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Abstract. The main objective of this paper is to investigate the prob-
lem of estimating the trend function St = S(xt) for process satisfying
stochastic differential equations of the type

dXt = S(Xt)dt+ εdB
H,K
t , X0 = x0, 0 ≤ t ≤ T,

where
{
BH,K
t , t ≥ 0

}
is a bifractional Brownian motion with known pa-

rameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the
unknown function S(xt) by a kernel estimator Ŝt and obtain the asymp-
totic properties as ε −→ 0. Finally, a numerical example is provided.
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1 Introduction

Fractional Brownian motion (fBm) is the most well-known and employed pro-
cess with a long dependency-property for many real world applications in-
cluding telecommunication, turbulence, finance, and so on. This process was
introduced by Kolmogorov [5], then studied by many researchers including
Mandelbrot and Van Ness [9] and Norros et al. [12].

The bifractional Brownian motion (bfBm) was introduced in Houdré and
Villa [3], and further studied by Russo and Tudor [14] and Tudor and Xiao
[16].

Nonparametric estimation of trend function for stochastic differential equa-
tions (SDEs) has caught the attention of different researchers. It was first
investigated by Kutoyants [7] for the stochastic differential equation driven
by a standard Brownian motion. After that, the problem was generalized
by Mishra and Rao [10] for the stochastic differential equation driven by a
fractional Brownian motion. Then, Mishra and Rao [11] presented nonpara-
metric estimation of linear multiplier for fractional diffusion processes. Later,
nonparametric inference for fractional diffusion were dealt by Saussereau [15].
Very recently, Prakasa Rao [13] investigated nonparametric estimation of trend
function for SDEs driven by mixed fractional Brownian motion.

In this paper, we use the method developed by Kutoyants [7] to construct
an estimate of the trend function St in a model described by stochastic dif-
ferential equations driven by a bifractional Brownian motion. For this, let
{Xt, 0 ≤ t ≤ T } be the process governed by the following equation:

dXt = S(Xt)dt+ εdB
H,K
t , X0 = x0, 0 ≤ t ≤ T,

where ε > 0 and BH,Kt is a bifractional Brownian motion of parameters H ∈
(0, 1), K ∈ (0, 1], and S(.) is an unknown function. In Kutoyants [7], the trend
coefficient in a diffusion process was estimated from the process {Xt, 0 ≤ t ≤ T } .
In this investigation, we use a similar approach and consider the estimate Ŝt
of St as follows:

Ŝt =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ,

where G is a bounded kernel with finite support with φε −→ 0 as ε −→ 0.
Under some hypotheses, we firstly prove the mean square consistency of the
estimator. Then, we give a bound on the rate of convergence and prove the
asymptotic normality of the estimator Ŝt.

To the best of our knowledge, the problem of nonparametric estimation of
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trend function for stochastic differential equations driven by a bfBm has not
been considered in the literature.

The rest of the paper is structured as follows. In Section 2, the basic prop-
erties of bifractional Brownian motion are stated. Section 3 is devoted to the
preliminaries. Then, in Section 4, we give the main results; under some hy-
potheses, we establish the uniform consistency (Theorem 1), the rate of con-
vergence (Theorem 2) as well as the asymptotic normality (Theorem 3) of
the estimator. Further, in Section 5, a simulation example is carried out to
illuminate our theoretical study. Section 6 is devoted to the technical proofs.
Finally, we conclude the paper in Section 7.

2 Bifractional Brownian motion

Let (Ω,F , {Ft}t≥0,P) be a stochastic basis satisfying the habitual hypotheses,
i.e., a filtered probability space with a right continuous filtration {Ft}t≥0 and
F0 contains every P-null set.

Let {BH,Kt , t ≥ 0} be a normalized bifractional Brownian motion with pa-
rameters H ∈ (0, 1) and K ∈ (0, 1], that is, a Gaussian process with continuous
sample paths with BH,K0 = 0 and the covariance:

RH,K(t, s) = E
(
BH,Kt BH,Ks

)
=
1

2K

[
(t2H + s2H)K + |s− t|2HK

]
, t ≥ 0, s ≥ 0.

When K = 1, we retrieve the fractional Brownian motion while the case
K = 1 and H = 1/2 corresponds to the standard Brownian motion.

The bfBm is an extension of the fBm which preserves many properties of
the fBm, but not the stationarity of the increments. Russo and Tudor [14]
showed that the bfBm BH,K behaves as a fBm of Hurst parameter HK.

According to Houdré and Villa [3] and Tudor and Xiao [16], the bfBm has
the following properties:

1. E
(
BH,Ht

)
= 0 and Var

(
BH,Kt

)
= t2HK.

2. BH,Kt is said to be self-similar with index HK ∈ (0, 1), that is, for every
constant a > 0,{

BH,Kat , t ≥ 0
}
∆
=
{
aHKBH,Kt , t ≥ 0

}
, for each a > 0, (1)

in the sense that the processes, on both sides of the equality sign, have
the same finite dimensional distributions.
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3. The process BH,Kt is not Markov and it is not a semi-martingale if HK 6=
1/2.

4. The trajectories of the process BH,K are Hölder continuous of order δ for
any δ < HK and they are nowhere differentiable.

5. The bfBm BH,K is a quasi-helix in the sense of Kahane [4], for any t, s ≥ 0
we have

2−K (t− s)2HK ≤ E
[
BH,Kt − BH,Ks

]2
≤ 21−K (t− s)2HK .

The bfBm BH,K can be extended for K ∈ (1, 2) with H ∈ (0, 1) and HK ∈ (0, 1)
(see Bardina and Es-Sebaiy [1] and Lifshits and Volkova [8]).

The stochastic calculus with respect to the bifractional Brownian motion
has been recently developed by Kruk et al. [6]. More works on bifractional
Brownian motion can be found in Tudor and Xiao [16], Es-sabaiy and Tudor
[2], Yan et al. [17] and the references therein.

Fix a time interval [0, T ], we denote by E the set of step function on [0, T ].
Let HBH,K be the canonical Hilbert space associated to the bfBm defined as
the closure of E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

BH,K
= RH,K(t, s) =

∫ T
0

∫ T
0

1[0,t](u)1[0,s](v)
∂2RH,K(u, v)

∂u∂v
dudv,

where RH,K(t, s) is the covariance of BH,Kt and BH,Ks . The application ϕ ∈ E −→
BH,K(ϕ) is an isometry from E to the Gaussian space generated by BH,K and it
can be extended to HBH,K . In this study, as HK ∈ (1/2, 1) we will employ the
subspace |HBH,K | of HBH,K which is defined as the set of measurable function
ϕ on [0, T ] satisfying

‖ϕ‖|HBH,K |
:=

∫ T
0

∫ T
0

|ϕ(u)| |ϕ(v)|
∂2RH,K(u, v)

∂u∂v
dudv <∞, (2)

such that

∂2RH,K(u, v)

∂u∂v
= αH,K

(
t2H + s2H

)K−2
(ts)2H−1 + βH,K |t− s|

2HK−2 ,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).
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Note that, if ϕ, ψ ∈ |HBH,K |, then their scalar product in HBH,K is given by

〈ϕ,ψ〉H
BH,K

=

∫ T
0

∫ T
0

ϕ(u)ψ(v)
∂2RH,K(u, v)

∂u∂v
dudv.

For ϕ, ψ ∈ |HBH,K |, we have

E
(∫ T

0

ϕ(u)dBH,Ku

)
= 0, E

(∫ T
0

ϕ(u)dBH,Ku

∫ T
0

ψ(v)dBH,Kv

)
= 〈ϕ,ψ〉H

BH,K
.

It is worth being pointed out that the canonical Hilbert spaceHBH,K associated
with BH,K satisfies:

L2([0, T ]) ⊂ L1/HK([0, T ]) ⊂ |HBH,K | ⊂ HBH,K , (3)

where H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1).

3 Preliminaries

Let {Xt, 0 ≤ t ≤ T } be a process governed by the following equation:

dXt = S(Xt)dt+ εdB
H,K
t , X0 = x0, 0 ≤ t ≤ T, (4)

where ε > 0, BH,Kt a bifractional Brownian motion, and S(.) is an unknown
function. We suppose that xt is a solution of the following equation

dxt

dt
= S(xt), x0, 0 ≤ t ≤ T. (5)

We also suppose that the function S : R −→ R satisfies the following assump-
tions:

(A1) There exists L > 0 such that

|S(x) − S(y)| ≤ L |x− y| , x, y ∈ R, (6)

(A2) There exists M > 0 such that

|S(x)| ≤M(1+ |x|), x ∈ R,

Then, the stochastic differential equation (4) has a unique solution {Xt, 0 ≤ t ≤ T }.

(A3) Assume that the function S(x) is bounded by a constant C.
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Since the function xt satisfies (5), it follows that

|S(xt) − S(xs)| ≤ L|xt − xs| = L
∣∣∣∣∫ t
s

S(xr)dr

∣∣∣∣ ≤ LC|t− s|, t, s ∈ [0, T ].

Let us define Σ0(L) as the class of all functions S(x) satisfying the assumption
(A1) and uniformly bounded by the same constant C. Further, we denote by
Σk(L) the class of all function S(x) which are uniformly bounded by the same
constant C and which are k-times differentiable with respect to x satisfying
the following condition∣∣∣Sk(x) − Sk(y)∣∣∣ ≤ L |x− y| , x, y ∈ R, (7)

where Sk(x) is the k-th derivative of S(x).

Lemma 1 Assume that hypothesis (A1) is verified. Let Xt and xt be the so-
lutions of the equations (4) and (5) respectively. Then, we have

sup
0≤t≤T

E (Xt − xt)
2 ≤ e2LTε2T 2HK. (8)

Proof of the Lemma 1

By (4) and (5), we have

Xt = x0 +

∫ t
0

S(Xr)dr+ εB
H,K
t ,

and

xt = x0 +

∫ t
0

S(xr)dr.

This implies

Xt − xt =

∫ t
0

(S(Xr) − S(xr))dr+ εB
H,K
t .

Thus
|Xt − xt| ≤

∫t
0 |S(Xr) − S(xr)|dr+ ε|B

H,K
t |

≤ L
∫t
0 |Xr − xr|dr+ ε|B

H,K
t |.

(9)

Putting ut = |Xt − xt|, we have

ut ≤
∫ t
0

urdr+ ε|B
H,K
t |.
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By using Grönwall’s inequality, we obtain

|Xt − xt| ≤ eLtε
∣∣∣BH,Kt ∣∣∣ .

Then, since E
(
BH,Kt

)2
= t2HK, we have

E|Xt − xt|2 ≤ e2Ltε2t2HK.

Finally, we find

sup
0≤t≤T

E (Xt − xt)
2 < e2LTε2T 2HK.

4 Main results

The main goal of this work is to build an estimator of the trend function
St in the model described by stochastic differential equation (4) using the
method developed by Kutoyants [7]. Then, we study its asymptotic properties
as ε −→ 0.

For all t ∈ [0, T ], the kernel estimator Ŝt of St is given by

Ŝt =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ, (10)

where G(u) is a bounded function with finite support [A,B] satisfying the fol-
lowing hypotheses:

(H1) G(u) = 0 for u < A and u > B and

∫B
A

G(u)du = 1,

(H2)

∫+∞
−∞ G2(u)du <∞,

(H3)

∫+∞
−∞ u2(k+1)G2(u)du <∞,

(H4)

∫+∞
−∞ |G(u)|

1
HK du <∞,

Further, we suppose that the normalizing function φε satisfies:
(H5) φε −→ 0 and ε2φ−1

ε −→ 0 as ε −→ 0.

The following theorem gives the uniform convergence of the estimator Ŝt.

Theorem 1 Suppose that the assumptions (A1)-(A3) and (H1)-(H5) hold true.
Further, suppose that the trend function S(x) belongs to Σ0(L). Then, for any
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0 < c ≤ d < T and HK ∈ (1/2, 1), the estimator Ŝt is uniformly consistent,
that is,

lim
ε−→0 sup

S(x)∈Σ0(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2) = 0. (11)

The following additional assumptions are useful for the rest of the theoret-
ical study. Assume that

(H6)

∫+∞
−∞ ujG(u)du = 0 for j = 1, 2, ..., k,

(H7)

∫+∞
−∞ uk+1G(u)du <∞ and

∫+∞
−∞ u2(k+2)G2(u)du <∞.

The rate of convergence of the estimator Ŝt is established in the following
theorem.

Theorem 2 Suppose that the function S(x) ∈ Σk(L), HK ∈ (1/2, 1) and φε =

ε
1

k−HK+2 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

lim sup
ε−→0 sup

S(x)∈Σk(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2)ε
−2(k+1)
k−HK+2 <∞. (12)

Finally, the following theorem presents the asymptotic normality of the ker-
nel type estimator Ŝt of S(xt).

Theorem 3 Suppose that the function S(x) ∈ Σk+1(L), HK ∈ (1/2, 1) and

φε = ε
1

k−HK+2 . Then, under the hypotheses (A1)-(A3) and (H1)-(H7), we have

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

) D−→ N (m,σ2H,K), as ε −→ 0,

where

m =
Sk+1(xt)

(k+ 1)!

∫+∞
−∞ G(u)uk+1du,

and

σ2H,K =

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

[
αH,K

(
u2H + v2H

)K−2
(uv)2H−1

+βH,K |u− v|2HK−2
]
dudv,

with

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).
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5 Numerical example

The main objective of this part is to conduct a numerical study to illustrate our
theoretical result. We compare our kernel estimator for stochastic differential
equations driven by a bifractional Brownian motion to the kernel estimator for
stochastic differential equations driven by fractional Brownian motion given
in Mishra and Prakasa Rao [10]. We compare numerically the variance σ2H,K
of our estimator to σ2H.

Consider a function G which satisfies hypotheses (H1)-(H7):

G(t) =
15

128

(
63t4 + 70t2 + 15

)
, |t| ≤ 1.

− The variance of the kernel estimator for stochastic differential equations
driven by fractional Brownian motion given in Mishra and Prakasa Rao [10]
is given as:

For all H ∈ (1/2, 1),

σ2H = H(2H− 1)

∫+∞
−∞
∫+∞
−∞ G(u)G(v) |u− v|2H−2 dudv,

− Using the result given in Theorem 3, the variance of our estimator is
obtained as:

For all H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1), we have

σ2H,K =

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

[
αH,K

(
u2H + v2H

)K−2
(uv)2H−1

+βH,K |u− v|2HK−2
]
dudv,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).

Next, we compute the variances, the results are presented in the following
Tables
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Table 1: The variance values σ2H.

H 0.7 0.75 0.8 0.85 0.9 0.95

σ2H 1.1567 1.1900 1.1830 1.1506 1.1025 1.0452

Table 2: The variance values σ2H,K.

K \H 0.7 0.75 0.8 0.85 0.9 0.95

0.75 0.6006 0.9458 1.1647 1.2965 1.3709 1.4091

0.8 0.8733 1.1230 1.2696 1.3462 1.3774 1.3801

0.85 1.0362 1.2107 1.3019 1.3376 1.3378 1.3159

0.9 1.1227 1.2382 1.2873 1.2930 1.2712 1.2326

0.95 1.1570 1.2264 1.2437 1.2274 1.1901 1.1402

1 1.1567 1.1900 1.1830 1.1506 1.1025 1.0452

From the obtained results in Tables 1 and 2, we clearly see that the variance of
our estimator is less than that of the kernel estimator for stochastic differential
equations driven by fractional Brownian motion. We can conclude that our
kernel estimator for stochastic differential equations driven by a bifractional
Brownian motion is better than that given in Mishra and Prakasa Rao [10].

6 Proof of Theorems

6.1 Proof of Theorem 1

From (4) and (10), we can see that

Ŝt − S(xt) =
1

φε

∫ T
0

G

(
τ− t

φε

)
dXτ − S(xt)

=
1

φε

∫ T
0

G

(
τ− t

φε

)(
S(Xτ)dτ+ εdB

H,K
τ

)
− S(xt)

=
1

φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

+
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

+
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ .
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Using the inequality (α+ β+ γ)2 ≤ 3α2 + 3β2 + 3γ2, it yields

ES
[
Ŝt − S(xt)

]2 ≤ 3ES [ 1
φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

]2
+ 3ES

[
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

]2
+ 3ES

[
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
≤ I1 + I2 + I3.

(13)

• Concerning I1. Via inequalities (6) and (8) and hypotheses (H1)-(H2), we
get

I1 = 3ES
[
1

φε

∫ T
0

G

(
τ− t

φε

)
(S(Xτ) − S(xτ))dτ

]2
= 3ES

[∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du

]2
≤ 3(B−A)ES

[∫+∞
−∞ G2 (u) (S(Xt+φεu) − S(xt+φεu))

2 du

]
≤ 3(B−A)L2ES

[∫+∞
−∞ G2 (u) (Xt+φεu − xt+φεu)

2 du

]
≤ 3(B−A)L2

[∫+∞
−∞ G2 (u) sup

0≤t+φεu≤T
ES (Xt+φεu − xt+φεu)

2 du

]
≤ 3(B−A)L2e2LTT 2HKε2

≤ C1ε2,

(14)

where C1 is a positive constant depending on T, L,H, K, and (B−A) .
• Concerning I2. Let

I2 = 3ES
[
1
φε

∫T
0 G

(
τ−t
φε

)
S(xτ)dτ− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u)S(xt+φεu)du− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du

]2
(15)
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Next, by using hypotheses (A3) and (H3), we have

I2 ≤ 3L2C22ES
[∫+∞

−∞ G (u) (φεu)du

]2
≤ 3 (B−A)L2C22

[∫+∞
−∞ G2 (u)u2du

]
φ2ε

≤ C3φ2ε,

where C3 is a positive constant depending on L and (B−A) .
• Concerning I3. Since HK ∈ (1/2, 1), we have

I3 = 3ES
[
ε

φε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
= 3

ε2

φ2ε
ES
[∫ T
0

G

(
τ− t

φε

)
dBH,Kτ

]2
≤ 3 ε

2

φ2ε

C(2,HK)(∫ T
0

∣∣∣∣G(τ− tφε

)∣∣∣∣ 1
HK

dτ

)2HK
≤ C4

ε2

φ2ε

[
φ2HKε

(∫+∞
−∞ |G (u)|

1
HK du

)2HK]

≤ C5
ε2

φε
φ2HK−1ε (using hypothesis (H4)),

(16)

where C5 is a positive constant depending on H and K.
Combining (13)-(16), we have

sup
S(x)∈Σ0(L)

sup
c≤t≤d

ES
[
Ŝt − S(xt)

]2 ≤ C6(ε2 + φ2ε + ε2

φε
φ2HK−1ε

)
.

Finally, under the assumption (H5), we obtain

lim
ε−→0 sup

S(x)∈Σ0(L)
sup
c≤t≤d

ES
[
Ŝt − S(xt)

]2
= 0.

6.2 Proof of Theorem 2

Using the Taylor formula, we get

S(xt) = S(xt0) +

k∑
j=1

Sj(xt0)
(t− t0)

j

j!
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+
(
Sk(xt+λ(t−t0)) − S

k(xt0)
) (t− t0)

k

k!
, λ ∈ (0, 1),

and

S (xt+φεu) = S (xt) +

k∑
j=1

Sj (xt)
(φεu)

j

j!

+
(
Sk(xt+λ(φεu)) − S

k(xt)
) (φεu)

k

k!
, λ ∈ (0, 1).

Then, by substituting this expression in I2, using inequality (7) and assump-
tions (H6)-(H7), we obtain

I2 = 3ES
[
1

φε

∫ T
0

G

(
τ− t

φε

)
S(xτ)dτ− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u)S(xt+φεu)du− S(xt)

]2
= 3ES

[∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du

]2

= 3ES

∫+∞
−∞G(u)

 k∑
j=1

Sj(xt)
(φεu)

j

j!
+
(
Sk(xt+λ(φεu))−S

k(xt)
)(φεu)k

k!

du
2

= 3ES
[
φkε
k!

∫+∞
−∞ G (u)uk

(
Sk(xt+λ(φεu)) − S

k(xt)
)
du

]2
(by using (H6))

≤ 3C27L2
[
φk+1ε

k!

∫+∞
−∞ G (u)uk+1du

]2
≤ 3C27L2 (B−A)

φ
2(k+1)
ε

(k!)2

[∫+∞
−∞ G2 (u)u2(k+1)du

]
≤ C8φ

2(k+1)
ε ,

(17)

where C8 is a positive constant depending on L and (B−A) .
Next, from (14), (16), and (17), we find

sup
S(x)∈Σk(L)

sup
c≤t≤d

ES
∣∣Ŝt − S(xt)∣∣2 ≤ C9 (ε2φ2HK−2ε + φ

2(k+1)
ε + ε2

)
.
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Putting φε = ε
1

k−HK+2 , it yields

lim sup
ε−→0 sup

S(x)∈Σk(L)
sup
c≤t≤d

ES(|Ŝt − S(xt)|2)ε
−2(k+1)
k−HK+2 <∞.

This completes the proof of Theorem 2.

6.3 Proof of Theorem 3

From (4) and (10), we can see that

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= ε

−(k+1)
k−HK+2

[
1
φε

∫T
0 G

(
τ−t
φε

)
(S(Xτ) − S(xτ))dτ

+ 1
φε

∫T
0 G

(
τ−t
φε

)
S(xτ)dτ− S(xt) + ε

φε

∫T
0 G

(
τ−t
φε

)
dBH,Kτ

]
.

Therefore

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= ε

−(k+1)
k−HK+2

[∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du

+
∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du+ ε

φε

∫T
0 G

(
τ−t
φε

)
dSHτ

]
.

Thus

ε
−(k+1)
k−HK+2

(
Ŝt − S(xt)

)
= r1(t) + r2(t) + ηε(t).

Hence, by Slutsky’s Theorem, it suffices to show the following three claims:

r1(t)→ 0, as ε→ 0 in probability. (18)

r2(t)→ m, as ε→ 0 in probability. (19)

and

ηε(t)→ N (0, σ2H,K), as ε→ 0 in distribution. (20)

Proof of (18).
Let

r1(t) = ε
−(k+1)
k−HK+2

∫+∞
−∞ G (u) (S(Xt+φεu) − S(xt+φεu))du.

By applying the inequality (14), we have

0 ≤ E
[
r21(t)

]
≤ ε

−2(k+1)
k−HK+2 I1 ≤ C10ε

2(1−HK)
k−HK+2 .
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Therefore, using the Bienaymé-Tchebychev’s inequality, as ε −→ 0, we obtain,
for all α > 0

P (|r1(t)| > α) ≤
E
[
r21(t)

]
α2

≤ C10ε
2(1−HK)
k−HK+2

α2
−→ 0.

Proof of (19).

Let

r2(t) = ε
−(k+1)
k−HK+2

∫+∞
−∞ G (u) (S(xt+φεu) − S(xt))du.

By taking any t, u ∈ [0, T ] and b(x) ∈ Σk+1(L), via the Taylor expansion, we
get

S (xt+φεu) = S (xt) +
∑k
j=1 S

j (xt)
(φεu)

j

j! + Sk+1(xt)
(k+1)! (φεu)

k+1

+
(
Sk+1(xt+λ(φεu)) − S

k+1(xt)
) (φεu)

k+1

(k+1)! , λ ∈ (0, 1),

Making use of the conditions (H6), (H7), and choosing φε = ε
1

k−HK+2 , we
obtain

E [r2(t) −m]2 = E
[∫+∞

−∞ G (u)
(
Sk+1(xt+λ(φεu)) − S

k+1(xt)
) (u)k+1

(k+1)! du
]2

≤ C11L
2C2

(∫+∞
−∞ G(u)uk+2 φε

(k+1)!du
)2

≤ C12

(∫+∞
−∞ G2(u)u2(k+2)du

)
φ2ε

≤ C13φ
2
ε,

where C13 is a positive constant which depends on L and k, and

m =
Sk+1(xt)

(k+ 1)!

∫+∞
−∞ G (u)uk+1du.

Therefore,
E [r2(t) −m]2 −→ 0 as ε −→ 0.

Then
r2(t)

P−→ m.

Proof of (20).
Let

ηε(t) = ε
−(k+1)
k−HK+2 εφ−1

ε

∫ T
0

G

(
τ− t

φε

)
dBH,Kτ . (21)



Nonparametric estimation of trend function for SDEs driven by a bfBm 143

In fact, we have to evaluate the variance of (21). To this end, let

E [ηε(t)]
2 =

(
ε

1−HK
k−HK+2φ−1

ε

)2
E
(∫ T

0

G

(
τ− t

φε

)
dBH,Kτ

)2
.

Moreover, using equation (2), we have

E [ηε(t)]
2 =

(
ε

1−HK
k−HK+2φ−1

ε

)2 [
φ2HKε

∫+∞
−∞
∫+∞
−∞ G(u)G(v)

∂2RH,K(u, v)

∂u∂v
dudv

]
.

Then, by taking φε = ε
1

k−HK+2 , we get

E [ηε(t)]
2 =

∫+∞
−∞
∫+∞
−∞ G (u)G (v)

∂2RH,K(u, v)

∂u∂v
dudv,

with

∂2RH,K(u, v)

∂u∂v
= αH,K

(
u2H + v2H

)K−2
(uv)2H−1 + βH,K |u− v|2HK−2 ,

where

αH,K = 2−K+2H2K(K− 1) and βH,K = 2−K+1HK(2HK− 1).

Finally, this last equation allows us to achieve the proof of Theorem 3.

7 Conclusion

This paper considered a nonparametric estimation of trend function for stochas-
tic differential equations driven by a bifractional Brownian motion. We con-
structed an estimate of the trend function. Then, under some assumptions, we
established the uniform consistency, the rate of convergence and the asymp-
totic normality of the proposed estimator. Further, an numerical example is
provided. The present study has many applications in practical phenomena
including telecommunications and economics.
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