

DOI: 10.2478/ausm-2020-0009

Orbital shadowing property on chain transitive sets for generic diffeomorphisms

Manseob Lee Department of Mathematics, Mokwon University, Daejeon, 302-729, Korea email: lmsds@mokwon.ac.kr

Abstract. Let $f : M \to M$ be a diffeomorphism on a closed smooth $n(\geq 2)$ dimensional manifold M. We show that C^1 generically, if a diffeomorphism f has the orbital shadowing property on locally maximal chain transitive sets which admits a dominated splitting then it is hyperbolic.

1 Introduction

Let M be a closed smooth $n(n \ge 2)$ -dimensional Riemannian manifold, and let Diff(M) be the space of diffeomorphisms of M endowed with the C¹-topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. For any $\delta > 0$, a sequence $\{x_i\}_{i\in\mathbb{Z}}$ is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$. Let Λ be a closed f-invariant set. We say that f has the shadowing property on Λ if for any $\varepsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo orbit $\{x_i\}_{i\in\mathbb{Z}} \subset \Lambda$ there is $y \in M$ such that $d(f^i(y), x_i) < \varepsilon$ for all $i \in \mathbb{Z}$. If $\Lambda = M$ then we say that f has the shadowing property. The shadowing property is very useful notion to investigate for hyperbolic structure. In fact, Robinson[22] and Sakai[24] proved that a diffeomorphism f has the C¹ robustly shadowing property if and only if it is structurally stable

²⁰¹⁰ Mathematics Subject Classification: Primary 37C50; Secondary 34D10

Key words and phrases: shadowing; orbital shadowing, chain transitive set, homoclinic class, chain recurrence class, hyperbolic, generic

diffeomorphisms. Here, we say that f has the C¹ robustly shadowing property if there is a C¹ neighborhood $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$, g has the shadowing property. From the property, a general shadowing property was introduced by [20] which is called the orbital shadowing property. For the orbital shadowing property, many results published by the various view points (see [10, 13, 14, 15, 16, 17, 19]). We say that f has the *orbital shadowing property* on Λ if for any $\epsilon > 0$ there is $\delta > 0$ such that for any δ pseudo orbit $\xi = \{x_i\}_{\in\mathbb{Z}} \subset \Lambda$ such that there is a point $\mathbf{y} \in \mathbf{M}$ such that

$$Orb(y) \subset B_{\varepsilon}(\xi)$$
 and $\xi \subset B_{\varepsilon}(Orb(y))$.

If $\Lambda = M$ then we say that f has the orbital shadowing property. Let Λ be a closed f-invariant set. We say that Λ is *hyperbolic* if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

 $\|D_{x}f^{n}|_{E_{x}^{u}}\| \leq C\lambda^{n} \text{ and } \|D_{x}f^{-n}|_{E_{x}^{u}}\| \leq C\lambda^{n}$

for all $x \in \Lambda$ and $n \ge 0$. If $\Lambda = M$ then we say that f is Anosov.

Pilyugin et al [20] proved that if a diffeomorphism f has the C^1 robustly orbital shadowing property then it is structurally stable diffeomorphisms. Lee and Lee [10] proved that a volume preserving diffeomorphism f has the C^1 robustly orbital shadowing property then it is Anosov. Moreover, we can find similar results [12, 13, 14, 15]. We say that the set Λ is *transitive* if there is a point $x \in \Lambda$ such that $\omega(x) = \Lambda$, where $\omega(x)$ is the omega limit set of x. An invariant closed set C is called a *chain transitive* if for any $\delta > 0$ and $x, y \in C$, there is δ -pseudo orbit $\{x_i\}_{i=0}^n (n \ge 1) \subset \mathcal{C}$ such that $x_0 = x$ and $x_n = y$. It is clear that the transitive set Λ is the chain transitive set \mathcal{C} , but the converse is not true. We say that Λ is *locally maximal* if there is a neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. For the relation between chain transitive sets and C^1 robustly shadowing theories, In [16], Lee proved that if a robustly chain transitive set with orbital shadowing then it is hyperbolic. We say that f has the C¹ stably shadowing property on Λ if there are a C¹ neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of A such that for any $q \in \mathcal{U}(f)$, q has the shadowing property on $\Lambda_g(U)$, where $\Lambda_g(U)$ is the continuation of Λ . For $f \in Diff(M)$, we say that a compact f-invariant set Λ admits a *dominated splitting* if the tangent bundle T_AM has a continuous Df-invariant splitting $E \oplus F$ and there exist C > 0, $0 < \lambda < 1$ such that for all $x \in \Lambda$ and $n \ge 0$, we have

$$\|Df^{n}|_{E(x)}\| \cdot \|Df^{-n}|_{F(f^{n}(x))}\| \le C\lambda^{n}.$$

In [18], Lee proved that if a diffeomorphism f has the C^1 stably shadowing property on chain transitive set C then it admits a dominated splitting. Sakai [23] proved that a diffeomorphism f has the C^1 stably shadowing property on chain transitive set C then it is hyperbolic.

We say that a subset $\mathcal{G} \subset \text{Diff}(M)$ is residual if \mathcal{G} contains the intersection of a countable family of open and dense subsets of Diff(M); in this case \mathcal{G} is dense in Diff(M). A property "P" is said to be (\mathbb{C}^1) -generic if "P" holds for all diffeomorphisms which belong to some residual subset of Diff(M). For \mathbb{C}^1 generic differeomorphism f, Abdenur and Díaz [3] suggested the problem : if a \mathbb{C}^1 generic diffeomorphism f has the shadowing property then is it hyperbolic?

Unfortunately, this question still is open. For the problem, there are partial results [4, 9, 11]. Ahn *et al* [4] proved that for C^1 generic diffeomorphism f, if f has the shadowing property on a locally maximal homoclinic class then it is hyperbolic. Lee and Wen [11] proved that for C^1 generic diffeomorphism f, if f has the shadowing property on a locally maximal chain transitive set then it is hyperbolic. Very recently, Lee and Lee [9] proved that for C^1 generic diffeomorphism f, if f has the shadowing property on chain recurrence classes then it is hyperbolic. From the results, we study the orbital shadowing property for C^1 generic diffeomorphisms. The following is the main theorem of the paper.

Theorem A For C^1 generic f, if f has the orbital shadowing property on a locally maximal C which admits a dominated splitting $E \oplus F$ then it is hyperbolic.

2 Proof of Theorem A

Let M be as before, and let $f \in \text{Diff}(M)$. A *periodic point* for f is a point $p \in M$ such that $f^{\pi(p)}(p) = p$, where $\pi(p)$ is the minimum period of p. Denote by P(f) the set of all periodic points of f. Let p be a hyperbolic periodic point of f. A point $x \in M$ is called *chain recurrent* if for any $\delta > 0$, there is a finite δ -pseudo orbit $\{x_i\}_{i=0}^n (n \ge 1)$ such that $x_0 = x$ and $x_n = x$. Denote by $C\mathcal{R}(f)$ the set of all chain recurrent points of f. We define a relation \iff on $C\mathcal{R}(f)$ by $x \iff y$ if for any $\delta > 0$, there is a finite δ pseudo orbit $\{x_i\}_{i=0}^n$ such that $x_0 = x$ and $x_n = y$ and a finite δ pseudo orbit $\{w_i\}_{i=0}^n$ such that $w_0 = y$ and $w_n = x$. Then we know that the relation \iff is an equivalence relation on $C\mathcal{R}(f)$. the equivalence classes are called the *chain recurrence classes* of f, denote by C_f . Note that if the class C_f has a hyperbolic periodic point p then we denote as C(p, f).

It is well known that if p is a hyperbolic periodic point of f with period k

then the sets

$$\begin{split} W^s(p) = & \{ x \in M : f^{kn}(x) \to p \text{ as } n \to \infty \} \quad \text{and} \\ W^u(p) = & \{ x \in M : f^{-kn}(x) \to p \text{ as } n \to \infty \} \end{split}$$

are C¹-injectively immersed submanifolds of M. The homoclinic class of a hyperbolic periodic point p is the closure of the transverse intersection of the $W^{s}(p)$ and $W^{u}(p)$, and it is denoted by H(p, f). It is clear that H(p, f) is compact, transitive and invariant sets. Let q be a hyperbolic periodic point of f. We say that p and q are *homoclinically related*, and write $p \sim q$ if

$$W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset \text{ and } W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset.$$

It is clear that if $p \sim q$ then index(p) = index(q), that is, $\dim W^{s}(p) = \dim W^{s}(q)$. By the Smale's transverse homoclinic point theorem, $H_{f}(p)$ coincides with the closure of the set of hyperbolic periodic points q of f such that $p \sim q$. Note that if p is a hyperbolic periodic point of f then there is a neighborhood U of p and a C¹-neighborhood $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$ there exists a unique hyperbolic periodic point p_{g} of g in U with the same period as p and $index(p_{g}) = index(p)$. Such a point p_{g} is called the *continuation* of $p = p_{f}$. The following are results for C¹ generic diffeomorphisms (see [2]).

Lemma 1 There is a residual set $\mathcal{G} \subset \text{Diff}(M)$ such that if $f \in \mathcal{G}$,

- (a) H(p, f) = C(p, f), for some hyperbolic periodic point p (see [5]).
- (b) A compact f-invariant set C is chain transitive if and only if C is the Hausdorff limit of a sequence of periodic orbits of f (see [8]).
- (c) A locally maximal transitive set Λ is a locally maximal H(p, f) for some periodic point p ∈ Λ (see [1]).
- (d) $H(p, f) = \overline{W^s(p)} \cap \overline{W^u(p)}$ (see [7]).

Remark 1 Applying Pugh's closing lemma, we know that any transitive set Λ of a C¹-generic diffeomorphism f is the Hausdorff limit of a sequence of periodic orbits $\operatorname{Orb}_{f}(p_n)$ of f, that is, $\lim_{n\to\infty} \operatorname{Orb}_{f}(p_n) = \Lambda$. By Lemma 1 (b) and (c), a chain transitive set C is a transitive set Λ and so, a locally maximal chain transitive set C = H(p, f) for some periodic point p.

Let Λ be a closed f-invariant set. We say that Λ is Lyapunov stable for f if for any open neighborhood U of Λ there is a neighborhood $V \subset U$ such that $f^{j}(V) \subset U$ for all $j \in \mathbb{N}$. We say that the closed set is *bi-Lyapunov stable* if it is Lyapunov stable for f and f^{-1} . Potrie [21, Theorem 1.1] proved that C^{1} generically, if a homoclinic class H(p, f) is a bi-Lyapunov stable then it admits a dominated splitting.

A diffeomorphism f has a *heterodimensiional cycle* associated with the hyperbolic periodic points p and q of f if (i) the indice of the points p and q are different, and (ii) the stable manifold of p meets the unstable manifold of q and the same holds for the stable manifold of p and the unstable manifold of q (see [6]). We say that f has C¹ robustly heterodimensional cycle if f has a heterodimensional cycle associated with the hyperbolic periodic points p and q of f and there is a C¹ neighborhood $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$, g has a heterodimensional cycle associated with the hyperbolic periodic points p and q of f and there p and q are the continuations of p and q for g.

Lemma 2 [6, Corollary 1.15] There is a residual set $\mathcal{T} \subset \text{Diff}(M)$ such that for any $f \in \mathcal{T}$ and every locally maximal chain recurrence class C_f of f there are two possibilities: either C_f is hyperbolic or it has a robustly heterodimensional cycle.

Lemma 3 Let C(p, f) admits a dominated splitting $E \oplus F$ and let C(p, f) be locally maximal. If a chain recurrence class C(p, f) has heterodimensional cycle then f does not have the orbital shadowing property on C(p, f).

Proof. Suppose, by contradiction, that f has the orbital shadowing property on C(p, f). Since C(p, f) has heterodimensional cycle, there is q a hyperbolic periodic point in C(p, f) such that $index(p) \neq index(q)$. Then we take $x, y \in C(p, f)$ such that $x \in W^s(p) \cap W^u(q)$ and $y \in W^u(p) \cap W^s(q)$. By assumption, x, y are not transverse intersection points. Since q is hyperbolic, $T_qM = E_q^s \oplus E_q^u$. Choose $\alpha > 0$ sufficiently small such that $W_{\alpha/4}^s(q) = \exp_q(E^s(\alpha/4))$ and $W_{\alpha/4}^u(q) = \exp_q(E^u(\alpha/4))$. Then we may assume that $y \in W_{\alpha/4}^s(q)$ and $x \in W_{\alpha/4}^u(q)$. Since $y \in W^u(p)$, there is $\eta > 0$ such that $y \in B_\eta(y) \cap W^u(p)$. Take a small arc $\mathcal{J}_y \subset B_\eta(y) \cap W^u(p)$ such that $T_y \mathcal{J}_y = T_y W^u(p)$. Since C(p, f) admits a dominated splitting $E \oplus F$, we have $T_y \mathcal{J}_y = F_y = T_y W^u(p)$, $F_q \subset E_q^u$ and $E_q^s \subset E_q$. Put $E^{u,1} = E_q \oplus E_q^u$ and $E^{u,2} = F_q$. Then $E_q^u = E_q^{u,1} \oplus E_q^{u,2}$, and $W_{\alpha/4}^{u,1}(q) = \exp_q(E_q^{u,1}(\alpha/4))$, $W_{\alpha/4}^{u,2}(q) = \exp_q(E_q^{u,2}(\alpha/4))$. Let $P^u : B_{\alpha/4}(q) \to E_q^u$ and $P^s : B_{\alpha/4}(q) \to E_q^s$ be the projections paral-

Let $P^{u} : B_{\alpha/4}(q) \to E^{u}_{q}$ and $P^{s} : B_{\alpha/4}(q) \to E^{s}_{q}$ be the projections parallel to E^{s}_{q} and E^{u}_{q} , respectively. Then $P^{u}(f^{n}(\mathcal{J}_{y})) \cap B_{\alpha/4}(q) \to W^{u,1}_{\alpha/4}(q)$ and $P^{s}(f^{n}(\mathcal{J}_{y})) \cap B_{\alpha/4}(q) \to q$ as $n \to \infty$. Take $\varepsilon = \min\{\alpha/4, \eta, d(x, W^{u,1}_{\alpha/4}(p))/2\}$, and let $0 < \delta < \varepsilon$ be the number of the orbital shadowing property. Since $y \in W^s(q) \cap W^u(p)$ and $x \in W^u(q) \cap W^s(p)$, there are $i_1 > 0$ and $i_2 > 0$ such that (i) $d(f^{i_1}(y), f^{-i_1}(x)) < \delta$ and $d(f^{-i_2}(y), f^{i_2}(x)) < \delta$, (ii) $\max\{d_H(P^s(f^{i_1+j}(\mathcal{J}_y), q), d_H(P^u(f^{i_1+j}(\mathcal{J}_y)) \cap B_{\alpha/4}(q), W^{u,1}_{\alpha/4}(q))\} < \varepsilon$ for all $j \ge 0$, where d_H is the Hausdorff metric. Then we have a δ -pseudo orbit as follows:

$$\begin{split} \xi &= \{y, f(y), \dots, f^{i_1-1}(y), f^{-i_1}(x), \dots, f^{-1}(x), \\ &\quad x, f(x), \dots, f^{i_2-1}(x), f^{-i_2}(y), \dots, f^{-1}(y), y\} \subset C(p, f). \end{split}$$

Since f has the orbital shadowing property on C(p, f) and C(p, f) is locally maximal, there is a point $w \in C(p, f)$ such that

$$Orb(w) \subset B_{\epsilon}(\xi)$$
 and $\xi \subset B_{\epsilon}(Orb(w))$.

First, we assume that there is k>0 such that $f^k(w)\in\mathcal{J}_y\setminus\{y\}$. Then if $f^k(w)\in\mathsf{P}^u(f^n(\mathcal{J}_y))$ then since $\mathsf{P}^u(f^n(\mathcal{J}_y))\to W^{u,1}(q)(n\to\infty),\ f^{k+n}(w)\to W^{u,1}(q)$ as $n\to\infty$. Thus there is j>0 such that $d(f^{k+j}(w),f^j(y))>8\varepsilon$ and so, $d(f^{k+j}(w),q)>2\varepsilon$ which is a contradiction. If $f^k(w)\not\in\mathsf{P}^u(\mathcal{J}_y)$ then by λ -lemma, $f^n(\mathcal{J}_y)\to W^u(q)$ as $n\to\infty$. Then there is l>0 such that $d(f^{k+l}(w),q)>4\varepsilon$. Since $x\in W^u(q),$ there is m>0 such that $d(f^{-m}(x),q)<\varepsilon$ for some $m< i_2$. Then we know that $f^{k+l}(w)\not\in\mathsf{B}_\varepsilon(\xi)$ which is a contradiction by the orbital shadowing property on C(p,f). Then for all $i\in\mathbb{Z},\ f^i(w)\not\in\mathcal{J}_y\setminus\{y\}.$

We assume that there is k > 0 such that $f^k(w) = y$. Since $y \in W^s(q) \cap W^u(p)$ and $x \in W^u(q) \cap W^s(p)$, we know $\operatorname{Orb}(x) \cap \operatorname{Orb}(y) = \emptyset$. Then we have $\xi \not\subset B_{\varepsilon}(\operatorname{Orb}(w))$ which is a contradiction by the orbital shadowing property on C(p, f). Thus we know $\operatorname{Orb}(w) \cap \mathcal{J}_y = \emptyset$.

Finally, we assume that there is k > 0 such that $f^k(w) \in B_\eta(y) \setminus \mathcal{J}_y$. Then for all $z \in B_\eta(y) \setminus \mathcal{J}_y$, there is k > 0 such that $d(f^{-k}(x), f^k(z)) > 2\varepsilon$ since $x \in W^u(q)$ and q is hyperbolic saddle. Then we have $\xi \not\subset B_\varepsilon(\operatorname{Orb}(w))$ which is a contradiction by the orbital shadowing property on C(p, f). Consequently, if a locally maximal chain recurrence class C(p, f) admits a dominated splitting and f has the orbital shadowing property on C(p, f) then it does not the heterodimensional cycle.

Proof of Theorem A. Let $f \in \mathcal{G} \cap \mathcal{T}$ and let f has the orbital shadowing property on a locally maximal chain transitive set \mathcal{C} . Since $f \in \mathcal{G}$, by Remark 1 $\mathcal{C} = C(p, f)$ for some hyperbolic periodic point p. Since chain transitive set \mathcal{C} admits a dominated splitting $E \oplus F$, and f has the orbital shadowing property

on a locally maximal chain transitive C, by Lemma 3, C = C(p, f) does not have the heterodimensional cycles. It is clear that a locally maximal C(p, f) does not have the robustly hetrodimensional cycle. Thus by Lemma 2, a locally maximal chain transitive set C is hyperbolic.

In Abdenur *et al* [2] the authors proved that every locally maximal homoclinic class with a non-empty interior is the whole space.

Corollary 1 Let $f: M \to M$ be a diffeomorphism with dimM = 3. For C^1 generic f, if f has the orbital shadowing property on a locally maximal chain transitive set C which admits a dominated splitting $E \oplus F$ then it is Anosov.

The following was proved in [21, Proposition 1.2] which means that a homoclinic class admits a codimension one dominated splitting then it has a non-empty interior.

Lemma 4 There is a residual set $\mathcal{R} \subset \text{Diff}(M^3)$ such that for any $f \in \mathcal{R}$, if a homoclinic class H admits a codimension one dominated splitting then it has non-empty interior.

Proof of Corollary 1. Let $f \in \mathcal{G} \cap \mathcal{T} \cap \mathcal{R}$ and let f has the orbital shadowing property on a locally maximal chain transitive set \mathcal{C} which admits a dominated splitting $E \oplus F$. By Remark 1, a locally maximal chain transitive $\mathcal{C} = H(p, f)$. Since $f \in \mathcal{R}$, by Lemma 4, a hoomoclinic class H(p, f) has nonempty interior. Since H(p, f) is locally maximal, by [2, Thereom 3], H(p, f) = M. Since f has the orbital shadowing property on a locally maximal chain transitive set \mathcal{C} which admits a dominated splitting $E \oplus F$, by Theorem A, it is hyperbolic, and so it is Anosov.

Acknowledgement

The author would like to thank the referee for valuable help in improving the presentation of this article.

References

- F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for C¹-generic diffeomorphisms, *Isral J. Math.*, 183 (2011), 1–60.
- [2] F. Abdenur, C. Bonatti and L. J. Díaz, Non-wandering sets with non empty interior, *Noinearity*, 17 (2004), 175–191.

- [3] F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the C¹-topology, Discrete Contin. Dyn. Syst., 17 (2) (2007), 223–245.
- [4] J. Ahn, K. Lee and M. Lee, Homoclinic classes with shadowing, J. Inequal. Appl., 2012:97 (2012), 1–6.
- [5] C. Bonatti and S. Crovisier, Récurrence et généricité, *Invent. Math.*, 158 (2004), 33–104.
- [6] C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C¹ generic dynamics, J. Inst. Math. Jessieu, 7 (2008), 469–525.
- [7] C. Carballo, C. A. Morales and M. J. Pcaifico, Homoclinic classes for C¹ generic vector fields, *Ergod. Theorey Dynam. Syst.*, 23 (2003), 403–415.
- [8] S. Crovisier, Periodic orbits and chain transitive sets of C¹-diffeomorphisms, Publ. Math. Inst. Hautes Etudes. Sci., 104 (2006), 87–141.
- [9] K. Lee and M. Lee, Shadowable chain recurrence classes for generic diffeomorphisms, *Taiwan J. Math.*, **20** (2016), 399–409.
- [10] K. Lee and M. Lee, Volume preserving diffeomorphisms with orbital shadowing, J. Inequal. Appl., 2013:18, (2013), 5 pp.
- [11] K. Lee and X. Wen, Shadowable chain transitive sets of C¹ generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), 263–270.
- [12] M. Lee, Hamiltonian systems with orbital, orbital inverse shadowing, Adv. Difference Equ., 2014:192(2014), 9 pp.
- [13] M. Lee, Orbital shadowing property for generic divergence-free vector fields, *Chaos Solitons & Fractals*, 54 (2013), 71–75.
- [14] M. Lee, Orbital shadowing for C¹-generic volume-preserving diffeomorphisms, Abstr. Appl. Anal., 2013, Art. ID 693032, 4 pp.
- [15] M. Lee, Divergence-free vector fields with orbital shadowing, Adv. Difference Equ, 2013:132, (2013), 6 pp.
- [16] M. Lee, Robustly chain transitive sets with orbital shadowing diffeomorphisms, Dyn. Syst., 27 (2012), 507–514.
- [17] M. Lee, Chain components with C¹-stably orbital shadowing, Adv. Difference Equ., 2013:67 (2013), 12 pp.

- [18] M. Lee, Chain transitive sets with dominated splitting, J. Math. Sci. Adv. Appl., 4 (2010), 201–208.
- [19] A. V. Osipov, Nondensity of the orbital shadowing property in C¹topology, (Russian) Algebra i Analiz 22 (2010), no. 2, 127–163; translation in St. Petersburg Math. J., 22 (2) (2011), 267–292.
- [20] S. Y. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties, *Discrete Contin. Dyn. Syst.*, 9 (2) (2003), 287–308.
- [21] R. Potrie, Generic bi-Lyapunov stable homoclinic classes, *Nonlinearity*, 23 (2010), 1631–1649.
- [22] C. Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425–437.
- [23] K. Sakai, Sahdowable chain transitive sets, J. Diff. Equat. Appl., 19 (2013), 1601–1618.
- [24] K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373–386.

Received: September 18, 2018