ F (ψ1(r), ψ2(r)) ,

implies from definition of F ∈ C that

either ψ1(r) = 0 or ψ2(r) = 0.

Consequently, by definition of ψ1 and ψ2, we get r = 0.
Hence from eq. (10), we obtain

lim
n→∞

∫d(xn,xn+1)
0

ϕ(t)dt = 0, (11)

implies

lim
n→∞d(xn, xn+1) = 0. (12)

Next we prove that {xn} is a Cauchy sequence. Suppose it is not. Therefore
for an ε > 0 , there exists two sub-sequences

{
xm(p)

}
and
{
xn(p)

}
of {xn} with

m(p) < n(p) < m(p+ 1) such that

d
(
xm(p), xn(p)

)
≥ ε, d

(
xm(p), xn(p)−1

)
< ε. (13)

Consider

ψ1

(∫ε
0

ϕ(t)dt

)
≤ ψ1

(∫d(xm(p),xn(p))

0

ϕ(t)dt

)

≤ F


ψ1

(∫M(xm(p)−1,xn(p)−1)
0 ϕ(t)dt

)
,

ψ2

(∫M(xm(p)−1,xn(p)−1)
0 ϕ(t)dt

)
 . (14)

Using (6)

M
(
xm(p)−1, xn(p)−1

)
= max


d
(
xm(p)−1, xn(p)−1

)
, d
(
xm(p)−1, xm(p)

)
,

d
(
xn(p)−1, xn(p)

)
,

d(xm(p)−1,xn(p))+d(xn(p)−1,xm(p))
2


= max

{
d
(
xm(p)−1, xn(p)−1

)
, d
(
xm(p)−1, xm(p)

)
,

d
(
xn(p)−1, xn(p)

)
, z(m,n)

}
,

(15)
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where,

z(m,n) =
d
(
xm(p)−1,xn(p)

)
+ d

(
xn(p)−1,xm(p)

)
2

. (16)

Thus∫M(
xm(p)−1,xn(p)−1

)
0

ϕ(t)dt

=

∫max
{
d
(
xm(p)−1,xn(p)−1

)
,d
(
xm(p)−1,xm(p)

)
,d
(
xn(p)−1,xn(p)

)
,z(m,n)

}
0

ϕ(t)dt

= max


∫d(xm(p)−1,xn(p)−1

)
0 ϕ(t)dt,

∫d(xm(p)−1,xm(p)

)
0 ϕ(t)dt,∫d(xn(p)−1,xn(p))

0 ϕ(t)dt,
∫z(m,n)
0 ϕ(t)dt

 (17)

Using (13) and triangle inequality, we get

d
(
xm(p)−1, xn(p)−1

)
≤ d

(
xm(p)−1, xm(p)

)
+ d

(
xm(p), xn(p)−1

)
< d

(
xm(p)−1, xm(p)

)
+ ε.

Therefore,

lim
p→∞

∫d(xm(p)−1,xn(p)−1)

0

ϕ(t)dt ≤
∫ε
0

ϕ(t)dt. (18)

Also,

z(m,n) =
d
(
xm(p)−1, xn(p)

)
+ d

(
xn(p)−1, xm(p)

)
2

≤
d
(
xm(p)−1, xm(p)

)
+ 2d

(
xm(p), xn(p)−1

)
+ d

(
xn(p)−1, xn(p)

)
2

≤
d
(
xm(p)−1, xm(p)

)
+ d

(
xn(p)−1, xn(p)

)
2

+ ε.

Taking limit as p→∞ and using (12), we get

lim
p→∞

∫ z(m,n)
0

ϕ(t)dt ≤
∫ε
0

ϕ(t)dt (19)
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Taking limit as p → ∞ in equality (14) and using equations (15), (16), (17),
(18) and (19) all together in (14), we get

ψ1

(∫ε
0

ϕ(t)dt

)
≤ F

(
ψ1

(∫ε
0

ϕ(t)dt

)
, ψ2

(∫ε
0

ϕ(t)dt

))
.

Again from definition of F ∈ C we get,

either ψ1

(∫ε
0

ϕ(t)dt

)
= 0 or ψ2

(∫ε
0

ϕ(t)dt

)
= 0.

It is possible only if,
∫ε
0 ϕ(t)dt = 0. This is a contradiction to our hypothesis.

Therefore {xn} is a Cauchy sequence, call the limit α such that

lim
n→∞Axn−1 = α. (20)

Next we claim that α is the fixed point of map A.
That is Aα = α, suppose it is not. Then d(Aα,α) > 0.
Let δ = d(Aα,α).
Consider,

ψ1

(∫ δ
0

ϕ(t)dt

)
= ψ1

(∫d(Aα,α)
0

ϕ(t)dt

)

≤ F

 ψ1

(∫M(α,xn)
0 ϕ(t)dt

)
,

ψ2

(∫M(α,xn)
0 ϕ(t)dt

)  , (21)

where,

M(α, xn) = max

{
d(α, xn), d(α,Aα), d(xn, xn+1),

d(α,xn+1)+d(xn,Aα)
2

}
. (22)

Since,

lim
n→∞d(α, xn) = lim

n→∞d(xn, xn+1) = lim
n→∞d(α, xn+1) = 0. (23)

Taking limn→∞ in (21) and by using (20), (22), (23), we get

ψ1

(∫ δ
0

ϕ(t)dt

)
≤ F


ψ1

(∫max
{
d(α,Aα),

d(α,Aα)
2

}
0 ϕ(t)dt

)
,

ψ2

(∫max
{
d(α,Aα),

d(α,Aα)
2

}
0 ϕ(t)dt

)

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≤ F
{
ψ1

(∫ δ
0

ϕ(t)dt

)
, ψ2

(∫ δ
0

ϕ(t)dt

)}
(24)

Thus we obtain,

either ψ1

(∫ δ
0

ϕ(t)dt

)
= 0 or ψ2

(∫ δ
0

ϕ(t)dt

)
= 0

that is
∫δ
0 ϕ(t)dt = 0. Hence δ = 0 .

This implies d(Aα,α) = 0. Therefore α is the fixed point of map A. Uniqueness
of the fixed point can be easily obtain by using above inequality (21), (22),
(24). This proves the main result. �

3 Applications and example

Next we give several corollaries, as a application of our main result, in the
underlying spaces. Some of them are novel in literature

If we take ψ1(t) = t in Theorem 8, we get a new result.

Corollary 1 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ F

(∫M(x,y)

0

ϕ(t)dt,ψ2

(∫M(x,y)

0

ϕ(t)dt

))
for each x, y ∈ E, where M(x, y) is given in (6), F is a C-class function,
ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we take F(r, t) = r
(1+t)s and assume s = 1 in Theorem 8, we find a very

interesting novel result.

Corollary 2 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤

ψ1

(∫M(x,y)
0 ϕ(t)dt

)
1+ψ2

(∫M(x,y)
0 ϕ(t)dt

) ,
where M(x, y) is given in (6), ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.
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If we take F(r, t) = λr for 0 < λ < 1 and in Theorem 8, then we have following
corollary.

Corollary 3 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ λψ1

(∫M(x,y)

0

ϕ(t)dt

)
,

where M(x, y) is given in (6), ψ1 ∈ Ψ1, ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we assume that ψ1(t) = t in Corollary 3 then we obtain the result of Rhoades
[5] (see Theorem 2 of [5]).

Corollary 4 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,∫d(Ax,Ay)

0

ϕ(t)dt ≤ λ
∫M(x,y)

0

ϕ(t)dt,

where M(x, y) is given in (6), ϕ ∈ Ψ3.
Then A has a unique fixed point.

If we take F(r, t) = r − t in Theorem 8, then we obtain the result of Gupta
and Mani [15].

Corollary 5 Let (E, d) be a complete metric space and A : E→ E be a map-
ping such that for each x, y ∈ E,

ψ1

(∫d(Ax,Ay)
0

ϕ(t)dt

)
≤ ψ1

(∫M(x,y)

0

ϕ(t)dt

)
−ψ2

(∫M(x,y)

0

ϕ(t)dt

)

where M(x, y) is given in (6), ψ1 ∈ Ψ1, ψ2 ∈ Ψ2, ϕ ∈ Ψ3.
Then A has a unique fixed point.

Remark 3 It should be noted that in [15], authors have considered an extra
condition on ψ2. But from above corollaries it is clear that we can deduce the
same result without that extra assumption. Also, the result obtained in [5] and
[15] are an element of C - class function as shown in Corollary 4 and Corollary
5. So the main result of this paper is more generalized than the other previously
proved results.
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Now, we gave a non trivial example to justify the importance of our result.

Example 2 Let E = N− {∞} and d is usual metric on E. Define a self maps
A on E such that

Ax =
x

3
, ∀ x ∈ E.

Define a function F : [0,∞)2 → R as

F(r, t) = mr, ∀ 0 < m =
2

3
< 1.

Then clearly, F is a C-class function.
Let us define ψ1, ϕ : [0,+∞)→ [0,+∞) as

ψ1(t) = t, ϕ(t) =
t

2
, ∀ t ∈ [0,+∞)

then for each ε > 0, clearly ∫ε
0

ϕ(t)dt =
ε2

4
> 0.

If x = y for all x, y ∈ E, then result holds trivially.
So suppose that x 6= y for all x, y ∈ E.
Since d is usual metric for all x, y ∈ E, then on careful calculation, we get

L.H.S. =
|x− y|

36

2

,

and

R.H.S. =
|x− y|

3

2

,

Then clearly, L.H.S ≤ R.H.S for all x, y ∈ E and, hence all conditions of
Theorem 8 are verified.
Clearly 0 ∈ E is the unique fixed point of A.
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