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Abstract. In this paper, we discuss tripotent1 elements in the finite
ring H/Zp. We provide examples and establish conditions for tripotency.
We follow similar methods used in [3] for idempotent elements in H/Zp.

1 Introduction

Quaternions, denoted by H, were first discovered by William. R. Hamilton in
1843 as an extension of complex numbers into four dimensions [9]. Namely, a
quaternion is of the form x = a0 + a1i + a2j + a3k, where ai are reals and
i, j, k are such that i2 = j2 = k2 = ijk = −1. Algebraically speaking, H forms
a division algebra (skew field) over R of dimension 4 ([9], p.195–196). A study
of the finite ring2 H/Zp, where p is a prime number, looking into its structure
and some of its properties, was done in [2]. A more detailed description of the
structure H/Zp was given by Miguel and Serodio in [6]. Among others, they
found the number of zero-divisors, the number of idempotent elements, and
provided an interesting description of the zero-divisor graph. In particularly,
they showed that the number of idempotent elements in H/Zp is p2+p+2, for
p odd prime. As discussed in [3], the only scalar idempotents in H/Zp are a0 =
0, 1. Unlike that, as we will see below, there are scalar tripotents (a0 6= 0, 1) in
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H/Zp. Yet, in both cases, there are no non-zero scalar multiple of the imaginary
units (i.e. x = bi). Unlike also to the idempotent case, there are also pure
imaginary tripotents (i.e. x = a1i+a2j+a3k). There are also tripotent elements
which are not idempotent. In the sections that follow, we give examples of
tripotent elements in H/Zp and provide conditions for tripotency in H/Zp.

2 Tripotent elements in H/Zp
A quaternion x of the form x = a0+a1i+a2j+a3k is said to be tripotent if x3 =
x. For the case of H/R (i.e. a0, a1, a2, a3 ∈ R), the only tripotent elements are
x = −1, x = 0 and x = 1. However, for the case H/Zp (i.e. a0, a1, a2, a3 ∈ Zp),
where p is a prime number, there are other possible tripotents other than, say,
the obvious ones.

First notice the following: Take, for example, p = 5. If a0 6= 0, a1 = a2 =
a3 = 0, i.e. H/Z5 = {0, 1, 2, 3, 4}, a scalar tripotent is 4. For H/Z7 is 6, H/Z11
is 10, etc. In other words, for H/Zp the only scalar tripotent is p–1. This is
not hard to show as (p–1)3 = (−1)3 = −1 = p–1. Furthermore, there are no
tripotents that are non-zero scalar multiple of the imaginary units (say x = bi)
because x3 = (bi)3 = −bi = −x ( 6= x).

Furthermore, the existence of non-trivial tripotents is guaranteed as follows:
As discussed in [2], [3] and [6], H/Zp, which is not a division ring, has non-
trivial idempotents3. But, it is not hard to show that idempotency implies
tripotency due to the fact that in any ring x2 = x ⇒ x3 = x. (actually
x2 = x ⇒ xn = x , for n > 0). Nevertheless, the converse is not true. For
example, in H/Z5, 3 + i is idempotent and hence also tripotent, but 2 + i is
tripotent but not idempotent. (see also Example 1 and Remark 1).

The following propositions discuss the cases in which a non-scalar quaternion
x ∈ H/Zp , where p is a prime number, is tripotent.

Proposition 1 Let x ∈ H/Zp be a quaternion of the form x = a0+a1i, where
a0, a1 6= 0. Then, x is tripotent if and only if a20 =

1−p
4 and a21 =

p−1
4 , where p

prime number and p 6= 2, 3.

Proof. Let x = a0 + a1i. Then:

x3 = x⇒ (a0 + a1i)
3 = a0 + a1i⇒ a30 − 3a0a

2
1 + (3a20a1 − a

3
1)i = a0 + a1i

From the above we have the following two equations:

a30 − 3a0a
2
1 = a0
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3a20a1 − a
3
1 = a1

These can be simplified into the following:

a20 − 3a
2
1 = 1 (1)

3a20 − a
2
1 = 1 (2)

One can solve for a20 and a21 as follows:

a20−3a
2
1 = 3a

2
0−a

2
1 ⇒ a20−3a

2
0 = 3a

2
1−a

2
1 ⇒ −2a20 = 2a

2
1 ⇒ −a20 = a

2
1 (3)

Substituting for a20 in (1) and solving for a21 , we get:

−a21 − 3a
2
1 = 1⇒ −4a21 = 1⇒ a21 =

−1

4
. Since p = 0 (modp) , a21 =

p− 1

4
.

Solving for a20, equation (3) gives: a20 = −
(
p−1
4

)
= 1−p

4 .

To see if the quantities p−1
4 and 1−p

4 are squares modp, we calculate the

Legendre Symbol 4 for
( p−1

4
p

)
and

( 1−p
4
p

)
respectively. The first gives:( p−1

4

p

)
=

(
p− 1

p

)( 1
4

p

)
=

(
p− 1

p

)
· 1 = (p− 1)

p−1
2 = (−1)

p−1
2

=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

Hence, there are no tripotents of the form a0+a1i, if p ≡ 3 (mod 4). Elements
of the form a0+a1i are tripotent if p ≡ 1 (mod 4) and, in that case, a20 =

1−p
4

and a21 =
p−1
4 .

For the converse, it is not hard to show that given a20 =
1−p
4 and a21 =

p−1
4 , we

have that:

x3 = (a0 + a1i)
3 = a30 − 3a0a

2
1 + (3a20a1 − a

3
1)i

= a0(a
2
0 − 3a

2
1) + a1(3a

2
0 − a

2
1)i

= a0

(
1− p

4
− 3

p− 1

4

)
+ a1

(
3
1− p

4
−
p− 1

4

)
i

= a0(1− p) + a1(1− p)i

= a0 + a1i, as p = 0 (mod p)

= x

Hence, x is tripotent. �
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Example 1 Let p = 13. Then, we have a20 =
1−13
4 = −12

4 = −3 = 10 (mod 13)

and a21 = 13−1
4 = 12

4 = 3. There are many values for a0 and a1. One pair of
these possible values is a0 = 6 and a1 = 4, because 62 = 36 = 10 (mod 13) and
42 = 16 = 3 (mod 13). Therefore x = 6 + 4i is a tripotent in H/Z13. Notice
also that x = 6+ 4i is not an idempotent in H/Z13.

Remark 1 As we have seen already above, there are tripotents which are also
idempotents. As we explained already, idempotency implies tripotency, hence
the tripotents which are also idempotents satisfy also the conditions of idem-

potency given in [3]. Namely, a0 =
p+1
2 and a21 + a

2
2 + a

2
3 =

p2−1
4 . Tripotents

which are not idempotends, that is ‘proper’ tridempotents, do not satisfy these
additional conditions. It is not hard to see that the conditions for idempotency
imply the conditions for tripotency that we provide here, but not vice versa.
(see more in Par. 3 for a general condition on when a tripotent is also idem-
potent). Notice also that in [3] it was shown that there are no pure imaginary
idempotents of the form x = a1i + a2j + a3k. Yet, as Proposition 2 below
shows, there are tripotents of that form. Hence, all pure imaginary elements
are ‘proper’ tripotents.

Proposition 2 Let x ∈ H/Zp be a pure imaginary element of the form x =
a1i+a2j+a3k, where at least two of a1, a2, a3 are non-zero. Then, x is tripotent
if and only if a21 + a

2
2 + a

2
3 = p− 1.

Proof. Let x = a1i+ a2j+ a3k. Then:

x3 = x⇒ (a1i+ a2j+ a3k)
3 = a1i+ a2j+ a3k

Expanding the above, we get:

a1
(
−a21−a

2
2−a

2
3

)
i+a2

(
−a21−a

2
2−a

2
3

)
j+a3

(
−a21−a

2
2−a

2
3

)
k = a1i+a2j+a3k

Hence, we obtain the following three equations:

a1(−a
2
1 − a

2
2 − a

2
3) = a1 (4)

a2(−a
2
1 − a

2
2 − a

2
3) = a2 (5)

a3(−a
2
1 − a

2
2 − a

2
3) = a3. (6)

From the above three equations we get:

a1 = 0 or − a21 − a
2
2 − a

2
3 = 1
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a2 = 0 or − a21 − a
2
2 − a

2
3 = 1

a3 = 0 or − a21 − a
2
2 − a

2
3 = 1.

From the equation −a21 − a
2
2 − a

2
3 = 1, we have a21 + a

2
2 + a

2
3 = −1. This can

be written also as a21 + a
2
2 + a

2
3 = p− 1, as pmodp = 0.

For the converse, given that a21 + a
2
2 + a

2
3 = p − 1, it is not hard to see that:

x3 = (a1i+a2j+a3k)
3 = a1(−a

2
1−a

2
2−a

2
3)i+a2(−a

2
1−a

2
2−a

2
3)j+a3(−a

2
1−

a22 − a
2
3)k = a1(1 − p)i + a2(1 − p)j + a3(1 − p)k = a1i + a2j + a3k = x, as p

modp = 0. Hence, x is tripotent. �

Example 2 Let p = 5. Then, we have a21+a
2
2+a

2
3 = 5− 1 = 4. We can have

different combinations of numbers from Z5 that satisfy the above equation. One
such combinations is a1 = 3, a2 = 4 and a3 = 2 (i.e. 32 + 42 + 22 = 29 = 4

mod 5). Hence, x = 3i+ 4j+ 2k is a tripotent in H/Z5.

Theorem 1 Let x ∈ H/Zp, where p is prime and p 6= 2, 3, be an element of
the from x = a0+a1i+a2j+a3k, where a0 6= 0 and at least one of a1, a2, a3 is
non-zero. Then, x is tripotent if and only if a20 =

1−p
4 and a21+a

2
2+a

2
3 =

p−1
4 .

Proof. Let x = a0 + a1i+ a2j+ a3k. Then:

x3 = x⇒ (a0 + a1i+ a2j+ a3k)
3 = a0 + a1i+ a2j+ a3k.

After the multiplications, we get:

a0
(
a20−3

(
a21+a

2
2+a

2
3

))
+a1

(
3a20−

(
a21+a

2
2+a

2
3

))
i+a2

(
3a20−

(
a21+a

2
2+a

2
3

))
j

+ a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
k = a0 + a1i+ a2j+ a3k.

Hence, we obtain the following four equations by equating the correspond-
ing coefficients:

a0
(
a20 − 3

(
a21 + a

2
2 + a

2
3

))
= a0 (7)

a1
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a1 (8)

a2
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a2 (9)

a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a3. (10)

From the above four equations we get the following:

a0 = 0 or a20 − 3
(
a21 + a

2
2 + a

2
3

)
= 1
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a1 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1

a2 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1

a3 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1.

From the first, since a0 6= 0, we have a20 − 3
(
a21 + a

2
2 + a

2
3

)
= 1. In addition,

from the last three we have 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1. Let a21 + a

2
2 + a

2
3 = λ.

Then, we have the following two equations:

a20 − 3λ = 1 (11)

3a20 − λ = 1. (12)

Combining the equations, we get:

a20 − 3λ = 3a20 − λ⇒ −2a20 = 2λ⇒ a20 = −λ.

Substituting a20 for −λ in (11), we get λ = −1
4 =

p−1
4 , because pmodp = 0.

Hence, a21 + a
2
2 + a

2
3 =

p−1
4 . And, since a20 = −λ, we get a20 =

1−p
4 .

For the converse, given that a20 =
1−p
4 and a21 + a

2
2 + a

2
3 =

p−1
4 , it is not hard

to see that:

x3 =
(
a0 + a1i+ a2j+ a3k

)3
= a0

(
a20 − 3

(
a21 + a

2
2 + a

2
3

))
+

a1
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
i+

a2
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
j+

a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
k

= a0

(
1− p

4
− 3

p− 1

4

)
+

a1

(
3
1− p

4
−
p− 1

4

)
i+

a2

(
3
1− p

4
−
p− 1

4

)
j+

a3

(
3
1− p

4
−
p− 1

4

)
k

= a0(1− p) + a1(1− p)i+ a2(1− p)j+ a3(1− p)k

= a0 + a1i+ a2j+ a3k , as p = 0 mod p

= x.

Hence, x is tripotent. �
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Example 3 Let p = 7. Then, a20 =
1−7
4 = −6

4 and a21+a
2
2+a

2
3 =

7−1
4 = 6

4 . From
the two equations we have 4a20 = −6 = 1 (mod 7) and 4(a21+a

2
2+a

2
3) = 6. One

possible solution is a0 = 3 and a1 = 2, a2 = 2, a3 = 2. This can be checked as
follows: 4(32) = 36 = 1 (mod 7) and 4(22 + 22 + 22) = 48 = 6 (mod 7).Thus,
the element x = 3 + 2i + 2j + 2k is tripotent in H/Z7 (but not idempotent).
Another tripotent is x = 4+ 3i+ j+ 4k, which is also idempotent.

Remark 2 The equation a21 + a
2
2 + a

2
3 =

p−1
4 brings to mind the classic ‘Sum

of Three Squares Theorem’ which was proved by Gauss in his Disquisitiones
Arithmeticae in 1801.5 As that theorem says, an integer n can be the sum of
three squares if and only if n 6= 4m(8k+ 7),m, k,≥ 0. So, clearly, when n = 7
one does not have solutions to the equation a21 + a

2
2 + a

2
3 = n. But, in our

case (in this special ‘modp’ version), one does get solutions for p = 7 to the
equation a21 + a

2
2 + a

2
3 =

p−1
4 , as Example 3 above shows. More interestingly,

we get solutions even if p−14 = 4m(8k+7),m, k,≥ 0. For example, for p = 113,
p−1
4 = 113−1

4 = 28 = 41(8.0+ 7), but 28 = 141 (mod 113) = 42+ 52+ 102. And,

given that a20 =
1−113
4 = −28 = 85 (mod 113), the tripotent is 56+4i+5j+10k.

3 Connection to general rings and applications

There is a lot in the literature regarding tripotents, and k-potents in general,
in more general rings R. It would be interesting to see if and how some of these
results relate to the ‘special’, in a sense, ring H/Zp.

In Zhou et al. [14] (Theorem 2.1), we are informed that in a commutative
ring R every x is the sum of two idempotents if and only if x3 = x. As H/Zp
is not commutative, the above fails. For example, consider the idempotents
a = 3+ i and b = 3+ j in H/Z5. Then, x = a+b = (3+ i)+(3+ j) = 6+ i+ j =
1 + i + j, but x is not tripotent (because 12 6= 1−5

4 and 12 + 12 6= 5−1
4 from

the Theorem 1 above). The above fails even when the idempotents commute.
Take, for example, a = b = 3+ i in H/Z5.

Also, Mosic in [7] gives the relation between idempotent and tripotent ele-
ments in any associative ring R, generalizing the result on matrices by Bak-
salary and Trenkler [12]. Namely, for any x ∈ R, where 2, 3 are invertible, x is
idempotent if and only if x is tripotent and 1−x is tripotent (or 1+x is invert-
ible). Since H/Zp is associative, the result holds. As we have seen already in
Par.2 above, idempotency implies tripotency. But for a tripotent to be idem-
potent it is also required that 1−x is tripotent. Take for example the tripotents
in our Example 3 above. Namely, x = 4+3i+ j+4k and x = 3+2i+2j+2k in
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H/Z7. The first is also an idempotent, but the second is not. It is not hard to
check that directly or using the conditions for idempotency in [3]. Notice also
that for the first case we have 1− x is tripotent (and 1+ x is invertible as the
N(x) = 2 6= 0), where in the second case is 1− x is not tripotent (nor 1+ x is
invertible as the N(x) = 0). More generally, in H/Zp, one can see the condi-
tions given by Mosic as follows: Theorem 1 says that if x = a0+a1i+a2j+a3k
is tripotent then a20 =

1−p
4 and a21 + a

2
2 + a

2
3 =

p−1
4 . If 1− x is also a tripotent,

then (1−a0)
2 = 1−p

4 and a21+a
2
2+a

2
3 =

p−1
4 . Equating the corresponding first

terms, one has a20 = (1 − a0)
2 ⇒ 1 − 2a0 + a

2
0 ⇒ 2a0 = 1 ⇒ a0 =

1
2 = p+1

2 ,
which is the first condition for idempotency in [3]. (the second condition in [3]

is also true by simply noticing that a21 + a
2
2 + a

2
3 =

p−1
4 = p2−1

4 ).
Finally, it is interesting to note any possible applications of idempotents,

tripotent or more generally k-potent ring elements. Wu in [13] applies k-potent
matrices in digital image encryption. A series of encryption key matrices is
used, via matrix multiplications, to mask an image by altering the gray level of
each pixel of the image. The original image then is transformed into a different
image. k-potent matrices, and their ‘variations’, are used for the encryption
key matrices. Wu defines them all via the equation: A = αI + βA, where
αβ = 0, α, β ∈ {−1, 0, 1} and k ≥ 2. (e.g. A is periodic with period k − 1
if Ak = A and k is the least positive integer as such, A is skew-unipotent if
Ak = −I, etc).

4 Conclusion

In this paper, we talked about tripotent elements in H/Zp. Unlike idempotents,
there are scalar tripotents (a0 6= 0, 1) in H/Zp. Yet, in both cases, there are
no non-zero scalar multiple of the imaginary units (i.e. x = bi). Unlike also
to the idempotent case, there are also pure imaginary tripotents (i.e. x =
a1i+a2j+a3k). There are also tripotent elements which are not idempotent.
We provided examples of non-trivial tripotents and we established conditions
for tripotency. The methodology we followed and the conditions we found were
very similar as the one(s) in [3]. An interesting and possibly harder project
is to look at the structure of O/Zp, where O is the octonion division algebra,
and discuss idempotent, tripotent and nilpotent elements in that finite ring.
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Notes

1. Recall that x is idempotent if x2 = x, and x is tripotent if x3 = x. In general, x is
k-potent if xk = x, for some k.
2. + and · on H are defined in ([5], p.124). As p = 0 (modp), on H/Zp they are
defined as follows:

x+ y = (a0 + a1i+ a2j+ a3k) + (b0 + b1i+ b2j+ b3k)

= (a0 + b0) + (a1 + b1)i+ (a2 + b2)j+ (a3 + b3)k

x · y = (a0 + a1i+ a2j+ a3k) · (b0 + b1i+ b2j+ b3k)
= a0b0 + (p− 1)a1b1 + (p− 1)a2b2 + (p− 1)a3b3+

(a0b1 + a1b0 + a2b3 + (p− 1)a3b2)i+

(a0b2 + (p− 1)a1b3 + a2b0 + a3b1)j+

(a0b3 + a1b2 + (p− 1)a2b1 + a3b0)k.

3. In Herstein ([5], p.130), we have that: In a ring F, if x2 = x, for all x, then F is
commutative. It is not hard to show that the converse is not true. (e.g. F = Z3, 2 is not
idempotent). Actually, a field F has only trivial idempotents. Hence, in H/Zp some
elements are non-trivial idempotents and they were described in [3]. Interestingly,
in Herstein ([5], p.136) we also have that: In a ring F, if x3 = x, for all x, then
F is commutative. The latter is much harder to establish, but a solution (with an
interesting story behind it) can be found in [4].

4. The Legendre Symbol
(

a
p

)
is defined as follows:

(
a

p

)
= a

p−1
2 =

 1 if a is a qudratic residue mod p
−1 if a is not a qudratic residue mod p
0 if p/a.

5. For a proof see ([11], p.45). Also see [1] for a more elementary proof.
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