
Acta Univ. Sapientiae, Mathematica, 13, 1 (2021) 1–22

DOI: 10.2478/ausm-2021-0001

Topological properties for a perturbed first

order sweeping process

Doria Affane
LMPA Laboratory,

Department of Mathematics,
Jijel University, Algeria

email: affanedoria@yahoo.fr

Loubna Boulkemh
LMPA Laboratory,

Department of Mathematics,
Jijel University, Algeria

email: l.boulkemh@gmail.com

Abstract. In this paper, we consider a perturbed sweeping process for
a class of subsmooth moving sets. The perturbation is general and takes
the form of a sum of a single-valued mapping and a set-valued mapping.
In the first result, we study some topological proprieties of the attain-
able set, the set-valued mapping considered here is upper semi-continuous
with convex values. In the second result, we treat the autonomous prob-
lem under assumptions that do not require the convexity of the values
and that weaken the assumption on the upper semi-continuity. Then, we
deduce a solution of the time optimality problem.

1 Introduction

The attainable sets plays an important role in control theory; many problems
of optimization, dynamics, planning procedures in mathematical economy and
game theory can be stated and solved in terms of attainable sets. The per-
turbed state-dependent sweeping process is an evolution differential inclusion
governed by the normal cone to a mobile set depending on both time and state
variables, of the following form:{

−u̇(t) ∈ NC(t,u(t))(u(t)) + F(t, u(t)), a.e t ∈ [T0, T ];

x(t) ∈ C(t, u(t)), ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(T0, u0),
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where NC(t,u(t))(u(t)) is the normal cone to C(t, u(t)) at u(t) and F is a set-
valued or single-valued mapping playing the role of a perturbation to the
problem, that is an external force applied on the system. This type of prob-
lems was initiated by J. J. Moreau in the 1970’s and extensively studied
by himself when the sets C(t) are assumed to be convex and F ≡ {0} (see
[24, 25, 26, 27]). The original motivation is to model quasistatic evolution in
elastoplasticity, friction dynamics, granular material, contact dynamics. How-
ever, many applications of the sweeping processes can be also found nowa-
days in nonsmooth mechanics, convex optimization, modeling of crowd mo-
tion, mathematical economics, dynamic networks, switched electrical circuits,
etc, see for example [2, 15, 16, 19, 22] and the references therein. Existence
(and possibly uniqueness) of solutions of such systems and their classical vari-
ants subjected to perturbation forces, state-dependent, second order sweeping
processes, etc, have been studied fruitfully in the literature see for example
[1, 3, 7, 8, 9, 10, 11, 14, 17, 21, 22, 28, 29, 30, 31] and the references therein.

In [12], a generalization of convexity has been defined, that is the almost
convexity of sets, the authors have shown the existence of solution to the
upper semi-continuous differential inclusions ẋ(t) ∈ F(x(t)), x(0) = a. This
almost convexity condition has been used successfully by [3, 4, 5] to study the
perturbed first order Moreau’s sweeping process, the right-hand side contains
a set-valued perturbation with almost convex values.

In this work, we extend the results in [3] in many direction. At first, we study
in finite dimensional space, the existence of solution and the compactness of
the attainable sets for the problem

(SP)

{
u̇(t) ∈ −N

C
(
t,u(t)

)(u(t))+ F(t, u(t))+ f(t, u(t)), a.e. t ∈ [T0, T ];

u(t) ∈ C
(
t, u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(T0, u0),

when F is a set-valued mapping with nonempty closed convex values, upper
semi-continuous and the element of minimum norm satisfies a linear growth
condition, f is a continuous single-valued mapping and the moving sets C(t, x)
are equi-uniformlt-subsmooth. It is important to emphasize that this class
of sets, introduced by D. Aussel, A. Daniilidis and L. Thibault in [6], is an
extension of convexity and prox-regularity of a set. In this way, the result
concerning existence of solution of the first order differential inclusion is more
general. Second, we define a larger class contains set-valued mappings with
almost convex values and their translated, then we study the existence of
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solution to the autonomous problem

(ASP)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ F(u(t))+ f(u(t)), a.e. t ∈ [T0, T ];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(u0),

under the weaker assumption on the upper semi-continuity and the almost
convexity of the values of F. We mention that C, F and f are assumed time in-
dependent for purely technical reasons. As will be shown, our almost convexity
does not imply that the set of solutions to (ASP) is compact in the space of
continuous functions with uniform convergence, as happens in the case of the
assumption of convexity, but only that the sections of this set of solutions are
compact. As an application, we consider the autonomous control system

(ASPO)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ h(u(t), z(t))+ f(u(t)), a.e. t ∈ [T0, T ];

z(t) ∈ U(u(t)), u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(u0),

controlled by parameters z(t) ∈ U(u(t)), where U : Rn ⇒ Rn is a set-valued
mapping with compact values that is upper semi-continuous on Rn. Under the
almost convexity assumption on the sets

F
(
u(t)

)
= h

(
u(t), U(u(t))

)
= {h

(
u(t), z(t)

)
}z(t)∈U(u(t))

and F
(
u(t)

)
+ f
(
u(t)

)
the solutions of the control problem (ASPO) are so-

lutions to the (ASP), in which the controls do not appear explicitly, we say
that F is parameterized by elements of U. The equivalence between a control
system and the corresponding differential inclusion is the central idea used to
prove the existence of solution to the minimum time problem for (ASPO).
This paper is organized as follows: in the first section, we introduce prelim-
inaries and background. In the second, we study the existence of solution to
the problem (SP) and some topological proprieties of the attainable set when
the perturbation is convex. In the last section, we prove the existence of so-
lution for a differential inclusion (ASP) with almost convex perturbation and
we deduce a solution of the time optimality problem.

2 Preliminaries and background

Throughout this paper Rn is the n-dimensional Euclidean space, I = [T0, T ]
(T > T0 ≥ 0) an interval of R, B is the closed unit ball centered at the origin
of Rn and B(a, η) the open ball of center a and radius η > 0. We denote
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by CRn(I) the Banach space of all continuous maps from I into Rn endowed
with the sup-norm, L1Rn(I) stands for the space of all Lebesgue integrable Rn-
valued mappings defined on I. A map u : I → Rn is absolutely continuous
if there is a mapping g ∈ L1Rn(I) such that u(t) = u(T0) +

∫t
T0
g(s) ds, for

all t ∈ I. For a nonempty closed subset K of Rn, co(K)
(
resp. co(K)

)
stands

for the convex
(
resp. closed convex

)
hull of K, which can be characterized by

co(K) =
{
x ∈ Rn, ∀x ′ ∈ Rn, 〈x ′, x〉 ≤ δ∗(x ′, K)

}
where δ∗(x ′, K) = sup

y∈K
〈x ′, y〉 is

the support function of K at x ′ ∈ Rn. We denote by dK(·) the usual distance
function associated with K, i.e., dK(x) = inf

y∈K
‖x − y‖, ProjK(x) = {y ∈ K :

dK(x) = ‖x − y‖} the projection set of x into K and by m(K) = ProjK(0) the
element of K with minimal norm, it is unique whenever K is a closed convex. If F
is a measurable set-valued mapping, with nonempty closed convex values, then
F admits a measurable selection with minimal norm m(F(x)) = ProjF(x)(0).
We will need the concept of Clarke subdifferential and normal cone. For a
locally Lipschitzian function ϕ : Rn → R ∪ {∞}, the Clarke subdifferential
∂ϕ(x) of ϕ at x is the nonempty convex compact subset of Rn, given by
(see[13])

∂ϕ(x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ ϕo(x, v), for all v ∈ Rn},

whereϕo(x, v) = lim sup
y→x
t↓0

ϕ(y+ tv) −ϕ(y)

t
is the generalized directional deriva-

tive of ϕ at x in the direction v. The Clarke normal cone NK(x) at x ∈ K is
defined from TCK by polarity, that is,

NK(x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ 0, for all v ∈ TCK (x)},

where TCK (x) is the Clarke tangent cone at x ∈ K given by TCK (x) =
{
v ∈ Rn :

doK(x, v) = 0
}

.
The concept of Fréchet subdifferential will be needed. A vector v ∈ Rn is

a Fréchet subdifferential ∂Fϕ(x) of ϕ at x (see[23]) provided that for every
ε > 0, there exists δ > 0 such that

〈v, y− x〉 ≤ ϕ(y) −ϕ(x) + ε‖y− x‖, for all y ∈ B(x, δ).

We always have the inclusion ∂Fϕ(x) ⊂ ∂ϕ(x), for all x ∈ K. The Fréchet
normal cone at x ∈ K is given by NFK(x) = ∂

FψK(x), where ψK is the indicator
function of K, that is, ψK(x) = 0 if x ∈ K and ψK(x) = +∞ otherwise. So
we have the inclusion NFK(x) ⊂ NK(x), for all x ∈ K. On the other hand, the
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Fréchet normal cone is also related (see[23]) to the Fréchet subdifferential of
the distance function, since for all x ∈ K

∂FdK(x) = N
F
K(x) ∩ B. (1)

An important property is that, whenever y ∈ ProjK(x), one has

x− y ∈ NFK(y) hence also x− y ∈ NK(y). (2)

Now, we introduce a class of subsmooth sets introduced in [6].

Definition 1 Let K be a closed subset of Rn. The set K is called subsmooth
at x0 ∈ K, if for every ε > 0 there exists δ > 0, such that for all x1, x2 ∈
B(x0, δ) ∩ K and ξi ∈ NK(xi) ∩ B (i ∈ {1, 2}), on has

〈ξ1 − ξ2, x1 − x2〉 ≥ −ε‖x1 − x2‖. (3)

The set K is subsmooth, if it subsmooth at each point of K. We say that K is
uniformly subsmooth, if for every ε > 0 there exists δ > 0, such that (3) holds
for all x1, x2 ∈ K satisfying ‖x1 − x2‖ < δ and all ξi ∈ NK(xi) ∩ B (i ∈ {1, 2}).

The following subdifferential regularity of the distance function remains true
for subsmooth sets (see [6]).

Proposition 1 Let K be a closed set of Rn. If K is subsmooth at x ∈ K, then

NK(x) = N
F
K(x) and ∂dK(x) = ∂

FdK(x). (4)

The concept of equi-uniformly subsmoothness will also be helpful.

Definition 2 Let (K(q))q∈Q be a family of closed sets of Rn with parameter
q ∈ Q. This family is called equi-uniformly subsmooth, if for every ε > 0,
there exists δ > 0 such that, for each q ∈ Q, the inequality (3) holds for all
x1, x2 ∈ K(q) satisfying ‖x1 − x2‖ < δ and all ξi ∈ NK(q)(xi) ∩ B.

The next proposition provides partial upper semi-continuity property. For the
proof, we refer the reader to [21].

Proposition 2 Let {K(t, x) : (t, x) ∈ I × Rn} be a family of nonempty closed
sets of Rn, which is equi-uniformly-subsmooth and let a real η ≥ 0. Assume
that there exist a real constants L1 ≥ 0, L2 ∈ [0, 1[ such that, for any x1, x2, y ∈
Rn and t, s ∈ I

|dK(t,x1)(y) − dK(s,x2)(y)| ≤ L1|t− s|+ L2‖x1 − x2‖. (5)

Then, the following assertions hold:
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(i) for all (t, x, y) ∈ GphK, we have η∂dK(t,x)(y) ⊂ ηB;

(ii) for any sequence
(
tn, xn

)
n

in I × Rn converging to (t, x), any (yn)n
converging to y ∈ K(t, x) with yn ∈ K(tn, xn) and any ξ ∈ Rn, we have

lim sup
n→+∞ δ∗

(
ξ, η∂dK(tn,xn)(yn)

)
≤ δ∗

(
ξ, η∂dK(t,x)(y)

)
.

In the next, we give the definition of the almost convex sets and attainable
sets.

Definition 3 [12] For a vector space X, a set D ⊂ X is called almost convex if
for every ξ ∈ co(D) there exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2 such that λ1ξ ∈ D
and λ2ξ ∈ D.

Any convex set is almost convex since D = co(D). If Q is a convex set not
containing the origin, D = ∂Q is almost convex, and if the convex set Q
contains the origin, one take D = {0} ∪ ∂Q. The origin plays a particular role
in the definition of almost convexity. It ensues that the class of almost convex
sets is not stable under translation, for example the set for example the set
K = {0, 1} is almost convex, while K− 1

2 = {− 1
2 ,
1
2 } is not.

Definition 4 The attainable set of any problem at time τ ∈ I is defined by

Ru0(τ) = {x ∈ Rn : x = u(τ) such that u(·) ∈ Sτ(u0)},

where Sτ(u0) is the set of the trajectories of our problem on the interval [T0, t].

We will also need the following result, which is a discrete version of Gronwall’s
Lemma.

Lemma 1 Let α > 0, (an) and (bn) two nonnegative sequence such that

an ≤ α+

n−1∑
k=0

bkak, for all n ∈ N.

Then, for every n ∈ N∗, we have

an ≤ α exp

(
n−1∑
k=0

bk

)
.
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3 Convex case

In this section, we study the existence of solution and some topological prop-
erties of the attainable set for the sweeping process (SP) when F is an upper
semi-continuous set-valued mapping with nonempty closed convex values un-
necessarily bounded.

Theorem 1 Let C : I × Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying:

(AC1 ) for all (t, x) ∈ I ×Rn, the sets C(t, x) are equi-uniformly subsmooth;

(AC2 ) there are two constants L1 ≥ 0, L2 ∈ [0, 1[ such that, for all t, s ∈ I and
any x, u, v ∈ Rn on has∣∣dC(t,u)(x) − dC(s,v)(x)∣∣ ≤ L1|t− s|+ L2∥∥u− v

∥∥.
Let F : I × Rn ⇁ Rn be a set-valued mapping with nonempty closed convex
values, upper semi-continuous such that:

(AF) for some real α ≥ 0, dF(t,x)(0) ≤ α
(
1+ ‖x‖

)
, for all (t, x) ∈ I ×Rn.

And f : I ×Rn → Rn be a continuous mapping such that:

(Af) for some real β > 0,
∥∥f(t, x)∥∥ ≤ β(1+ ‖x‖), for all (t, x) ∈ I ×Rn.

Then, for any u0 ∈ C(0, u0)

(1) the problem (SP) admits a Lipschitz solution;

(2) for τ ∈ I fixed, the attainable set Ru0(τ) is compact;

(3) the set-valued mapping Ru0(·) is upper semi-continuous.

Proof. (1) The existence of solution: for each (t, x) ∈ I×Rn, we put m(t, x) =
ProjF(t,x)(0) the element of minimal norm of F and h(t, x) = m(t, x) + f(t, x).
It follows that, ‖h(t, x)‖ ≤ γ

(
1 + ‖x‖

)
with γ = α + β. For each n ∈ N∗, we

consider a partition of I by Ini = [tni , t
n
i+1[, t

n
i = T0 + iµn, µn =

T − T0
n

, i ∈
{0, 1, · · · , n− 1} and In0 = {tn0 } = {T0}.

Step 1. We define inductively the sequence (xni )0≤i≤n in Rn. Putting xn0 =
u0 ∈ C(tn0 , xn0 ) and for each i ∈ {1, 2, · · · , n− 1} the following inclusions is well
defined

xni+1 ∈ C
(
tni+1, x

n
i

)
, (6)
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xni + µnh(t
n
i , x

n
i ) − x

n
i+1 ∈ NC

(
tni+1,x

n
i

)(xni+1). (7)

Indeed, for i = 0 and since C(tn1 , x
n
0 ) has closed values, we can take

xn1 ∈ ProjC(tn1 ,xn0 )
(
xn0 + µnh(t

n
0 , x

n
0 )
)
,

clearly

xn1 ∈ C
(
tn1 , x

n
0

)
. (8)

Then, by (2), we obtain

xn0 + µnh(t
n
0 , x

n
0 ) − x

n
1 ∈ NC

(
tn1 ,x

n
0

)(xn1 ).
Using (AC2 ) and (8), we get∥∥xn1 − xn0∥∥ ≤ d

C
(
tn1 ,x

n
0

)(xn0 + µnh(tn0 , xn0 ))+ µn∥∥h(tn0 , xn0 )∥∥
≤

∣∣∣d
C
(
tn1 ,x

n
0

)(xn0 ) − dC(tn0 ,xn0 )(xn0 )
∣∣∣+ 2µn∥∥h(tn0 , xn0 )∥∥

≤ L1µn + 2γµn(1+ ‖xn0 ‖).

Assume that, for i ∈ {0, 1, · · · , n − 1} the points xn1 , x
n
2 , · · · , xni have been

constructed satisfying (6) and (7). Since C(tni+1, x
n
i ) is closed, we can take

xni+1 ∈ ProjC
(
tni+1,x

n
i

)(xni + µnh(tni , xni )),
and

xni+1 ∈ C
(
tni+1, x

n
i

)
.

Using the characterization of the normal cone in terms of projection operator,
we can write a.e. t ∈ I

xni + µnh(t
n
i , x

n
i ) − x

n
i+1 ∈ NC

(
tni+1,x

n
i

)(xni+1).
By (AC2 ) and (6), we get

‖xni+1 − xni ‖ ≤ d
C
(
tni+1,x

n
i

)(xni + µnh(tni , xni ))+ ∥∥µnh(tni , xni )∥∥
≤

∣∣∣d
C
(
tni+1,x

n
i

)(xni ) − dC(tni ,xni−1

)(xni )∣∣∣+ 2µn∥∥h(tni , xni )∥∥
≤ L1µn + L2‖xni − xni−1‖+ 2γµn(1+ ‖xni ‖).
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By induction, we find for i ∈ {0, 1, · · · , n− 1},

‖xni+1 − xni ‖ ≤ (L1 + 2γ)µn

i∑
k=0

Lk2 + 2γµn

i∑
k=0

Li−k2 ‖x
n
k‖,

since L2 ∈ [0, 1[, we get

‖xni+1 − xni ‖ ≤
L1 + 2γ

1− L2
µn + 2γµn

i∑
k=0

Li−k2 ‖x
n
k‖. (9)

Furthermore, we have

‖xni − xn0 ‖ ≤ ‖xni − xni−1‖+ ‖xni−1 − xni−2‖+ · · ·+ ‖xn1 − xn0 ‖

≤ L1 + 2γ

1− L2
µn + 2γµn

i−1∑
k=0

Li−k2 ‖x
n
k‖+

L1 + 2γ

1− L2
µn

+ 2γµn

i−2∑
k=0

Li−k2 ‖x
n
k‖+ · · ·+ µn(L1 + 2γ) + 2γµn‖xn0 ‖

≤ L1 + 2γ

1− L2
µn(i− 1) + 2γµn‖xn0 ‖

i−1∑
k=0

Lk2 + 2γµn‖xn1 ‖
i−1∑
k=0

Lk2

+ 2γµn‖xn2 ‖
i−1∑
k=0

Lk2 + · · ·+ 2γµn‖xni−1‖
i−1∑
k=0

Lk2

≤ T
L1 + 2γ

1− L2
+
2γ T

1− L2

i−1∑
k=0

‖xnk‖.

Then,

‖xni ‖ ≤ ‖xn0 ‖+ T
L1 + 2γ

1− L2
+
2γ T

1− L2

i−1∑
k=0

‖xnk‖.

By Lemma 1 and for all i ∈ {0, 1, · · · , n− 1}, we can write

‖xni ‖ ≤
(
‖xn0 ‖+ T

L1 + 2γ

1− L2

)
exp

( 2γ T
1− L2

)
= η. (10)

Using relations (9) and (10), we get

‖xni+1 − xni ‖ ≤
L1 + 2γ

1− L2
µn + 2γ µn

i∑
k=0

Li−k2 η.
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Since L2 ∈ [0, 1[, we obtain

‖xni+1 − xni ‖ ≤
1

1− L2
µn
(
L1 + 2γ+ 2γη

)
. (11)

Step 2. Construction of sequence
(
un(·)

)
n≥0.

For any t ∈ Ini with i ∈ {0, 1, · · · , n− 1} and for every n ≥ 1, we define

un(t) = x
n
i +

(
t− tni

)xni+1 − xni
µn

. (12)

Observe that un(t
n
i ) = x

n
i , and

u̇n(t) =
xni+1 − x

n
i

µn
. (13)

By (6) and (7) we can write

un(t
n
i+1) ∈ C

(
tni+1, un(t

n
i )
)

(14)

u̇n(t) ∈ −N
C
(
tni+1,un(t

n
i )
)(un(tni+1))+ h(tni , un(tni )), a.e. t ∈ Ini . (15)

Relations (11) and (13) imply that

‖u̇n(t)‖ ≤
1

1− L2

(
L1 + 2γ+ 2γη

)
= ∆. (16)

Now let us defined the step functions from I to I by

θn(t) =

{
tni if t ∈ Ini ,
tnn−1 if t = T0.

(17)

ρn(t) =

{
tni+1 if t ∈ Ini ,
T if t = T.

(18)

Observe that, for all t ∈ I,

lim
n→+∞

∣∣θn(t) − t∣∣ = lim
n→+∞

∣∣ρn(t) − t∣∣ = 0. (19)

Combining (14), (15), (17) and (18), it results

un
(
ρn(t)

)
∈ C

(
ρn(t), un(θn(t))

)
, for all t ∈ I, (20)

u̇n(t) ∈ −N
C
(
ρn(t),un(θn(t))

) (un(ρn(t)))+ h(θn(t), un(θn(t))), a.e. t ∈ I,
(21)
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Furthermore, for all t ∈ I, we have∥∥h(θn(t), un(θn(t)))∥∥ ≤ γ(1+ η) = Θ, (22)

and ∥∥m(θn(t), un(θn(t)))∥∥ ≤ α(1+ η) (23)

with m
(
θn(·), un(θn(·))

)
= ProjF(θn(·),un(θn(·))(0).

Step 3. The convergence of the sequences.
By relation (12) and (16) we have for all t ∈ I,∥∥un(ρn(t))∥∥−∥∥un(t)∥∥ ≤ ∥∥un(ρn(t))−un(t)∥∥ ≤ ‖u̇n(s)‖(ρn(t)−t) ≤ ∆ (ρn(t)−t),
then

lim
n→+∞

∥∥un(ρn(t)) − un(t)∥∥ = 0. (24)

In the same way
lim

n→+∞
∥∥un(θn(t)) − un(t)∥∥ = 0. (25)

So, (un(t))n≥1 is relatively compact for all t ∈ I, on the other hand (un(·))n≥1
is equi-continuous according to (16). Using Ascoli-Arzelà’s theorem, (un(·))n≥1
is relatively compact in CRn(I), so we can extract a subsequence of (un(·))n≥1
(that we do not relabel) which converges uniformly to some mapping u(·) ∈
CRn(I) and (u̇n(·))n≥1 converges weakly in L1Rn(I) to a mapping y with
‖y(t)‖ ≤ ∆. Fixing t ∈ I and taking any ξ ∈ Rn, the above weak conver-
gence in L1Rn(I) yields

lim
n→+∞

∫ T
T0

〈
χI(s) ξ, u̇n(s)

〉
ds =

∫ T
T0

〈
χI(s) ξ, y(s)

〉
ds

or equivalently

lim
n→+∞

〈
ξ, u0 +

∫ t
T0

u̇n(s) ds
〉
=
〈
ξ, u0 +

∫ t
T0

y(s)ds
〉
.

Then, lim
n→+∞

∫t
T0
u̇n(s) ds =

∫t
T0
y(s) ds. Since un(·) is an of absolutely contin-

uous mapping, we get

lim
n→+∞

(
un(t) − u0

)
= lim
n→+∞

∫ t
T0

u̇n(s) ds =

∫ t
T0

y(s)ds.

Then u(t) = u0 +
∫t
T0
y(s)ds and y = u̇.

Let set
(
m
(
θn(·), un(θn(·))

))
n

=
(
pn(·)

)
n
, for all n ≥ 0, by (23) we get
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‖pn(t)‖ ≤ α(1 + η), which means that (pn) is integrably bounded, so, by
extracting a subsequence, not relabeled, we may assume that (pn) weakly
converges in L1Rn(I) to some mapping p ∈ L1Rn(I), with ‖p(t)‖ ≤ α(1+ η) for
all t ∈ I.
Let put

(
f
(
θn(·), un(θn(·))

))
n
=
(
qn(·)

)
n
, according to the continuity of f,

(19) and (25) we get that (qn(·)) converges to q(·) and for all t ∈ I, ‖q(t)‖ ≤
β(1+ η).
Step 4. We prove that the mapping u is a solution of (SP). Fix any t ∈ I, by
(AC2 ) and (20), we have

dC(t,u(t))
(
un(t)

)
≤ ‖un(t) − un(ρn(t))‖+ d

C
(
t,u(t)

)(un(ρn(t)))
≤ ‖un(t)−un(ρn(t))‖+

∣∣∣d
C
(
t,u(t)

)(un(ρn(t)))− d
C
(
ρn(t),un(θn(t))

)(un(ρn(t)))∣∣∣
≤ ‖un(ρn(t)) − un(t)‖+ L1|t− ρn(t)|+ L2

∥∥u(t) − un(θn(t))∥∥.
Using (19), (24), (25), and by passing to the limit in the preceding inequality,
thanks to the closedness of C(t, u(t)), we get

u(t) ∈ C
(
t, u(t)

)
, for all t ∈ I.

Furthermore, by (16) and (22), we have∥∥− u̇n(t) + pn(t) + qn(t)∥∥ ≤ ∆+Θ = Υ. (26)

Then, (21) and (26) yield that

−u̇n(t) + pn(t) + qn(t) ∈ N
C
(
ρn(t),un(θn(t))

) (un(ρn(t))) ∩ ΥB,
from relation (1) and Proposition 1, we get

− u̇n(t) + pn(t) + qn(t) ∈ Υ∂d
C
(
ρn(t),un(θn(t))

) (un(ρn(t))), a.e. t ∈ I (27)

and
pn(t) ∈ F

(
θn(t), un(θn(t))

)
. (28)

Since
(
− u̇n+pn+qn, pn

)
weakly converges in L1Rn×Rn(I) to

(
− u̇+p+q, p

)
,

by Mazur’s Lemma, there exists a sequence
(
ωn, ζn

)
n≥1 with

ωn ∈ co{−u̇k + pk + qk} and ζn ∈ co{pk, k ≥ n}, n ≥ 0

such that
(
ωn, ζn

)
n≥1 converges strongly in L1Rn×Rn(I) to

(
− u̇+p+q, p

)
. By

extracting a subsequence if necessary, we suppose that
(
ωn, ζn

)
n≥1 converges
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a.e. to
(
− u̇ + p + q, p

)
. Then, there is a Lebesgue negligible set S ⊂ I

such that, for every t ∈ I\S, on one hand
(
ωn, ζn

)
n≥1 converges strongly to(

− u̇+p+q, p
)

and on the other hand the inclusions (27) and (28) hold true
for every integer n as well as the inclusions

−u̇(t)+p(t)+q(t) ∈
⋂
n≥0

{ωk(t), k ≥ n} ⊂
⋂
n≥0

co{−u̇k(t)+pk(t)+qk(t), k ≥ n},

(29)
and

p(t) ∈
⋂
n≥0

{pk(t), k ≥ n} ⊂
⋂
n≥0

co{pk(t), k ≥ n}, (30)

Fix any t ∈ I\S and z ∈ Rn the relations (27) and (29) gives

〈z,−u̇(t) + p(t) + q(t)〉 ≤ lim sup
n→+∞ δ∗

(
z, Υ∂d

C
(
ρn(t),un(θn(t))

)(un(ρn(t)))).
By Proposition 2, we get

〈z,−u̇(t) + p(t) + q(t)〉 ≤ δ∗
(
z, Υ∂d

C
(
t,u(t)

)(u(t))).
Since Υ∂d

C
(
t,u(t)

)(u(t)) is closed convex values, we obtain

− u̇(t) + p(t) + q(t) ∈ Υ∂dC(t,u(t))
(
u(t)

)
⊂ N

C
(
t,u(t)

)(u(t)). (31)

Furthermore, according to (28), (30) and the upper semi-continuous of F, we
have

〈z, p(t)〉 ≤ lim sup
n→+∞ δ∗

(
z, F(θn(t), un(θn(t))

)
≤ δ∗

(
z, F(t, u(t))

)
.

Since F has closed convex values, we conclude that p(t) ∈ F
(
t, u(t)

)
for all

t ∈ I\S. By (31)

u̇(t) ∈ −N
C
(
t,u(t)

)(u(t))+ F(t, u(t))+ f(t, u(t)), a.e. t ∈ I.

2) It suffice to show that the solution set

Sτ(u0) = {u ∈ CRn([T0, τ]) : u is a Lipschitz solution of (SP)}

is compact for τ ∈ I. By part 1, we have Sτ(u0) 6= ∅. Let (un)n be a sequence
in Sτ(u0). Then, for each n ∈ N, un is a Lipschitz solution of (SP) with∥∥u̇n(t̃)∥∥ ≤ ∆, a.e. t̃ ∈ [T0, τ], (32)
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and ∥∥un(t̃)∥∥ ≤ ∥∥u0∥∥+ ∫ t̃
T0

∥∥u̇n(s)∥∥ ds ≤ ∥∥u0∥∥+ ∆(t̃− T0).
Then, (un(t̃))n is relatively compact in Rn, in addition, it is equi-continuous
according to (32). By Arzelà-Ascoli theorem

(
un
)
n

is relatively compact in
CRn([T0, τ]), so, we can extract a subsequence of (un)n (that we do not rela-
bel) which converges uniformly to some mapping u on [T0, τ]. By the inequal-
ity (32), (u̇n)n converges in L1Rn([T0, τ]) to mapping u̇(·) ∈ L1Rn([T0, τ]) with∥∥u̇(t̃)∥∥ ≤ ∆ a.e. t̃ ∈ [T0, τ]. For the rest of the demonstration we can follow
the proof of the part 1 to get

u̇(t̃) ∈ −N
C
(
t̃,u(t̃)

)(u(t̃))+ F(t̃, u(t̃))+ f(t̃, u(t̃)), a.e. t̃ ∈ [T0, τ].

Then, Sτ(u0) is compact.
3) Now we show the upper semi-continuity of the set-valued mapping Ru0(·)
on I. Consider the graph of Ru0(·) defined by

Gph(Ru0) = {(τ, x) ∈ I ×Rn : x ∈ Ru0(τ)}.

Let (τn, xn) ∈ Gph(Ru0) converges to (τ, x), then, for all n ≥ 0 there exists a
Lipschitz mapping (un(·)) ∈ Sτ(u0) such that un(τn) = xn ∈ Ru0(τn), by the
compactness of Sτ(u0) we can extract a subsequence of (un(·))n (that we do
not relabel) which converges uniformly to the Lipschitz mapping u(·) ∈ Sτ(u0),
and we have

x = lim
n→∞ xn = lim

n→∞un(τn) = u(τ),
so x ∈ Ru0(τ). We deduce that Gph(Ru0) is closed, then Ru0(·) is upper
semi-continuous. �

4 Almost convex case

In this section we study the existence of solution and a property of the at-
tainable set to the perturbed sweeping process (ASP), when we weaken the
condition of convexity and upper semi-continuity. Then we present an exis-
tence result of the minimum time of the problem (ASPO). We begin by the
following preliminary lemma.

Lemma 2 Let G : Rn ⇁ Rn be a measurable set valued mapping with nonempty
compact and almost convex values. Then, there exist two integrable functions
ξ1(·) and ξ2(·) defined on I, satisfying 0 ≤ ξ1(t) ≤ 1 ≤ ξ2(t) and for t ∈ I

ξ1(t)m
(
u(t)

)
∈ G

(
u(t)

)
and ξ2(t)m

(
u(t)

)
∈ G

(
u(t)

)
. (33)
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Proof. By the almost convexity of the values of G there exist two nonempty
set-valued mappings Ω1(·) and Ω2(·) such that

Ω1(t) =
{
ξ1 ∈ [0, 1] : ξ1m

(
u(t)

)
∈ G

(
u(t)

)}
,

and

Ω2(t) =
{
ξ2 ∈ [1,+∞[ : ξ2m

(
u(t)

)
∈ G

(
u(t)

)}
.

Let show that Ω1(·) is measurable. Consider its graph

Gph(Ω1) = {(t, ξ1) ∈ I × [0, 1] : ξ1m
(
u(t)

)
∈ G

(
u(t)

)
},

then,

Gph(Ω1) = {(t, ξ1) ∈ I × [0, 1] : d
G
(
u(t)
)(ξ1m(u(t))) = 0}

= σ−1
(
{0}
)
∩
(
I × [0, 1]

)
where σ : (t, ξ1) 7→ d

G
(
u(t)
)(ξ1m(u(t))) is measurable. Then Gph(Ω1) is

measurable. It follows that Ω1 is measurable on I, then there exists a measur-
able selection ξ1(·) defined on I. The proof that Ω2(·) is measurable is similar,
since G(u(t)) is bounded, and the same reasoning as in the previous point can
be applied . Then, there exists measurable selection ξ2(·) defined on I. �

Consider the following assumptions:
Assumption 1: Let C : Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying:

(HC
1 ) for all x ∈ Rn, the sets C(x) are equi-uniformly subsmooth;

(HC
2 ) there is a constant L2 ∈ [0, 1[ and for any x, u, v ∈ Rn on has∣∣dC(u)(x) − dC(v)(x)∣∣ ≤ L2∥∥u− v

∥∥.
Assumption 2: Let F : Rn ⇁ Rn be a measurable set valued mapping with
nonempty compact and almost convex values such that:

1. (HF
1) the set-valued mapping co(F(·)) is upper semi-continuous on Rn;

2. (HF
2) for some real α > 0, dco(F(x))(0) ≤ α

(
1+ ‖x‖

)
for all x ∈ Rn.
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Assumption 3: Let f : Rn → Rn be a continuous mapping such that, for
some real β ≥ 0, ∥∥f(x)∥∥ ≤ β(1+ ‖x‖), ∀x ∈ Rn.

Let
X = {F : Rn ⇁ Rn : F satisfies Assumption 1},

Y = {f ∈ CRn(Rn) : f satisfies Assumption 2}.

Since the class of almost convex sets is not stable under translation, we will
define a larger class

Z = {F ∈ X, ∃ f ∈ Y : F+ f has almost convex values}

which contains the set-valued mappings with almost convex values and their
translated.

Theorem 2 Assume that the Assumption 1 holds and let F ∈ Z. Then, for
every u0 ∈ C(u0),

1. the problem (ASP) admits a solution;

2. for all τ ∈ I, the attainable set of the problem (ASP) at τ, Ru0(τ)
coincides with Rcou0(τ), the attainable set at τ of the convexified problem.

Proof. 1) (a) Let [α,β] ⊂ I be an interval, and assume that, there exist two
integrable functions ξ1(·) and ξ2(·) such that 0 ≤ ξ1(t) ≤ 1 ≤ ξ2(t) for all
t ∈ [α,β]. In addition, assume that ξ1(·) > 0 a.e., using the same technique
as in the proof in [5] and [12], there exist two measurable subsets of [α,β],
having characteristic functions χ1 and χ2 such that χ1 + χ2 = χ[α,β] and an
absolutely continuous function y = y(t) on [α,β], such that

ẏ(t) =
1

ξ1(t)
χ1(t) +

1

ξ2(t)
χ2(t) and y(β) − y(α) = β− α.

(b) By Theorem 1 there exists a Lipschitz solution x : I → Rn of the convex-
ified problem

(ASPco)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ co(F(u(t)))+ f(u(t)), a.e. t ∈ I ;

u(t) ∈ C
(
u(t)

)
, ∀t ∈ I ; u(T0) = u0 ∈ C(u0).

Let set mT

(
x(τ)

)
= Projco(F(x(τ)))+f(x(τ)(0) and consider the closed set

A = {τ ∈ I : mT

(
x(τ)

)
= 0}.
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Case 1: A is empty. In this case ξ1(τ) > 0, so, we can apply the part (a) to
the interval I. Set y(τ) = T0 +

∫τ
T0
ẏ(s) ds is increasing and we have y(T0) =

T0 andy(T) = T , so, y defined from I into itself. Let ϑ : I → I be its inverse,
then ϑ(T0) = T0, ϑ(T) = T , 1 = ẏ

(
ϑ(τ)

)
ϑ̇(τ) and

ϑ̇(τ) = ξ1
(
ϑ(τ)

)
χ1(τ) + ξ2

(
ϑ(τ)

)
χ2(τ).

Define the map x̃ : I → Rn, as x̃(τ) = x
(
ϑ(τ)

)
for all τ ∈ I, then we have

d

dτ
x̃(τ) = ϑ̇(τ)

d

dτ
x
(
ϑ(τ)

)
∈ ϑ̇(τ)

(
−N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+mT

(
x(ϑ(τ))

)
,

using the property of the normal cone and the definition of the set Z. we get,
far all τ ∈ I

d

dτ
x̃(τ) ∈ −N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+ F(x(ϑ(τ)))+ f(x(ϑ(τ)))
= −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

Case 2: A is non-empty. Let c = sup{τ, τ ∈ A}, so that c ∈ A because A is
closed relative to I. The complement of A is open relative to I, it consists of
at most countably many overlapping open intervals ]αi, βi[, with the possible
exception of one of the form [c, βii [. For each i, apply part (a) to the interval
]αi, βi[, to infer the existence of two measurable subsets of ]αi, βi[ with char-
acteristic functions χi1(·) and χi2(·) such that χi1(·)+χi2(·) = χ]αi,βi[(·). Setting,

ẏ(τ) =
1

ξ1(τ)
χi1(τ) +

1

ξ2(τ)
χi2(τ), we obtain

∫βi

αi
ẏ(τ)dτ = βi − αi.

On [T0, c], set

ẏ(τ) =
1

ξ2(τ)
χA(τ) +

∑
i

( 1

ξ1(τ)
χi1(τ) +

1

ξ2(τ)
χi2(τ)

)
,

where the sum is over all intervals contained in [T0, c], in addition to that
ξ2(τ) ≥ 1 and

∫c
T0
ẏ(τ)dτ = κ ≤ c − T0. Setting y(τ) = T0 +

∫τ
T0
ẏ(τ)dτ,

we obtain that y(·) is an invertible map from [T0, c] to [T0, κ]. Define ϑ = ϑ(τ)
from [T0, κ] to [T0, c] to be the inverse of y(·), then extend ϑ(·) as an absolutely

continuous map ϑ̃(·) on [T0, c]. Setting ˙̃
ϑ(τ) = 0 for all τ ∈]κ, c]. We prove the

mapping x̃(τ) = x(ϑ̃(τ)) is a solution of the problem (ASP) on [T0, c] satisfying
x̃(c) = x(c).
For τ ∈ [T0, κ], we get ϑ̃(τ) = ϑ(τ) it is invertible and

ϑ̇(τ) = ξ2(ϑ(τ))χA(ϑ(τ)) +
∑
i

(
ξ1(ϑ(τ))χ

i
1(ϑ(τ)) + ξ2(ϑ(τ))χ

i
2(ϑ(τ))

)
.



18 D. Affane, L. Boulkemh

As
d

dτ
x̃(τ) = ϑ̇(τ)

d

dτ
x(ϑ(τ)), we have

d

dτ
x̃(τ) = ϑ̇(τ)

(
−N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+mT

(
x(τ)

))
. (34)

Using (33) and the properties of the normal cone we get

d

dτ
x̃(τ) ∈ −N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+ F(x(ϑ(τ)))+ f(x(ϑ(τ)))
∈ −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

For τ ∈]κ, c], we get ϑ(κ) = c and ˙̃
ϑ(τ) = 0, then we have ϑ̃(τ) = ϑ̃(κ) = ϑ(κ),

so x̃(τ) = x(ϑ̃(τ)) = x(ϑ̃(κ)) = x̃(κ), then x̃ is constant on ]κ, c] and we have
d

dτ
x̃(τ) = 0 ∈ co(F(x̃(τ))+f(x̃(τ)), in addition 0 ∈ N

C
(
x̃(τ)
)(x̃(τ)), we conclude

that for all τ ∈]κ, c]

d

dτ
x̃(τ) = 0 ∈ −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

On ]c, T ], A is empty and ξ1(τ) > 0, then we can repeat the arguments of the
part (a). We conclude, That x̃ is a solution of the problem (ASP).
2) For all τ ∈ I,Ru0(τ) ⊂ Rcou0(τ). It is enough to prove the converse inclusion.
Let u(τ) ∈ Rcou0(τ), so, u(t) is a Lipschitz solution of (ASPco) on [T0, τ]. Then
the proof of Theorem 2 can be repeated on [T0, υ] and we find a solution
ũ(·) : [T0, υ] → Rn of the problem (ASP) such that ũ(τ) = u(τ) ∈ Ru0(t).
Then Rcou0(t) ⊂ Ru0(t). Hence we get the needed coincidence. �

The following corollary to Theorem 2, to be compared with Theorem 1
of Filippov [20], shows that, in the case of autonomous control systems, for
the existence of a time optimal solution, Filippov’s assumption that the set
h(x,U(x)) is convex can be replaced by the weaker assumption that the same
set is almost convex.

Corollary 1 Assume that Assumption 1 holds. Let U : Rn ⇒ Rn be a set-
valued mapping with compact valued that is upper semi-continuous on Rn and
h : Rn×Rn → Rn be a continuous mapping satisfying the following assumption

(Hh) there is a nonnegative constant α, such that ‖h(x, y)‖ ≤ α(1+ ‖x‖), for
all (x, y) ∈ Rn × Rn;
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We associate with these data the set-valued mapping F : Rn ⇁ Rn defined by

F(x) = {h
(
x, z
)
}z∈U(x), for all x ∈ Rn.

Assume that F ∈ Z, where

Z = {F ∈ X, ∃ f ∈ Y : F+ f has almost convex values}.

Let u0 and ζ be given in Rn such that u0 ∈ C(u0) and for some t̄ ∈ [T0, T ],
ζ ∈ Ru0(t̄). Then, the problem of reaching ζ from u0 in a minimum time
admits a solution.

Proof. Consider
M = {t ∈ [T0, t̄] : ζ ∈ Ru0(t)}.

By hypothesis M 6= ∅. We put τ = infM, then, there exists a decreasing
sequence (τn) in [T0, t̄] converges to τ, and a mapping un(·) solution of{

u̇(t) ∈ −N
C
(
u(t)
)(u(t))+ F(u(t))+ f(u(t)) a.e. t ∈ [T0, τn];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, τn]; u(T0) = u0 ∈ C(u0).

such that for all n ≥ 1, un(τn) = ζ. Also, for all n ≥ 1, un(·) is solution of{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ co(F)(u(t))+ f(u(t)) a.e. t ∈ [T0, τn];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, τn]; u(T0) = u0 ∈ C(u0).

Let wn(t) = un(t) for t ∈ [0, τ] and n ≥ 1, wn(·) ∈ Sτ(u0), by the proof of
theorem 2 this set is compact, then by extracting a subsequence if necessary we
may conclude that (wn(·) converges uniformly to w(·) ∈ Sτ(u0). On the other
hand, we have ζ = un(τn) ∈ Rcou0(τn), by Theorem 2 again, the multifunction
Rcou0(·) is upper semi-continuous with nonempty compact values, so we get
lim sup
n→∞ Rcou0(τn) = Rcou0(τ). Then, ζ ∈ Rcou0(τ) = Ru0(τ). Consequently, w is

the solution of the problem (ASPO) that reaches ζ in the minimum time, and
τ is the value of the minimum time. �
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