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Abstract. In this paper, we investigate the asymptotic properties of
a nonparametric conditional quantile estimation in the single functional
index model for dependent functional data and censored at random re-
sponses are observed. First of all, we establish asymptotic properties for
a conditional distribution estimator from which we derive an central limit
theorem (CLT) of the conditional quantile estimator. Simulation study is
also presented to illustrate the validity and finite sample performance of
the considered estimator. Finally, the estimation of the functional index
via the pseudo-maximum likelihood method is discussed, but not tackled.

1 Introduction

Multivariate regression analysis is a powerful statistical tool in biomedical re-
search and many fields of life (Muharisa et al. [27]) with numerous applications.
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While linear regression can be used to model the expected value (ie, mean) of
a continuous outcome given the covariates in the model, quantile regression
can be used to compare the entire distribution of a continuous response or a
specific quantile of the response between groups. Despite the regression func-
tion is of interest, other statistics such as quantile and mode regression might
be important from a theoretical and a practical point of view. Quantile regres-
sion is a common way to describe the dependence structure between a response
variable Y and some covariate X. Unlike the regression function that relies only
on the central tendency of the data, the conditional quantile function allows
the analyst to estimate the functional dependence between variables for all
portions of the conditional distribution of the response variable. Moreover,
it is well known that conditional quantiles can give a good description of the
data (see, Chaudhuri et al. [9]), such as robustness to heavy-tailed error distri-
butions and outliers to ordinary mean-based regression. As a particular case,
note that the conditional median is useful for asymmetric distributions.

Quantile regression(QR) is one of the major statistical tools and is gradually
developing into a comprehensive strategy for completing the regression predic-
tion. It is emerging as a popular statistical approach, which complements the
estimation of conditional mean models. While the latter only focuses on one
aspect of the conditional distribution of the dependent variable, the mean,
quantile regression provides more detailed insights by modeling conditional
quantiles. Her can therefore detect whether the partial effect of a regressor on
the conditional quantiles is the same for all quantiles or differs across quantiles,
and can provide evidence for a statistical relationship between two variables
even if the mean regression model does not. In many fields of applications
like quantitative finance, econometrics, marketing and also in medical and bi-
ological sciences, QR is a fundamental element for data analysis, modeling
and inference. An application in finance is the analysis of conditional Value-
at-Risk, moreover, her is the development of statistical tools used to explain
the relationship between response and predictor variables (see Yanuar et al.
[37]). The quantile method is a technique of dividing a group of data into
several parts after the data is sorted from the smallest to the largest Yanuar
et al. [36]. QR enjoys some very appealing features. Apart from enabling some
very exible patterns of partial effects, quantile regressions are also interesting
because they satisfy some equivariance and robustness principles.

The advantage of the QR methodology is that it allows for understanding re-
lationships between variables outside of the conditional mean of the response;
it is useful for understanding an outcome at its various quantiles and compar-
ing groups or levels of an exposure on those quantiles. QR is a common way
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to describe the dependence structure between a response variable Y and some
covariate X. Unlike the regression function (which is defined as the conditional
mean) that relies only on the central tendency of the data, the conditional
quantile function allows the analysts to estimate the functional dependence
between variables for all portions of the conditional distribution of the re-
sponse variable. Moreover, quantiles are well known for their robustness to
heavy-tailed error distributions and outliers which allow to consider them as
a useful alternative to the regression function Chaouch and Khardani [8].

Moreover, it is a statistical technique intended to estimate, and conduct
inference about, conditional quantile functions. Just as classical linear regres-
sion methods based on minimizing sums of squared residuals enable one to
estimate models for conditional mean functions, quantile regression methods
offer a mechanism for estimating models for the conditional median function,
and the full range of other conditional quantile functions. By supplementing
the estimation of conditional mean functions with techniques for estimating an
entire family of conditional quantile functions, quantile regression is capable
of providing a more complete statistical analysis of the stochastic relationships
among random variables.

For example, QR has been used in a broad range of application settings.
Reference growth curves for children’s height and weight have a long history
in pediatric medicine; quantile regression methods may be used to estimate
upper and lower quantile reference curves as a function of age, sex, and other
covariates without imposing stringent parametric assumptions on the relation-
ships among these curves. In ecology, theory often suggests how observable
covariates affect limiting sustainable population sizes, and quantile regression
has been used to directly estimate models for upper quantiles of the condi-
tional distribution rather than inferring such relationships from models based
on conditional central tendency. In survival analysis, and event history analy-
sis more generally, there is often also a desire to focus attention on particular
segments of the conditional distribution, for example survival prospects of the
oldest-old, without the imposition of global distributional assumptions.

In recent years, estimating conditional quantiles has received increasing in-
terest in the literature, for both independent and dependent data; Samanta
[31] established a nonparametric estimation of conditional quantiles, Wang
and Zhao [35] presented a kernel estimator for conditional t-quantiles for mix-
ing samples and established its strong uniform convergence. Ferraty et al.
[15] studied the estimation of a conditional quantiles for functional dependent
data with application to the climatic El Ninö phenomenon. Ezzahrioui & Elias
Ould-Säıd [14] considered the estimation of the conditional quantile function
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when the covariates take values in some abstract function space, the almost
complete convergence and the asymptotic normality of the kernel estimator
of the conditional quantile under the α-mixing assumption were established.
Ferraty et al. [15] introduced a nonparametric estimator of the conditional
quantile defined as the inverse of the conditional cumulative distribution func-
tion (df) when data are dependent.

In life time data analysis, nonparametrically estimated conditional survival
curves (such as the conditional Kaplan-Meier estimate) are useful for assess-
ing the influence of risk factors, predicting survival probabilities, and checking
goodness-of-fit of various survival regression models. It is well known that in
medical studies the observation on the survival time of a patient is often in-
complete due to right censoring. Classical examples of the causes of this type
of censoring are that the patient was alive at the termination of the study,
that the patient withdrew alive during the study, or that the patient died
from other causes than those under study. The censored quantile regression
model is derived from the censored model. This method is used to overcome
problems in modeling censored data as well as to overcome the assumptions
of linear models that are not met, in this linear models Sarmada and Yan-
uar [32] have compared the results of the analysis of the quantile regression
method with the censored quantile regression method for censored data. In the
context of censored data, Gannoun et al. [17] introduced a local linear (LL) es-
timator of the quantile regression and established its almost sure consistency
(without rate) as well as its asymptotic normality in the independent and
identically distributed (i.i.d.) case. El Ghouch and Van Keilegom [13] consid-
ered the LL estimation of the quantile regression and its first derivative under
an α-mixing assumption and studied their asymptotic properties. Ould-Säıd
[28] constructed a kernel estimator of the conditional quantile under an i.i.d.
censorship model and established its strong uniform convergence rate. Under
an α-mixing assumption, Liang and Alvarez [21] established the strong uni-
form convergence (with rate) of the conditional quantile function as well as its
asymptotic distribution.

The single index model is a natural extension of the linear regression model
for applications in which linearity does not hold. This last approach is widely
applied in econometrics as a reasonable compromise between nonparametric
and parametric models. In the past few recent years, the single functional index
models have received much attention, and it has been studied extensively in
both statistical and econometric literatures. Interesting to this methods, many
authors worked on this sort of problems, see for instance Aı̈t-Saidi et al. [1, 2].
Attaoui et al. [3] investigated the kernel estimator of the conditional density
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of a scalar response variable Y, given a Hilbertian random variable X when
the observations are from a single functional index model. Ling et al. [24]
reconsidered the kernel estimator of the conditional density when the scalar
response variable Y and the Hilbertian random variable X also come from
the single functional index model. The asymptotic results such as pointwise
almost complete consistency and the uniform almost complete convergence
of the kernel estimation with rates in the setting of the α mixing functional
data are also obtained, which extend the i.i.d. case in Attaoui et al. [3] to the
dependence setting. Ling & Xu [23] investigated the estimation of conditional
density function based on the single-index model for functional time series
data. Under α-mixing condition, the asymptotic normality of the conditional
density estimator and the conditional mode estimator where obtained. Attaoui
[4] studied a nonparametric estimation of the conditional density of a scalar
response variable given a random variable taking values in separable Hilbert
space when the variables satisfy the strong mixing dependency, based on the
single-index structure.

Inspired by all the papers above, our work in this paper aims to contribute
to the research on functional nonparametric regression model, by giving an
alternative estimation of QR estimation in the single functional index model
with randomly right-censored data under α-mixing conditions whose definition
is given below.

Recall that a process (Xi, Yi)i≥1 is called α-mixing or strongly mixing (see
Lin and Lu [22]) for more details and examples, if

sup
k

sup
A∈Fk1

sup
B∈F∞

n+k

|P(A ∩ B) − P(A)P(B)| = α(n)→ 0 as n→∞,
where Fkj denotes the σ-field generated by the random variables {(Xi, Yi), j ≤
i ≤ k}. The process {(Xi, Yi), i ≥ 1} is said to be arithmetically α mixing with
order a > 0, if ∃C > 0, α(n) ≤ Cn−a.

The strong-mixing condition is reasonably weak and has many practical ap-
plications (see, e.g., Cai [6], Doukhan [11], Dedecker et al. [10] Ch. 1, for more
details). In particular, Masry and Tøjstheim [25] proved that, both ARCH pro-
cesses and nonlinear additive autoregressive models with exogenous variables,
which are particularly popular in finance and econometrics, are stationary and
α-mixing.

This article is organized as follows: In Section 2, we describe our model
and construct precisely the QR estimator based on the functional stationary
data under censorship model. In Section 3, we build up asymptotic theorems
for our model. Section 4 illustrates those asymptotic properties through some
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simulated. Finally, the proofs of the main results are postponed to Section 5.

2 Notations and estimators of the semi-parametric
framework

2.1 The model

Let (X, T) be a pair of random variables where T is a real-valued random
variable and X takes its values in a separable Hilbert space H with the norm
‖ · ‖ generated by an inner product < ·, · >. Let C be a censoring variable with
common continuous distribution function G. The continuity of G allows to use
the convergence results for the Kaplan and Meier estimator of G. (see [19]).

From now on we suppose that (X, T) and C are independent. It is plausible
whenever the censoring is independent of the characteristics of the patients
under study. In the right censorship model, the pair (T, C) is not directly
observed and the corresponding available information is given by Y = min(T, C)
and δ = 1{T≤C}, where 1A is the indicator function of the set A.

Such censorship models have been amply studied in the Literature for real
or multi-dimensional random variables, and in nonparametric frameworks the
kernel techniques are particularly used (see Tanner and Wong [33], Padgett
[29], Lecoutre and Ould-Säıd [20] and Van Keilegom and Veraverbeke [34], for
a necessarily non-exhaustive sample of literature in this area).

Furthermore, let (Xi, Ti)1≤i≤n be the statistical sample of pairs which are
identically distributed like (X, T), but not necessarily independent, (Ci)1≤i≤n
is a sequence of i.i.d. random variables which is independent of (Xi, Ti)1≤i≤n.
Therefore, we assume that the sample {(Xi, δi, Yi), i = 1, . . . , n} is at our dis-
posal. Moreover, we consider dθ(·, ·) a semi-metric associated with the single
index θ ∈ H defined by dθ(x1, x2) := | < x1 − x2, θ > |, for x1 and x2 in H.

For a fixed x in H, the conditional cumulative distribution function (cond-
cdf) of Y given < θ,X >=< θ, x >, is defined as follows:

∀t ∈ R, F(θ, t, x) := P(Y ≤ t| < X, θ >=< x, θ >).

Saying that, we are implicitly assuming the existence of a regular version
for the conditional distribution of Y given < θ,X >. Now, let ζθ(γ, x) be the
γth-conditional quantile of the distribution of Y given < θ,X >=< θ, x >.
Formally, ζθ(γ, x) is defined as:

ζθ(γ, x) := inf{t ∈ R : F(θ, t, x) ≥ γ}, ∀γ ∈ (0, 1).
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In order to simplify our framework and to focus on the main interest of our
paper (the functional feature of < θ,X >), we assume that F(θ, ·, x) is strictly
increasing and continuous in a neighborhood of ζθ(γ, x). This is insuring that
the conditional quantile ζθ(γ, x) is uniquely defined by:

ζθ(γ, x) = F−1(θ, γ, x) equivalently F̂(θ, ζ̂θ(γ, x) , x) = γ. (1)

Next, in all what follows, we assume only smoothness restrictions for the
cond-cdf F(θ, ·, x) through nonparametric modeling. Assume also (Xi, Ti)i∈N is
an α-mixing sequence, which is one among the most general mixing structures.

2.2 The estimators

The kernel estimator Fn(θ, ·, x) of F(θ, ·, x) is presented as follows:

Fn(θ, t, x) =

n∑
i=1

K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Ti)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) , (2)

where K is a kernel function, H a cumulative distribution function and hK =
hK,n (resp. hH = hH,n) a sequence of positive real numbers. Note that using
similar ideas, Roussas [30] introduced some related estimates but in the special
case when X is real, while Samanta [31] produced previous asymptotic study.

As a by-product of (1) and (2), it is easy to derive an estimator ζθ,n(γ, x)
of ζθ(γ, x):

ζθ,n(γ, x) = F−1n (θ, γ, x). (3)

Such an estimator is unique as soon as H is an increasing continuous func-
tion. Such an approach has been largely used in the case where the variable X
is of finite dimension (see e.g Whang and Zhao [35], Cai [7], Zhou and Liang
[38] or Gannoun et al. [17]).

The objective of this section is to adapt these ideas under functional random
variable X, and build a kernel type estimator of the conditional distribution
F(θ, ·, X) adapted for censored samples. In the censoring case, based on the
observed sample (Xi, δi, Yi)i=1,...,n we define the following ”pseudo-estimator”
of F(θ, ·, X) which is used as an intermediate estimator, thus we can reformulate
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the expression (2) as follows:

F̃(θ, t, x) =

n∑
i=1

δi

Ḡ(Yi)
K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Yi)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) . (4)

In practice Ḡ(·) = 1 − G(·) is unknown, hence it is impossible to use the
estimator (6). Then, we replace Ḡ(·) by its Kaplan and Meier [19] estimate
Ḡn(·) given by

Ḡn(t) = 1−Gn(t) =


n∏
i=1

(
1−

1− δ(i)

n− i+ 1

)1{Y(i)≤t}

, if t < Y(n);

0, if t ≥ Y(n).
(5)

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of Yi and δ(i) is the
concomitant of Y(i). Therefore, a full estimator of the conditional distribution
function F(θ, ·, x) is defined as:

F̂(θ, t, x) =

n∑
i=1

δi

Ḡn(Yi)
K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Yi)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) , (6)

which is rewritten also as:

F̂(θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
. (7)

Consequently, a natural estimator of ζθ(γ, x) is given by

ζ̂θ(γ, x) = F̂−1(θ, γ, x)

= inf{t ∈ R : F̂(θ, t, x) ≥ γ}, (8)

which satisfies

F̂(θ, ζ̂θ(γ, x) , x) = γ. (9)
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3 Assumptions and results

3.1 Assumptions on the functional variable

Let Nx be a fixed neighborhood of x and let B(x, h) be the ball of center
x and radius h, namely Bθ(x, h) = {f ∈ H/0 < | < x− f, θ > | < h}. Assume
that, (Ci)i≥1 and (Ti)i≥1 are independent and we assume that τG := sup{t :
G(t) < 1} and let τ be a positive real number such that τ < τG.

let’s consider the following hypotheses:

(H1) ∀h > 0, P (X ∈ Bθ(x, h)) = φθ,x(h) > 0,

(H2) (Xi, Yi)i∈N is an α-mixing sequence whose the coefficients of mixture
verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H3) 0 < sup
i6=j

P ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h)) = O

(
(φθ,x(hK))

(a+1)/a

n1/a

)
.

3.2 The nonparametric model

As usually in nonparametric estimation, we suppose that the cond-cdf F(θ, ·, x)
verifies some smoothness constraints. Let b1 and b2 be two positive numbers;
such that:

(H4) ∀(x1, x2) ∈ Nx ×Nx, ∀(t1, t2) ∈ S2R,

(i) |F(θ, t1, x1) − F(θ, t2, x2)| ≤ Cθ,x
(
‖x1 − x2‖b1 + |t1 − t2|

b2
)
,

(ii)

∫
R
tf(θ, t, x)dt <∞ for all θ, x ∈ H.

To this end, we need some assumptions concerning the kernel estimator
F̂(θ, ·, x) :

(H5) ∀(t1, t2) ∈ R2, |H(t1) −H(t2)| ≤ C|t1 − t2| with

∫
H(1)(t)dt = 1,∫

H2(t)dt <∞ and

∫
|t|b2H(1)(t)dt <∞.

(H6) K is a positive bounded function with support [0, 1].

(H7) The df of the censored random variable, G has bounded first derivative
G ′.
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(H8) For all u ∈ [0, 1], lim
h→0 φθ,x(uh)φθ,x(h)

= lim
h→0 ξθ,xh (u) = ξθ,x0 (u).

(H9) The bandwidth hH satisfies,

(i) nh2Hφ
2
θ,x(hK) −→∞, and

nh3Hφθ,x(hK)

log2 n
−→∞ as n→∞.

(ii) nh2Hφ
3
θ,x(hK) −→ 0, as n→∞.

(H10) There exist sequences of integers (un) and (vn) increasing to infinity
such that (un + vn) ≤ n, satisfying

(i) vn = o((nφθ,x(hK))
1/2) and

(
n

φθ,x(hK)

)1/2
α(vn)→ 0 as n→ 0,

(ii) qnvn = o((nφθ,x(hK))
1/2) and qn

(
n

φθ,x(hK)

)1/2
α(vn)→ 0 as n→ 0

where qn is the largest integer such that qn(un + vn) ≤ n.

3.3 Comments of the assumptions

(H1) can be interpreted as a concentration hypothesis acting on the distribu-
tion of the f.r.v. X, while (H3) concerns the behavior of the joint distribution
of the pairs (Xi, Xj). Indeed, this hypothesis is equivalent to assume that, for
n large enough

sup
i6=j

P ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h))
P (X ∈ Bθ(x, h))

≤ C
(
φθ,x(hK)

n

)1/a
.

This is one way to control the local asymptotic ratio between the joint distri-
bution and its margin. Remark that the upper bound increases with a. In other
words, more the dependence is strong, more restrictive is (H3). The hypoth-
esis (H2) specifies the asymptotic behavior of the α-mixing coefficients. Let’s
note that (H4) is used for the prove of the the almost complete convergence
of ζ̂θ(γ, x). Assumptions (H5), (H6) and (H7) are classical in nonparametric
estimation. To establish the asymptotic normality, dealing with strong mix-
ing random variables (under (H2)), we use the well-known sectioning device
introduced by Doob [12] in (H10).

This part of paper is devoted to the main result, the asymptotic normality
of F̂(θ, t, x) and ζ̂θ(γ, x).
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Theorem 1 Under Assumptions (H1)-(H10), we have(
nφθ,x(hK)

σ2(θ, t, x)

)1/2 (
F̂(θ, t, x) − F(θ, t, x)

)
D−→N (0, 1), (10)

where σ2(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t
− F(θ, t, x)

)
and

φθ,x(hK)EK21(x, θ)
E2K1(x, θ)

=:
a2(θ, x)

(a1(θ, x))2
.

Theorem 2 If the Assumptions (H1)-(H10) are satisfied, and et γ is the
unique order of the quantile such that γ = F(θ, ζθ(γ, x), x) = Fn(θ, ζ̂θ(γ, x), x),(

nφθ,x(hK)

Σ2(θ, ζθ(γ, x), x)

)1/2
(ζθ,n(γ, x) − ζθ(γ, x))

D−→N (0, 1), (11)

where Σ(θ, ζθ(γ, x), x) =
σ(θ, ζθ(γ, x), x)

f(θ, ζθ(γ, x), x)
.

As one can see, the asymptotic variance Σ(θ, ζθ(γ, x), x) depends on some
unknown functions f(θ, ζθ(γ, x), x) and φθ,x(hK) and other theoretical quanti-
ties F(θ, ζθ(γ, x), x), G(·) and ζθ(γ, x) that have to be estimated in practice.
Therefore, G(·), F(θ, t, x) and ζθ(γ, x) should be replaced, respectively, by the
Kaplan-Meier’s estimator Gn(·), the kernel-type estimator of the joint distri-
bution f̂(θ, ζθ(γ, x), x) and ζθ,n(γ, x) the conditional quantile estimator given
by equation (8). Moreover, using the decomposition given by assumption (H1),
one can estimate φθ,x(z) by Fx,n(z) = 1/n

∑n
i=1 1{Xi∈Bθ(x,z)}.

The corollary below allows one to obtain a confidence interval in practice
since all quantities are known.

3.4 Confidence intervals

Now based on the quantities estimation, we easily get a plug-in estimator
Σ̂(θ, ζθ,n(γ, x), x) of Σ(θ, ζθ(γ, x), x). The Theorem (2) can be now used to
provide the 100(1 − γ)% confidence bands for ζθ(γ, x) which is given, for
x ∈ H, by[

ζθ,n(γ, x) − cγ/2
Σ̂(θ, ζθ,n(γ, x), x)√

nFx,n(hK)
, ζθ,n(γ, x) + cγ/2

Σ̂(θ, ζθ,n(γ, x), x)√
nFx,n(hK)

]
where cγ/2 is the upper γ/2 quantile of the distribution of N (0, 1).
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4 Finite sample performance

This section considers simulated as well as real data studies to assess the finite-
sample performance of the proposed estimator and compare it to its competi-
tor. More precisely, we are interested in comparing the conditional quantile
estimator based on single functional index model (SFIM) to the kernel-type
conditional quantile estimator (NP) introduced in Chaouch and Khardani [8]
when the data is dependent and the response variable is subject to a random
right-censorship phenomena. Throughout the simulation part, the n i.i.d. ran-
dom variables (Ci)i ( censured variables) are simulated through the exponen-
tial distribution E (1.5). Similarly, in the real data applications, the censored
variables are simulated according to the aforementioned exponential law.

The single functional index θ ∈ H is usually unknown and has to be es-
timated in practice. This topic was discussed in single functional regression
model literature and an estimation approaches based on cross-validation or
maximum-likelihood methods were discussed, for instance, in Aı̈t Saidi et al. [2]
and the references therein. Another alternative, which will be adopted in this
section, consists in selecting θ (t) among the eigenfunctions of the covariance
operator E [(X′ − E(X′)) < X′, . >H] , where X (t) is, for instance, a diffusion-
type process defined on a real interval [a, b] and X′ (t) its first derivative (see,
for instance, Attaoui and Ling [5]). Given a training sample L, the covariance
operator can be estimated by its empirical version 1

|L|
∑
i∈L(X

′
i − EX′) t(X′i −

EX′). Consequently, one can obtain a discretized version of the eigenfunctions
θi(t) by applying the principle component analysis method. Let θ? be the first
eigenfunction corresponding to the highest eigenvalue of the empirical covari-
ance operator, which will replace θ in the simulation steps to calculate the
estimator of the conditional distribution as well as the conditional quantiles.

4.1 Simulation study

We generate n copies, say (Xi, δi, Yi)i=1,...,n, of (X, δ, Y), where X and Y are
simulated according to the following functional regression model.

Ti = R (Xi) + εi, i = 1, . . . , n,

where εi is the error assumed to be generated according to an autoregressive
model defined as:

εi = 1/
√
2εi−1 + ηi, i = 1, . . . , n,

where (ηi)i a sequence of i.i.d. random variables normally distributed with a
variance equal to 0.1. The functional covariate X is assumed to be a diffusion
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process defined on [0, 1] and generated by the following equation:

X (t) = A (2− cos (πtW)) + (1−A) cos(πtW), t ∈ [0, 1] ,

where W  N (0, 1) and A Bernoulli(1/2).
Figure 1 depicts a sample of 100 realizations of the functional random vari-

able X sampled in 100 equidistant points over the interval [0, 1].

Figure 1: A sample of 100 curves {Xi (t) , t ∈ [0, 1]}i=1,...,100

On the other side, a nonlinear functional regression, defined as follows, is
considered

R (X) =
1

4

∫ 1
0

(
X′ (t)

)2
dt,

the computation of our estimator is based on the observed data (Xi, δi, Yi)
n
i=1,

where Yi = min (Ti, Ci) , δi = 1{Ti≤Ci}.
To assess the accuracy of the proposed estimator, we split the generated

data into a training (L) and a testing (J ) subsamples. The training subsam-
ple is used to estimate the single functional index and to select the smoothing
parameters hk and hH. Whereas the testing subsample is used to assess and
compare the single functional index based estimator of the conditional quan-
tile, namely ζ̂θ(γ, ·), to the kernel-type conditional quantile estimator, say
ζ̂(γ, ·), which is introduced in Chaouch and Khardani [8] as follows:

ζ̂(γ, x) = inf
{
y ∈ R, F̂x (y) ≥ γ

}
,
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where

F̂x (y) =

∑n
i=1

δi
Ḡn(Yi)

K
(
h−1K d (x, Xi)

)
H
(
h−1H (y− Yi)

)∑n
i=1 K (h−1d (x, Xi))

, ∀y ∈ R.

Figure 2 displays the first three eigenfunctions calculated from the estimated
covariance operator using the data in the training subsample.

Figure 2: The first three eigenfunctions (respectively, continuous, dashed and
dotted lines) representing θi(t), i = 1, 2

Given an X = x, we can observe that the random variable T has a nor-
mal distribution with mean equal to R(x) and standard deviation equal to 0.2.
Therefore, the conditional median is equal to R(x). A 500 Monte-Carlo simula-
tions are performed in order to assess the estimation accuracy of R(x) using the
conditional median estimation by the single functional index approach and by
the nonparametric approach. The simulations were performed for two sample
sizes n = 100, 500 and for two Censorship Rates CR = 60%, 30%. Furthermore,
some tuning parameters have to be specified. The kernel K(·) is chosen to be
the quadratic function defined as K (u) = 3

2

(
1− u2

)
1[0,1] and the cumulative

distribution function H (u) =

∫u
−∞

3

4

(
1− z2

)
1[−1,1] (z)dz. As shown in Figure

1 the covariate is a smooth process and the regression function R(·) is defined
as the integral of the derivative of the functional random variable X. Con-
sequently, according to Ferraty and Vieu [16], the appropriate choice of the
semi-metric is the L2 distance between the first derivatives of the curves. In
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this section, we assume that h := hK = hH, is selected using a cross-validation
method based on the k-nearest neighbors as described in Ferraty and Vieu
[16], p. 102.

We consider the absolute error (AE) as a measure of accuracy of the esti-
mators:

AEk,θ = |ζ̂θ(0.5, x) − R(x)| and AEk = |ζ̂(0.5, x) − R(x)|, k = 1, . . . , 500,

where ζ̂θ(0.5, x) and ζ̂(0.5, x) are, respectively, the estimators of the condi-
tional median using the single functional index model and the nonparametric
approach. Table 1 shows that the SFIM estimator performs better that the NP
one in estimating R(x). Higher is the sample size and lower is the censorship
rate better will be the accuracy of the SFIM compared to the NP one. More-
over, even when CR=60% and n = 100, the SFIM estimator is still performing
better than the NP one.

Table 1: First, second and third quartile of the Absolute errors (AEk,θ and AEk,
k = 1, . . . , 500) obtained for CR=60% and CR=30%(between parentheses).

n=100 n=500
NP SFIM NP SFIM

1st quartile of AE 0.709 0.69 0.62 0.53
(0.29) (0.212) (0.136) (0.097)

Median of AE 0.955 0.93 0.95 0.75
(0.557) (0.573) (0.584) (0.346)

3rd quartile of AE 1.085 1.08 1.07 0.92
(0.73) (0.76) (0.718) (0.624)

The next phase of this simulation study consists in comparing the accuracy
of the SFIM and the NP approaches in terms of prediction. For this purpose a
sample of 550 observations was simulated according to the previous functional
regression model defined above. A subsample of size 500 is considered for train-
ing and the remaining 50 observations are used for prediction assessment. The
purpose consists in predicting the response variable Yi in the test sample using
the conditional median which is estimated either by SFIM or NP approach.
An overall assessment of the predictions is performed using the median square
error, where the square error (SE) is defined as follows: SEj,θ := (Yj−ζ̂θ(0.5, x))

and SEj := (Yj − ζ̂(0.5, x)), j = 1, . . . , 50. Two censorship rates are considered
here: CR = 45% and CR = 2%.
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Figure 3: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 45%.

Figure 4: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 2%.

Figures 3 and 4 show that the SFIM estimator performs better than the NP
estimator in predicting the response variable in the testing subsample. The
accuracy increases when the censorship rate decreases. Indeed when CR =
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45%, the median square error is equal to 0.011 using the SFIM approach and
0.055 for the NP one. whereas, when CR = 2%, the median square error is
equal to 0.008 for the SFIM and 0.012 for the NP approach.

5 Proofs

In order to prove our results, we introduce some further notations. Let First
we consider the following decomposition

F̂(θ, t, x) − F(θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
−
a1(θ, x)F(θ, t, x)

a1(θ, x)

=
1

F̂D(θ, x)

(
F̂N(θ, t, x) − EF̂N(θ, t, x)

)
−

1

F̂D(θ, x)

(
a1(θ, x)F(θ, t, x) − EF̂N(θ, t, x)

)
+
F(θ, t, x)

F̂D(θ, x)

(
a1(θ, x) − E

[
F̂D(θ, x)

])
−
F(θ, t, x)

F̂D(θ, x)

(
F̂D(θ, x) − EF̂D(θ, x)

)
=

1

F̂D(θ, x)
An(θ, t, x) + Bn(θ, t, x)

(12)

where

An(θ, t, x) =
1

nEK1(x, θ)

n∑
i=1

{(
δi

Ḡn
Hi(t) − F(θ, t, x)

)
Ki(θ, x)

−E
[(

δi

Ḡn
Hi(y) − F(θ, t, x)

)
Ki(θ, x)

]}

=
1

nEK1(x, θ)

n∑
i=1

Ni(θ, t, x).

It follows that,

nφθ,x(hK)Var (An(θ, t, x)) =
φθ,x(hK)

E2K1(x, θ)
Var(N1)

+
φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj)
(13)
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= Vn(θ, t, x)

+
φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj).

Lemma 1 Under hypotheses (H1)-(H3) and (H6)-(H8) as n→∞ we have

nφθ,x(hK)Var (An(θ, t, x)) −→ V(θ, t, x)

where V(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t
− F(θ, t, x)

)
.

Lemma 2 Under hypotheses (H1)-(H3), (H6) and (H8)-(H10), as n → ∞
we have (

nφθ,x(hK)

V(θ, t, x)

)1/2
An(θ, t, x)

D−→N (0, 1)

where
D−→ denotes the convergence in distribution.

Lemma 3 Under Assumptions (H1)-(H3) and (H6)-(H9)as n→∞ we have√
nφθ,x(hK)Bn(θ, t, x) −→ 0 in Probabilty.

Next, Making use of Proposition 3.2 for l = 1 and Theorem 3.1, in Kadiri
et al. [18] we get the following corollary.

Corollary 1 Under hypotheses of Lemma 3, as n→∞ we have

(nφθ,x(hK))
1/2 Bn(θ, t, x)

f̂
(
θ, ζ∗θ,n(γ, x), x

) −→ 0 in Probabilty.

Proof. [Proof of Theorem 1]
To prove Theorem 1, it suffices to use (12). Applying Lemmas Lemma 1 and

Lemma 3, we get the result. �

Proof. [Proof of Theorem 2]
For Theorem 2, making use of (12), we have√
nφθ,x(hK) (ζθ(γ, x) − ζθ,n(γ, x)) =

√
nφθ,x(hK)

Fn(θ, ζθ(γ, x), x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

−
√
nφθ,x(hK)

F(θ, ζθ(γ, x), x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)
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=

√
nφθ,x(hK)An(θ, t, x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

−

√
nφθ,x(hK)Bn(θ, t, x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

.

Then using Theorem 1, Corollary 1 and Lemma 3 we obtain the result. �

Proof. [Proof of Lemma 1]

Vn(θ, t, x) =
φθ,x(hK)

E2K1(θ, x)
E

[
K21(θ, x)

(
δ1

Ḡ(Y1)
H1(t) − F(θ, t, x)

)2]

=
φθ,x(hK)

E2K1(θ, x)
E

[
K21(θ, x)E

((
δ1H1(t)

Ḡ(Y1)
−F(θ, t, x)

)2
|<θ,X1 >

)]
.

(14)

Using the definition of conditional variance, we have

E

[(
δ1

Ḡ(Y1)
H(h−1H (t− Y1)) − F(θ, t, x)

)2
| < θ,X1 >

]
= J1n + J2n

where J1n = Var
(

δ1
Ḡ(Y1)

H(h−1H (t− Y1))| < θ,X1 >
)

,

J2n =
[
E
(

δ1
Ḡ(Y1)

H(h−1H (t− Y1))| < θ,X1 >
)
− F(θ, t, x)

]2
Concerning J1n,

J1n = E
[

δ1

Ḡ2(Y1)
H2
(
t− Y1
hH

)
| < θ, x >

]
−

(
E
[
δ1

Ḡ(Y1)
H

(
t− Y1
hH

)
| < θ,X1 >

])2
= J1 + J2.

As for J1, by the property of double conditional expectation, we get that,

J1 = E
{
E
[

δ1

Ḡ2(Y1)
H2
(
t− Y1
hH

)
| < θ,X1 >, T1

]}
= E
{

δ1

Ḡ2(T1)
H2
(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

}
= E

(
1

Ḡ(T1)
H2
(
t− T1
hH

)
| < θ,X1 >

) (15)
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=

∫
R

1

Ḡ(v)
H2
(
t− v

hH

)
dF(θ, v, X1)

=

∫
R

1

Ḡ(t− uhH)
H2(u)dF(θ, t− uhH, X1).

By the first order Taylor’s expansion of the function Ḡ−1(·) around zero,
one gets

J1 =

∫
R

1

Ḡ(t)
H2(u)dF(θ, t− uhH, X1)

+
h2H
Ḡ2(t)

∫
R
uH(u)Ḡ(1)(t∗)f(θ, t− uhH, X1)du+ o(1)

where t∗ is between t and t− uhH
Under hypothesis (H7) and using hypothesis (H3)-(ii), we get

J ′1 =
h2H
Ḡ2(t)

∫
R
uH2(t)Ḡ(1)(t∗)f(θ, t− uhH, X1)du = O(h2H).

Indeed

J ′1 ≤ h2H
(

sup
u∈R

|G ′(u)|/Ḡ2(t)

) ∫
R
uf(θ, t− uhH, x)du.

On the other hand, by integrating by part and under assumption (H3)-(i),
we have∫

R

H2(u)

Ḡ(t)
dF(θ, t− uhH, X1) =

1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t− uhH, X1)du

−
1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t, x)du

+
1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t, x)du.

Clearly we have∫
R
2H(u)H ′(u)F(θ, t, x)du =

[
H2(u)F(θ, t, x)

]+∞
−∞ = F(θ, t, x) (16)

thus ∫
R

1

Ḡ(t)
H2(u)dF(θ, t− uhH, X1) =

F(θ, t, x)

Ḡ(t)
+O(hβ1K + hβ2H ). (17)
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As for J2n, by (H2), (H4) and (H5), and using Lemma 3.2 in Kadiri et al.
[18] we obtain that

J2n −→ 0, as n→∞.
• Concerning J2

J ′2 = E
[
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

]
= E

(
E
[
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >, T1

])
= E

(
1

Ḡ(T1)
H

(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

)
= E

(
H

(
t− T1
hH

)
| < θ,X1 >

)
=

∫
H

(
t− v

hH

)
f(θ, t, X1)dv.

Moreover, we have by integration by parts and changing variables

J ′2 = F(θ, t, x)

∫
H ′(u)du+

∫
H ′(u) (F(θ, t− uhH, x) − F(θ, t, x))du

the last equality is due to the fact that H ′ is a probability density.
Thus we have:

J ′2 = F(θ, t, x) +O
(
h
β1
K + hβ2H

)
. (18)

Finally by hypothesis (H5) we get J2 −→
n→∞ F2(θ, t, x).

Meanwhile, by (H1), (H4), (H6) and (H8), it follows that:

φθ,x(hK)EK21(θ, x)
E2K1(θ, x)

−→
n→∞ a2(θ, x)

(a1(θ, x))2
.

which leads to combining equations (14)-(18)

Vn(θ, t, x) −→
n→∞ a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t)
− F(θ, t, x)

)
. (19)

Secondly, by the boundness of H and conditioning on (< θ,Xi >,< θ, Xj >),
we have

E (|NiNj|) = E [(Ωi) (Ωj)Ki(θ, x)Kj(θ, x)]
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= E
(
E
[
(Ωi) (Ωj) | < θ,Xi >,< θ, Xj >

]
Ki(θ, x)Kj(θ, x)

)
≤

(
1+

1

Ḡ(τF)

)2
E(Ki(θ, x)Kj(θ, x))

≤ CP ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h))

≤ C

((
φθ,x(hK)

n

)1/a
φθ,x(hK)

)

where Ωi =
δi

Ḡi
Hi(t) − F(θ, t, x).

Then, taking

φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) =
φθ,x(hK)

nE2K1(x, θ)

n∑
0<|i−j|≤mn

Cov(Ni, Nj)

+
φθ,x(hK)

nE2K1(x, θ)

n∑
|i−j|>mn

Cov(Ni, Nj)

= K1n + K2n.

Therefore

K1n ≤ C mn

{(
φθ,x(hK)

n

)1/a}
, ∀i 6= j.

Now choose mn =
(
φθ,x(hK)

n

)−1/a
, we get K1n = o(1).

For K2n: since the variable (∆i)1≤i≤n is bounded (i.e, ‖∆i‖∞ < ∞, we can
use the Davydov-Rio’s inequality. So, we have for all i 6= j,

|Cov(∆i, ∆j)| ≤ Cα(|i− j|).

By the fact,
∑

k≥mn+1
k−a ≤

∫∞
mn

v−adv =
m−a+1
n

a− 1
, we get by applying (H1),

K2n ≤
∑

|i−j|≥mn+1

|i− j|−a ≤ nm
−a+1
n

a− 1

with the same choice of mn, we get K2n = o(1).
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Finally by

φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) = o(1), (20)

this complete the proof of lemma. �

Proof. [Proof of Lemma 2]
We will establish the asymptotic normality of An(θ, t, x) suitably normal-

ized. We have

√
nφθ,x(hK)An(θ, t, x) =

√
nφθ,x(hK)

nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=

√
φθ,x(hK)√
nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=
1√
n

n∑
i=1

Ξi(θ, t, x) =
1√
n
Sn.

Now we can write, Ξi =

√
φθ,x(hK)

EK1(θ, x)
Ni, we have

Var(Ξi) =
φθ,x(hK)

E2K1(θ, x)
Var(Ni) = Vn(θ, t, x).

Note that by (19), we have Var(Ξi) −→ V(θ, t, x) as n goes to infinity and
by (20), we have

∑
|i−j|>0

|Cov(Ξi, Ξj)| =
φθ,x(hK)

E2K1(x, θ)

n∑
|i−j|>0

|Cov(Ni, Nj)| = o(n), (21)

Obviously, we have√
nφθ,x(hK)

V(θ, t, x)
(An(θ, t, x)) = (nV(θ, t, x))−1/2 Sn.

Thus, the asymptotic normality of (nV(θ, t, x))−1/2 Sn, is sufficient to show
the proof of this Lemma. This last is shown by the blocking method, where
the random variables Ξi are grouped into blocks of different sizes defined.



68 N. Kadiri, A. Rabhi, S. Khardani, F. Akkal

We consider the classical big- and small-block decomposition. We split the
set {1, 2, . . . , n} into 2kn + 1 subsets with large blocks of size un and small
blocks of size vn and put

kn :=
[ n

un + vn

]
.

Now by Assumption (H10)-(ii) allows us to define the large block size by

un =:
[(nφθ,x(hK)

qn

)1/2 ]
.

Using Assumption (H10) and simple algebra allows us to prove that

vn

un
→ 0,

un

n
→ 0,

un√
nφθ,x(hK)

→ 0, and
n

un
α(vn)→ 0. (22)

Now, let Υj, Υ
′
j and Υ

′′
j be defined as follows:

Υj(θ, t, x) = Υj =

j(u+v)+u∑
i=j(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1,

Υ ′j(θ, t, x) = Υ ′j =

(j+1)(u+v)∑
i=j(u+v)+u+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1,

Υ
′′
j (θ, t, x) = Υ

′′
j =

n∑
i=k(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1.

Clearly, we can write

Sn(θ, t, x) = Sn =

k−1∑
j=1

Υj +

k−1∑
j=1

Υ ′j + Υ
′′
k

=: Ψn(θ, t, x) + Ψ
′
n(θ, t, x) + Ψ

′′
n(θ, t, x)

=: Ψn + Ψ
′
n + Ψ

′′
n .

We prove that

(i)
1

n
E(Ψ ′n)2 −→ 0, (ii)

1

n
E(Ψ ′′n)2 −→ 0, (23)
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∣∣∣E{exp
(
izn−1/2Ψn

)}
−

k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ −→ 0, (24)

1

n

k−1∑
j=0

E
(
Υ2j

)
−→ V(θ, t, x), (25)

1

n

k−1∑
j=0

E
(
Υ2j 1{|Υj|>ε

√
nV(θ,t,x)}

)
−→ 0 (26)

for every ε > 0.
Expression (23) show that the terms Ψ ′n and Ψ ′′n are asymptotically neg-

ligible, while Equations (24) and (25) show that the Υj are asymptotically
independent, verifying that the sum of their variances tends to V(θ, t, x). Ex-
pression (26) is the Lindeberg-Feller’s condition for a sum of independent
terms. Asymptotic normality of Sn is a consequence of Equations (23)-(26).

• Proof of (23) Because E(Ξj) = 0, ∀j, we have that

E(Ψ ′n)2 = Var

k−1∑
j=1

Υ ′j

 =

k−1∑
j=1

Var
(
Υ ′j
)
+

k−1∑
|i−j|>0

Cov
(
Υ ′i, Υ

′
j

)
:= Π1+Π2.

By the second-order stationarity and (21) we get

Var
(
Υ ′j
)

= Var

 (j+1)(un+vn)∑
i=j(un+vn)+un+1

Ξi(θ, t, x)


= vnVar(Ξ1(x)) +

vn∑
|i−j|>0

Cov (Ξi(θ, t, x), Ξj(θ, t, x))

= vnVar(Ξ1(x)) + o(vn).

Then

Π1
n

=
kvn

n
Var(Ξ1(θ, t, x)) +

k

n
o(vn)

≤ kvn

n

{
φθ,x(hK)

E2K1(x)
Var (Ξ1(x))

}
+
k

n
o(vn)
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≤ kvn

n

{
1

φθ,x(hK)
Var (Ξ1(x))

}
+
k

n
o(vn).

Simple algebra gives us

kvn

n
∼=

(
n

un + vn

)
vn

n
∼=

vn

un + vn
∼=
vn

un
−→ 0 as n→∞.

Using Equation (20) we have

lim
n→∞ Π1

n
= 0. (27)

Now, let us turn to Π2/n. We have

Π2
n

=
1

n

k−1∑
|i−j|>0

Cov (Υi(x), Υj(x))

=
1

n

k−1∑
|i−j|>0

vn∑
l1=1

vn∑
l2=1

Cov
(
Ξmj+l1 , Ξmj+l2

)
,

with mi = i(un+vn)+un+1. As i 6= j, we have |mi−mj+ l1− l2| ≥ un.
It follows that

Π2
n
≤ 1

n

n∑
|i−j|≥un

Cov (Ξi(x), Ξj(x)) = o(1),

then

lim
n→∞ Π2

n
= 0. (28)

By Equations (27) and (28) we get Part(i) of the Equation(23).

We turn to (ii), we have

1

n
E
(
Ψ ′′n
)2

=
1

n
Var

(
Υ ′′k
)

=
ϑn

n
Var (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x), Ξj(x)) ,

where ϑn = n−kn(un+vn); by the definition of kn, we have ϑn ≤ un+vn.
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Then

1

n
E
(
Ψ ′′n
)2 ≤ un + vn

n
Var (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x), Ξj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation
(23).

• Proof of (24) We make use of Volkonskii and Rozanov’s lemma (see the
appendix in Masry [26]) and the fact that the process (Xi, Xj)is strong
mixing.

Note that Υa is F jaia -mesurable with ia = a(un + vn) + 1 and ja =

a(un + vn) + un; hence, with Vj = exp
(
izn−1/2Ψn

)
we have

∣∣∣E {Vj}−

k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ ≤ 16knα(vn + 1)

∼=
n

vn
α(vn + 1)

which goes to zero by the last part of Equation (22). Now we establish
Equation (25).

• Proof of (25) Note that Var(Ψn) −→ V(θ, t, x) by equation (23) (by
the definition of the Ξi). Then because

E (Ψn)
2 = Var (Ψn) =

k−1∑
j=0

Var (Υj) +

k−1∑
i=0 i6=j

k−1∑
j=1

Cov (Υi, Υj) ,

all we have to prove is that the double sum of covariances in the last
equation tends to zero. Using the same arguments as those previously
used for Π2 in the proof of first term of Equation (23) we obtain by
replacing vn by un we get

1

n

k−1∑
j=1

E
(
Υ2j

)
=
kun

n
Var (Ξ1) + o(1).

As Var (Ξ1) −→ V(θ, t, x) and
kun

n
−→ 1, we get the result.

Finally, we prove Equation (26).
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• Proof of (26) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Ξi.

Finally for establish (26) it suffices to show for n large enough that the
set {|Υj| > ε

√
nV(θ, t, x)} is empty .

Making use Assumptions (H3) and (H5), we have∣∣∣Ξi∣∣∣ ≤ C (φθ,x(hK))
−1/2

therefore ∣∣∣Υj∣∣∣ ≤ Cun (φθ,x(hK))−1/2 ,
which goes to zero as n goes to infinity by Equation (22).

Since |Hi(t) − F(θ, t, x)| ≤ 1, then∣∣∣Υj∣∣∣ ≤ unNj√
φθ,x(hK)

≤ Cun√
φθ,x(hK)

.

Thus
1√
n

∣∣∣Υj∣∣∣ ≤ Cun√
nφθ,x(hK)

.

Then for n large enough, the set
{
|Υj| > ε (nV(θ, t, x))

−1/2
}

becomes

empty, this completes the proof and therefore that of the asymptotic
normality of (nV(θ, t, x))−1/2 Sn and the Lemma 2.

�

Proof. [Proof of Lemma 3]
We have√
nφθ,x(hK)Bn(θ, t, x) =

√
nφθ,x(hK)

F̂D(θ, x)

{
EF̂N(θ, t, x) − a1(θ, x)F(θ, t, x)

+F(θ, t, x)
(
a1(θ, x) − EF̂D(θ, x)

)}
.
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Firstly, observed that the results below as n→∞
1

φθ,x(hK)
E
[
Kl
(
< x− Xi, θ >

hK

)]
−→ al(θ, x), for l = 1, 2, (29)

E
[
F̂D(θ, x)

]
−→ a1(θ, x), (30)

and

E
[
F̂N(θ, t, x)

]
−→ a1(θ, x)F(θ, t, x), (31)

can be proved in the same way as in Ezzahrioui and Ould-Säıd [14] corre-
sponding to their Lemmas 5.1 and 5.2, and then their proofs are omitted.

Secondly, on the one hand, making use of (29), (30) and (31), we have as
n→∞{

EF̂N(θ, t, x) − a1(θ, x)F(θ, t, x) + F(θ, t, x)
(
a1(θ, x) − EF̂D(θ, x)

)}
−→ 0.

On other hand,√
nφθ,x(hK)

F̂D(θ, x)
=

√
nφθ,x(hK)F̃

′(θ, t, x)

F̂D(θ, x)F̃ ′(θ, t, x)
=

√
nφθ,x(hK)F̃

′(θ, t, x)

F̃ ′N(θ, t, x)
. (32)

Then using Proposition 3.2 in Kadiri et al. [18], it suffices to show that√
nφθ,x(hK)

F̃ ′N(θ,t,x)
tends to zero as n goes to infinity.

Indeed

F̃ ′N(θ, t, x) =
1

nhHEK1(θ, x)

n∑
i=1

δi

Ḡ(Yi)
K

(
< x− Xi, θ >

hK

)
H ′
(
t− Yi
hH

)
.

Because K(·)H ′(·) is continuous with support on [0, 1] then by (H5)-(ii) and
(H6) ∃ m = inf

[0,1]
K(t)H ′(t) it follows that

F̃ ′N(θ, t, x) ≥
m

hHφθ,x(hK)

which gives

nφθ,x(hK)

F̃ ′N(θ, t, x)
≤

√
nh2Hφθ,x(hK)

3

m
.

Finally, using (H10), completes the proof of Lemma 3.
�
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