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Abstract. The purpose of this paper is to introduce a new type of ¢ -
implicit relation in S - metric spaces and to prove a general fixed point
for a pair of weakly compatible mappings, which generalize Theorems 1,
2, 4 [23], Theorems 1-7 [13], Corollary 2.19 [13], Theorems 2.2, 2.4 [19],
Theorems 3.2, 3.3, 3.4 [20] and other known results.

1 Introduction

Let X be a nonempty set and f,g : X — X two self mappings. A point x € X
is said to be a coincidence point of f and g if fx = gx = w. The set of all
coincidence points of f and g is denoted C(f, g) and w is said to be a point of
coincidence of f and g.

In [8], Jungck defined f and g to be weakly compatible if fgx = gfx, for all
x € C(f,g).
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The notion of weakly compatible mappings is used to proof the existence of
common fixed point for pairs of mappings.

A new class of generalized metric space, named D - metric space, is intro-
duced in [5, 6]. In [11, 12], Mustafa and Sims proved that most of the claims
concerning the fundamental topological structures on D - metric spaces are
incorrect and introduced a new generalized metric spaces, named G - metric
space. There exists a vast literature in the study of fixed points in G - metric
spaces.

In [10], Mustafa initiated the study of fixed points for weakly compatible
mappings in G - metric spaces.

Recently in [22], the authors introduced a new class of generalized metric
space, named S - metric space. Quite recently in [7], the authors proved that
the notions of G - metric spaces and S - metric space are independent.

Other results in the study of fixed points in S - metric space are obtained
in [13, 19, 20, 21] and in other papers. Some results of fixed points for weakly
compatible mappings in S - metric spaces are obtained in [23, 2].

In [14, 15], several classical fixed point theorems and common fixed point
theorems have been unified considering a general condition by implicit func-
tion.

The study of fixed point for mappings satisfying an implicit relation in G -
metric spaces is initiated in [16, 17] and in other papers.

The notion of ¢ - maps is introduced in [9]. In [3], Altun and Turkoglu
introduced a new class of implicit relation satisfying a ¢ - map.

A general fixed point theorem for mappings satisfying ¢ - implicit relations
in G - metric spaces is obtained in [18].

The purpose of this paper is to introduce a new type of ¢ - implicit relation
in S - metric spaces and to prove a general fixed point theorem for a pair of
weakly compatible mappings in S - metric spaces, generalizing Theorems 1, 2,
4 (23], Theorems 1-7 [13], Corollary 2.19 [13], Theorems 2.2, 2.4 [19], Theorems
3.2, 3.3, 3.4 [20] and other known results.

2 Preliminaries

Definition 1 ([21, 22]) A S - metric on a nonempty set X is a function
S: X3 = R, such that for all x,y,z,a € X:

(S$1):S(x,y,2) =0 if and only if x =y = z;

(SZ) :S (X»U,Z) <S (X)X) Cl) +S (‘Ja% Cl) +S (Z)Z’ (1).

The pair (X,S) is called a S - metric space.
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Example 1 Let X =R and S (x,y,z) =[x —z|+ |y — z|. Then, S (x,y,z) is a
S - metric on R and is named the usual S - metric on X.

Lemma 1 ([4, 5]) IfS is a S - metric on a nonempty set X, then
S (x%,%,y) =S (y,y,x) for all x,y € X.

Definition 2 ([22]) Let (X,S) be a S - metric space. For v > 0 and x € X we
define the open ball with center x and radius v, denoted Bs (x, 1), respectively
closed ball, denoted Bs (x,T), the sets:

Bs (X)T) :{U € XiS(X»X,U) <T},

respectively,

Bs (X,T) :{y € X:S(X)X)U) §T’}

The topology induced by S - metric on X is the topology determined by the
base of all open balls in X.

Definition 3 ([22]) a) A sequence {xn} in a S - metric space (X,S) is con-
vergent to x, demoted xn — X or limp 0o Xn = X, if S (Xn,Xn,x) — 0 as
n — oo, that is, for € > 0, there exists ng € N such that for all m > ng we
have S (Xn,Xn, X) < €.

b) A sequence {xn} in (X,S) is a Cauchy sequence if S (Xn,Xn,Xm) — 0 as
n, m — oo, that is, for € > 0, there exists ng € N such that for all m,m > ng
we have S (Xn, Xn, Xm) < €.

c) AS - metric space (X,S) is complete if every Cauchy sequence is con-
vergent.

Example 2 (X,S) by Example 1 is complete.

Lemma 2 ([22]) Let (X,S) be a S - metric space. If xn — x and yn — Yy,
then S (Xn, Xn, Yn) = S (%, %,y).

Lemma 3 ([22]) Let (X,S) be a S - metric space and xn — x . Then limpn_,00 Xn
1S unique.

Lemma 4 ([4]) Let (X,S) be a S - metric space and {xn} be a sequence in X
such that

lim S (Xn, Xny Xn41) = 0.
n—oo
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If{xn} is not a Cauchy sequence, then there exists an € > 0 and two sequences
{my} and {ny} of positive integers with ny > my > k such that

S (Xmmxmk»xnk) 2 5; S (ka71)xmk,1yxnk) <€
and

(1) limn oo S (Xmy Xmy Xy ) = €,

(ii) limp 00 S (ka»xmk)xnkq) =&
) llmn_>oo (kaqvxmkq ’Xnk) =&
)

(1V hmn_mo (ka,pxmkq vx“k%) =¢&

(iii

Definition 4 ([9]) Let © be the set of all functions such that ¢ : [0,00) —
[0,00) is a mondecreasing function satisfying limy oo @™ (t) = 0 for all t €
0,00). If ¢ € D, then ¢ is called & - mapping. Furthermore, if & € @, then:

(i) d)(t)<tf07"allt€(0 00),
(i) ¢(0) =

The following theorems are recently published in [23].

Theorem 1 (Theorem 1 [23]) Let (X,S) be a S - metric space. Suppose
that the mappings f, g : X — X satisfy

S (fx, fy, gz) < ¢ (max{S (gx, gx, fx), S (gy, gy, fy), S (9z, 9z, fz)}) (1)

for all x,y,z € X.

If £ (X) € g(X) and one of f(X) or g(X) is a complete subspace of X, then
f and g have a unique point of coincidence.

Moreover, if f and g are weakly compatible, then f and g have a unique
common fixed point.

Theorem 2 (Theorem 2 [23]) Let (X,S) be a S - metric space. Suppose
that the mappings f, g : X — X satisfy

S (fX, fy, fz) < maX{d) (S (gX, gXx, fx)) y (S (gy) 99>fy)) y (S (gza 9z, fz))}

(2)
for all x,y,z € X.
If £ (X) € g(X) and one of f(X) or g(X) is a complete subspace of X, then
f and g have a unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.
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Theorem 3 (Theorem 4 [23]) Let (X,S) be a S - metric space. Suppose
that the mappings f, g : X — X satisfy

S (fX) fy)fz) < k1¢ (S (gX, gx, fx)) + kZd) (S (9y> gy>fy)) + k3d) (S (gl, 9z, fZ))

(3)
forallx,y,ze X, k1 +kp + ks < 1.
If £ (X) € g(X) and one of f(X) or g (X) is a complete subspace of X, then
f and g have a unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have a unique common fized point.

Remark 1 1) Since ¢ (t) is nondecreasing, then

¢ (max {t, t3, t4, t5, te}) = max{P (t2), P (t3), d (t4), b (t5), b (te)}.

Hence, Theorem 2 is Theorem 1.
2) By (3) we obtain

S (fx, fy, fz) < (k1 + k2 + k3) max{¢ (S (gx, gx, fx)) ,
¢ (S(gy,9y,fy)), $ (S (92, gz, z))}
= (ki1 + k2 + k3) & (max{S (gx, gx, fx), S (gy, gy, fy),
S (gz, 9z, fz)})
< ¢ (max{max{S (gx, gx, fx), S (9y, 9y, fy) , S (9z, gz, fz)}}) .

Hence,
S (fx, fy, fz) < ¢ (max{S (gx, gx, fx), S (gy, gy, fy), S (9z, 9z, fz)}) ,

which is the inequality (1). Hence, Theorem 3 is a particular case of Theo-
rem 1.

3) In the proof of Theorem 1 is used x = y. Hence in Theorem 1 we
have a new form of inequality (1):

S (fX, x, fy) < ¢ (max{S (9X> gx, x) yg (fy) gy, fy)}) .

3 ¢ - implicit relations

Let Fg be the set of all lower semi - continuous functions F : Ri — R such
that:

(F1) : F is nonincreasing in variable tg,
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(F2) : There exists ¢ € Fy such that for allu,v > 0, F (u,v,v,u,0,2u+v) <
0 implies u < ¢ (v);

(F3):  F(t,t,0,0,t,t) >0, Vt > 0.

In all the following examples, (F;) is obviously.

1
Example 3 F(ty,...,t5) =t — kmax{ty, t3, ..., tg}, where k € [O, 3>.

(F2): Letu,v>0andF(u,v,v,u,0,2u+v) =u—k(u+2v) <0.Ifu>v,
then u (1 —3k) < 0, a contradiction. Hence, u < v, which implies u < 3kv
and F satisfies (F,) for ¢ (t) = 3kt.

(F3):  F(t,t,0,0,t,t) =t (1 —%) >0, Vt>0.

ts + tg

Example 4 F(ty,...,t5) = t; — kmax {tz, t3, t4, 3

}, where k € [0,1).

<

2
(F2): Letu,v>0andF(u,v,v,u,0,2u+v) = u—kmax {u,v, W}

0. If u > v, then u(1 —k) <0, a contradiction. Hence, u < v, which implies
u < kv and F satisfies (F,) for ¢ (t) = kt.
(F3):  F(t,t,0,0,t,t) =t (1 —%) >0, Vt > 0.

Example 5 F(ty,...,t5) = tj—at;—bt3—cty—dts—ets, where a,b,c,d,e > 0
and a+b+c+3e<landa+d+e<]1.

(F2) : Let wyv > 0 and F(u,v,v,u,0,2u+v) = u—av— bv — cu —
e(2u+v) < 0. If u > v, then u[l — (a+b+c+3e)] <0, a contradiction.
Hence, uw < v, which implies u < (a+b+c+3e)v and F satisfies (F;) for
d(t)=(a+b+c+3e)t.

(F3): F(t,t,0,0,t,t) =t[1 —(a+d+e)] >0, Vt>0.

Example 6 F(tq,...,t5) = t% —t; (aty + btz + cty) — dtstg, where a,b,c,d >
0,a+b+c<landa+d<1.

(F2): Letu,v>0and F(u,v,v,u,0,2u+v) =u? —u(av+ bv +cu) <0.
If u> v, then u?[1 — (a+b+c)] <0, a contradiction. Hence, u < v, which
implies u < (a + b+ ¢)v and F satisfies (F,) for ¢ (t) = (a+b+c)t.

(F3): F(t,t,0,0,t,t) =t?[1 — (a+d)] >0, Vt > 0.

btst
26 5, where a,b > 0 and a+b < 1.

Example 7 F(t,...,tg) = t2—at?i——2>
P (t1, ..y te) 1 7 1—I—t§—|—t4
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(F2): Letu,v > 0and F(u,v,v,u,0,2u+v) = u?—av? < 0, which implies

u < v/av. Hence, F satisfies (F;) for ¢ (t) = /at.
(F3): F(t,t,0,0,t,t) =t*[1 —(a+b)] >0, Vt > 0.
In the following examples, if ¢ € @, then F satisfy properties (F1), (F2), (F3).

ts +t
Example 8 F(t1,...,t¢) =t — ¢ (max {tz,t3>t4, 5—;6}>

(F2): Let u,v >0 and

F(u,v,v,u,0,2u+v) =u—¢ (max {u,v, Zu?jrv}) < 0.

If u>v, then u < ¢ (u) < u, a contradiction. Hence, u < v, which implies
u<¢(v).
(F3):  F(t,t,0,0,t,t) =t—¢ (t) >0, Vt > 0.

t3+t4 ts+t

(F2): Let u,v >0 and

2
F(u,v,v,u,0,2u+v) =u—¢ <max{u,u+v u—i—v}) <0.

273

If u>v, then u < ¢ (u) < u, a contradiction. Hence, u < v, which implies
u<dv).
(F3):  F(t,t,0,0,t,t) =t—¢(t) >0, Vt > 0.

Example 10 F (t,...,t5) = t;— ¢ (aty + b max{ts, t4} + ¢ max{ts, ts}), where
a,b,c>0anda+b+3c<1.

(F2): Let u,v >0 and
F(uvv)vau)o)zu"i_v) :u_(b (av+bmax{u,v}+c(2u+v)) <0.

If u>v, then u— ¢ ((a+b+3c)u) <0, which implies u < ¢ (u) < u, a
contradiction. Hence, u <v and u < ¢ (v).

(F3) :  F(t,t,0,0,t,t) =t—d(at+ct) >t—d((a+b+3c)t) > t—
é(t) >0, Vt > 0.

Example 11 F(tj,...,ts) = t; — $ (ay/Tit; + by/t3ts + c\/Ists), where a,b,c
>0anda+b+c<l.
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(F2): Letu,v>0andF(u,v,v,u,0,2u+v) =u—¢ (ay/uv + by/uv) <0.
If u>v, then u < ¢ ((a+b)u) < u, a contradiction. Hence, u < v, which
implies u < ¢ (v).

(F3) : F(t)tvovo)t)t) :t—d)((a+c)t) Zt_¢((a+b+c)t) > t—
d(t) >0, Vt>0.

by/t5tg

Example 12 F (ty,...,t5) = t; — ¢ <at2, vy

a+b<l.

>, where a,b > 0 and

(F2) : Let uy,v >0 and F(u,v,v,u,0,2u+v) =u— ¢ (av) < 0. If u > v,
then u— ¢ (av) < 0 implies u < ¢ (u) < u, a contradiction. Hence, u < v,
which implies u < ¢ (v).

(F3): F(t,t,0,0,t,t) =t—d((a+b)t) >t—0b(t) >0, Vt > 0.

In the following examples, the proofs are similar to the proof of Example 12
and thus are omitted.

Example 13 F (ty,...,t5) = t; — aty — bmax{ts, t4, ts5, tg}, where a,b > 0 and
a+3b<1.

If F(u,v,v,u,0,2u+v) <0, then we have u < ¢ (v), where ¢(t) = (a+ 3b)t.

Example 14 F (ty,...,t5) = tj—at;—btz—cty—d max{ts, tg}, where a,b,c,d >
Oanda+b+c+3d<1.

If F(u,v,v,u,0,2u+v) < 0 then we have u < ¢ (v), where ¢ (t) = (a +b+
c+3d)t.

Example 15 F (ty,...,t5) = tj—at;—d max{t3, t4}—bts—cte, where a,b,c,d >
0,a+3c+d>0,a+3c+d<landa+b+c<l.

If F(u,v,v,u,0,2u+v) <0 then u < ¢ (v), where ¢ (t) = (a + 3c + d) t.

Example 16 F (ty,...,t5) = tj—at;—btz—ety—cts—dtg—f max{ty, ts, ..., tg},
where a,b,c,d,e,f >0, a+b+e+3d+3f<landa+c+e+f<1.

If F(u,v,v,u,0,2u+v) <0 then u < ¢ (v), where ¢ (t) = (a+b+e+3d
+3f)t.

Example 17 F(t,...,t5) = tij—a (t5 + tg)—bty—c max{ts, t4}, where a,b,c >
Oand3a+b+c< 1.
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If F(u,v,v,u,0,2u+v) <0 then u < ¢ (v), where ¢ (t) = 3a+b+c)t.

Example 18 F (ty,...,t5) = tj—a (t3 + t4)—bty—c max{ts, tg}, where a,b,c >
0 and 2a4+b+3c < 1.

If F(u,v,v,u,0,2u+v) <0 then u < ¢ (v), where ¢ (t) = (2a+ b+ 3c) t.

Example 19 F (ty,...,t5) = tj—amax{ty + ts5, t3 + tg}—bty, where a,b,c >0
and4a+b < 1.

If F(u,v,v,u,0,2u~+v) <0 then u < ¢ (v), where ¢ (t) = (4a+ b) t.

4 Main results

Lemma 5 ([1]) Letf and g be weakly compatible self mappings of a nonempty
set X. If f and g have a unique point of coincidence w = fx = gx for some
x € X, then w is the unique common fized point of f and g.

Theorem 4 Let (X,S) be a S - metric space and f,g: X — X such that

F( S (fx, fx, y), S (g%, g%, gy), S (gx, gx, fx) ) <0 (4)
S (g9y,9y,fy), S (gy, gy, x),S (gx, gx,fy) | —

for all x,y € X and some F € Fy.

Iff (X) € g(X) (org(X) C f(X))andg(X) (orf(X))is a complete subspace
of (X,S), then f and g have a unique point of coincidence. Moreover, if f and
g are weakly compatible, then f and g have a unique common fized point.

Proof. Let xyp be an arbitrary point of X. Since f(X) C g (X), there exists
x1 € X such that fxg = gx;. Continuing this process we define the sequence
{xn} satisfying

fxn = gxnyt for n € N.

Then, by (4) for x = x,_1 and y = x,, we have

F <S (an,] ) an,] ) an) ) S (gxnfh gXn—1, an) ) S (gxnfl) IXn—1, an,] ) )> <0
S (gxn,y 9xn, Xn) y S (gXn, X, fXn_1), S (gXn—1, gXn—1, fXn) o

S (g%n, 9Xny 9Xn+1) 5 S (GXn—1, 9Xn—1, 9Xn) , S (GXn—1, GXn—1, 9Xn) ,
F <0
S (gxn) OXny 9Xn+1 ) )0> S (Qan» gXn—1, anﬂ)
(5)
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By (S2) and Lemma 1 we have
S (gxn—1, gxn—1, 9Xn+1) < 25 (gXn, gXn,y 9Xnt1) + S (GXn—1, GXn—1, gXn) .
By (5) and (F;) we obtain

S (g%n, 9Xny GXn+1) 5 S (GXn—1, 9Xn—1, 9Xn) , S (GXn—1, GXn—1, gXn),
F <0
S (9Xm JXn, 9Xn+1) , 0, 2§ (gxm 9Xn,y 9Xn+1 ) +S (9Xn71, gXn—1, an)

By (F,) we obtain
S (gxn, 9xny gxn+1) < & (S (gXn—1,9xXn—1,9xn)), forn =1,2,...
which implies
S (gxn, gxn, gxn41) < O™ (S (gxo, g0, gx1)) -
Letting n tend to infinity we obtain
Jim S (gxn, gxn, gxn41) =0

We prove that {gxn} is a Cauchy sequence in g (X). Suppose that {gx,}
is not a Cauchy sequence. Then, by Lemma 4, there exists an ¢ > 0 and
two sequences my and ny with ng > my > k and S (Xm, , Xm,,Xn,) > € and
S (Xmy—1y Xmy—1,Xn, ) < € and satisfying the inequalities (i) - (iv) by Lemma
4.

By (4) for x =Xy, —1 and y = Xn, 1 we have

S (mekq y fxka y ankJ) yS (gxmkfh Xy —1) gxnkfﬂ y
F S (g%me—1, 9%me—15 PXm 1), S (gxny—15 9xny—1, fXny—1), | <0
S (gxnkfh IXny—1, fxmkfl) yS (gxmkfh Xy —1) fxnkfl)

S (gxmk» gxmk> gxnk) )S (gxmk—]) gxmk—] ) gxﬂ.k—1) Y
F S (Qkaq, IXmy—1» mek) yS (ankq, IXny—1, ank) ) <0. (6)
S (gXn—15 9Xn—15 Xmy. ) » S (Xamy 15 Xy —15 Gy )

By Lemma 1,

S (gxmk—h gxmk—h gxnk) - S (gxnk) gxnk> gxmk—1)

and
S (9Xn—1y 9Xn—15 9Xmy ) = S (9Xmyy Xy IXnp—1) -
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Letting n tend to infinity in (6) we obtain
F (E’ 8) 0) O) 87 6) S O)

a contradiction of (F3).

Hence, {gxn} is a Cauchy sequence in g (X). Since g (X) is complete, then
{gxn} is convergent to a point t € g (X). Hence, there exists p € X such that
gp =t and limn_,00 gxn = gp. We prove that fp = gp.

By (4) for x = xn and y = p we have

F( S (gxny gxn, fp), S (gXn, GXn, 9P, S (gXn, G, Fxn) > <0
S (gp, gp, Tp), S (gp, 9P, fxn) , S (gxXn, gXn, FP) -

Letting n tend to infinity we obtain

F (S (gp, gp, fP),0,0,S (gp, 9P, fP), 0, S (gP, gP, fP)) < 0.
By (F;) we have

F (S (gp, gp, fp),0,0,S (gp, gp, fp),0,2S (gp, gp, fp)) <0,

which implies S (gp, gp, fp) = 0. Hence gp =fp =t.
We prove that t is the unique point of coincidence of f and g. Suppose that
there exists z = fw = gw. By (4) we obtain

F< S (fp, fp, fw), S (gp, gp, gw), S ( gp,gp,fp >
S (gw, gw, fw), S (gw, gw, fp), S (gp, gp, fw)
<0

F(S(t,t,2),5(t,12),0,0,S(2,2,1),S (£, 1,2))
By Lemma 1 we have
F(S(t’t)z’)’S(t)t)z’))o)o)s(t)t)z’))S(t’t’z’))SO)

a contradiction of (F3) if S (t,t,z) > 0. Hence, z =t and t is the unique point
of coincidence of f and g.

Moreover, if f and g are weakly compatible, then by Lemma 5, f and g have
a unique common fixed point t. ]

If ¢ (t) =kt, k € [0,1), by Example 8 and Theorem 4 we obtain

Corollary 1 Let (X,S) be a S - metric space and f,g: X — X such that

S (g%, 9%, 9y), S (9%, gx, x), S (gy, gy, fy) ,
S (fx, fx, fy) < kmax S (gy, gy, fx) + S (gx, gx, fy) (7)

3
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where k € [0,1).

Iff (X) € g(X) (org(X) C f(X))andg(X) (orf(X))is a complete subspace
of (X,S), then f and g have a unique point of coincidence. Moreover, if f and
g are weakly compatible, then f and g have a unique common fized point.

Example 20 Let X = R and S (x,y,z) = |x —z| + [y —z|. Then S(X) is a
complete S - metric space. Let fx = 2x — 2, gx = 3x —4. Then f(X) = R,
g(X) =R and f(X) C g(X). If fx = gx, then x = 2 which implies C (f, g) = {2}
and fg2 = gf2 = 2 and x = 2 is the unique point of coincidence of f and g
and f and g are weakly compatible. On the other hand, S (fx, fx,fy) =4|x — z|
and S (gx, gx,gy) = 6|x —y|. Hence, S (fx, fx,fy) < kS (gx, gx, gy), for k €

5,1 . This implies

S (g%, 9%, 9y), S (9%, g%, x), S (gy, gy, fy) ,
S (fx, fx, fy) < kmax S (gy, gy, fx) + S (gx, gx, fy)

3

2
for k € [3,1). By Corollary 1, f and g have a unique common fized point

x = 2.
If g(x) = x, then by Theorem 4 we obtain

Theorem 5 Let (X,S) be a complete S - metric space and f : X — X such
that

F(S (fx?fx)fy) )S (X)va) )S (X)X)fx) ’S (y)y’fy) )S (y)y)fx) ?S (X)X) fy)) S 0)

for all x,y € X and some F € Fy.
Then f has a unique fized point.

Corollary 2 Let (X,S) be a complete S - metric space and f : X — X such
that

S (fx, fx, fy) < kmax{S (x,x,y),S (x,x,fx),S (y,y,fy), S (x,x, fy), S (x,x, fy)},

1
for allx,y € X and k € [O, 3] . Then f has a unique fixed point.

Proof. The proof follows by Theorem 5 and Example 4. U
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Remark 2 1) By Ezxamples 13 - 19 and Theorem j we obtain Theorems 1-7

13].

2)
3)

By Example 4 and Theorem 4 we obtain Corollary 2.19 [13].
By Ezample 5 and Theorem J we obtain Theorems 2.2, 2.4 [19] and The-

orems 3.2, 3.3, 3.4 [20].
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