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Abstract. In this paper, we establish several generalized Becker-Stark
type inequalities for the tangent function. We present unified proofs of
many inequalities in the existing literature. Graphical illustrations of
some obtained results are also presented.

1 Introduction

Becker and Stark [6] established the inequality

1−
4x2

π2
<

x

tan x
<
π2

8
−
x2

2
; x ∈ (0, π/2). (1)

The inequality (1) attracted many researchers and several of its variations and
refinements have been established. We may refer to [8, 9, 10, 20, 21, 5, 11, 16,
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19, 3, 4], and the references therein for more details. Chen and Cheung [8]
proved that the best possible constants for which the inequality(

1−
4x2

π2

)β
<

x

tan x
<

(
1−

4x2

π2

)α
; x ∈ (0, π/2) (2)

holds are α = π2/12 ≈ 0.8224 and β = 1. The inequality (2) refines (1).
Recently, Chen and Elezović [9] proved the following inequality:

π2

12
−
2x3

3π
<

x

tan x
< 1−

8x3

π3
; x ∈ (0, π/2). (3)

Although the upper bound of (3) is sharper than the corresponding upper
bound of (1), it is not sharper than the upper bound in (2).

The inequality

1−
4x2

π2
<

x

tan x
< 1−

x2

3
; x ∈ (0, π/2) (4)

was proved by Z.-H. Yang et. al. [19, (96)]. Before we proceed further, we
would like to note that the right inequality in (4) is not good near the point
x = π/2− as well as that this inequality is not better than the right inequality
in (2), as incorrectly stated in [19, Remark 17]. Strictly speaking, the following
inequality, which appears as a part of the equation [19, (98)], is not true since
the estimate (

π2 + 4x2

π2 − 4x2

)π2/24
<

3

3− x2
, x ∈ (0, π/2)

cannot be satisfied near the point x = π/2− . It is also known that

1−
2x

π
<

x

tan x
<
π2

4
−
πx

2
; x ∈ (0, π/2). (5)

The left inequality of (5) is due to H.-F. Ge [12] and the right inequality of
(5) is due to S. B. Stečkin [18].

Among all the inequalities (1)-(5), the inequality (2) is the best. In this
paper, our aim is to obtain several generalized inequalities by studying the
monotonicity of functions with one parameter. We will obtain or refine the
above inequalities as particular cases of our results. We also aim to improve
the lower bound of (2) in the interval (0, δ∗) where δ∗ ≈ 1.3407 as well as the
upper bound of (2) near the point x = π/2−. Our new bounds may not be
uniformly better than the ones in (2) but they certainly provide alternatives
to the best bounds.
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2 Preliminaries and lemmas

The following power series expansions involving Bernoulli numbers can be
found in [13, 1.411]:

cot x =
1

x
−

∞∑
k=1

22k

(2k)!
|B2k|x

2k−1 ; |x| < π, x 6= 0 (6)

and

csc x =
1

x
+

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x
2k−1; |x| < π, x 6= 0, (7)

where B2k are the even indexed Bernoulli numbers. The expansion (7) can be
rewritten as

x

sin x
= 1+

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x
2k; |x| < π. (8)

From (6), we obtain( x

sin x

)2
= −x2(cot x) ′ = 1+

∞∑
k=1

(2k− 1)22k

(2k)!
|B2k|x

2k; |x| < π, x 6= 0. (9)

Also, with reference to [13, 1.518], we have

ln(tan x) = ln x+

∞∑
k=1

(22k−1 − 1)22k

k(2k)!
|B2k|x

2k; 0 < x <
π

2
, x 6= 0. (10)

In addition to the above formulas, we will also use the following lemmas in
order to prove our main results. For Lemma 1, we refer to [2](see also [7, eqn
(4.3), p. 42].

Lemma 1 Let f1(x) and f2(x) be two real valued functions which are continu-
ous on [a, b] and derivable on (a, b), where −∞ < a < b <∞ and g′(x) 6= 0,
for all x ∈ (a, b). Let,

A(x) =
f1(x) − f1(a)

f2(x) − f2(a)
, x ∈ (a, b)

and

B(x) =
f1(x) − f1(b)

f2(x) − f2(b)
, x ∈ (a, b).

Then, we have
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(i) A(x) and B(x) are increasing on (a, b) if f′1(x)/f
′
2(x) is increasing on

(a, b).

(ii) A(x) and B(x) are decreasing on (a, b) if f′1(x)/f
′
2(x) is decreasing on

(a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strictness
of monotonicity of f′1(x)/f

′
2(x).

The result below shows the relationship between two consecutive absolute
Bernoulli numbers. It was established recently in [17].

Lemma 2 For k ∈ N, the Bernoulli numbers satisfy

(22k−1 − 1)

(22k+1 − 1)

(2k+ 1)(2k+ 2)

π2
<

|B2k+2|

|B2k|
<

(22k − 1)

(22k+2 − 1)

(2k+ 1)(2k+ 2)

π2
.

Lemma 3 Let A(x) =
∑∞
k=0 akx

k and B(x) =
∑∞
k=0 bkx

k be convergent for
|x| < R, where ak and bk are real numbers for k = 0, 1, 2, · · · such that bk > 0
for k ≥ 0. If the sequence ak/bk is strictly increasing (or decreasing), then the
function A(x)/B(x) is also strictly increasing (or decreasing) on (0, R).

For more details about Lemma 3, see, for instance, [14]. The following lemma
can be found in [1].

Lemma 4 For all integers k ∈ N, we have

2(2k)!

(2π)2k
1

1− 2α−2k
< |B2k| <

2(2k)!

(2π)2k
1

1− 2β−2k
, (11)

with the best constants α = 0 and β = 2+ (ln(1− 6/π2))/ ln 2 ≈ 0.6491.

3 Main results

In this section, we will state and prove our main results. In the beginning, for
any number p ∈ R, we define

φp(x) :=
tan x− x

xp tan x
, x ∈ (0, π/2).

Then, the following result holds.
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Theorem 1

I. φp(x) is strictly increasing on (0, π/2) if and only if p ≤ 2, and

II. φp(x) is strictly decreasing on (0, π/2) if and only if p ≥ π2/4 ≈ 2.4674.

Proof. By differentiation, we have

Fp(x) = tan2 x · φ ′p(x) = −px−(p+1) tan2 x− (1− p)x−p tan x+ x1−p sec2 x.

Note that φp(x) is strictly increasing on (0, π/2) if and only if Fp(x) > 0,

x ∈ (0, π/2), i.e.,

p <
x2 sec2 x− x tan x

tan x(tan x− x)
=

(
x

sin x

)2
− x cot x

1− x cot x
=: f(x), x ∈ (0, π/2).

From (6) and (9), we get

f(x) =

∑∞
k=1

22k(2k−1)
(2k)! |B2k|x

2k +
∑∞
k=1

22k

(2k)! |B2k|x
2k∑∞

k=1
22k

(2k)! |B2k|x
2k

=

∑∞
k=1

22k2k
(2k)! |B2k|x

2k∑∞
k=1

22k

(2k)! |B2k|x
2k

:=

∑∞
k=1 akx

2k∑∞
k=1 bkx

2k
, x ∈ (0, π/2).

From this, we get ak/bk = 2k (k ∈ N). Since the sequence {ak/bk}
∞
k=1 is

strictly increasing, we conclude from Lemma 3 that the function f(x) is strictly
increasing on (0, π/2). Hence, φp(x) is strictly increasing on (0, π/2) if and
only if p ≤ inf {f(x) : 0 < x < π/2} = f(0+) = 2. Similarly, φp(x) is strictly
decreasing on (0, π/2) if and only if Fp(x) < 0, which is equivalent to saying
that p ≥ sup {f(x) : 0 < x < π/2} = f(π/2−) = π2/4. �

Remark 1 Suppose that p ∈ (2, π2/4). Since the function f(x) is strictly in-
creasing on (0, π/2), we get from the above that there exists a unique point
xp ∈ (0, π/2) such that f(xp) = p. This implies f(x) < p for x ∈ (0, xp) and
f(x) > p for x ∈ (xp, π/2) so that φp(x) is strictly decreasing on (0, xp) and
strictly increasing on (xp, π/2), with φp(x) ≥ φp(xp) for x ∈ (0, π/2).

Let p ∈ (−∞, 4] \ {0}. Define now

ψp(x) :=
ln
(

x
tan x

)
ln
(
1− p x

2

π2

) , x ∈ (0, π/2).

Then, we have:
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Theorem 2

I. ψp(x) is strictly decreasing on (0, π/2) if and only if p < 0, and

II. ψp(x) is strictly increasing on (0, π/2) if and only if 0 < p ≤ 4.

Proof. Set ψ1(x) := ln(x/ tan x), x ∈ (0, π/2) and (ψ2)p(x) := ln(1−(px2/π2)),
x ∈ (0, π/2). Then ψ1(0

+) = 0 = (ψ2)p(0) and differentiation yields

ψ ′1(x)

(ψ2) ′p(x)
=
1

2p

(
π2 − px2

) x− sin x cos x

x2 sin x cos x
=
1

2p
(ψ3)p(x), x ∈ (0, π/2),

where, for every x ∈ (0, π/2),

(ψ3)p(x) :=
(
π2 − px2

) x− sin x cos x

x2 sin x cos x
=

(π2 − px2)

x2

(
2x

sin 2x
− 1

)
.

By (8), we get

(ψ3)p(x) =
(π2 − px2)

x2

∞∑
k=1

22k − 2

(2k)!
|B2k|(2x)

2k

= (π2 − px2)

∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k−2

= π2
∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k−2 − p

∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k

=
2π2

3
+

∞∑
k=1

(
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− p

22k(22k − 2)

(2k)!
|B2k|

)
x2k

=
2π2

3
+

∞∑
k=1

akx
2k, x ∈ (0, π/2),

where

ak :=
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− p

22k(22k − 2)

(2k)!
|B2k| (k ∈ N). (12)

Case I. If p < 0, then ak > 0 for k ∈ N and (ψ3)p(x) is strictly increasing
on (0, π/2). Consequently, ψp(x) is strictly decreasing on (0, π/2) by
Lemma 1.
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Case II. If p ∈ (0, 4], then −p ≥ −4 and we have

ak ≥
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− 4

22k(22k − 2)

(2k)!
|B2k| =: j(k), k ∈ N.

From Lemma 4, we calculate

ak ≥ j(k) >
22k+3

π2k

(
22k+2 − 2

22k+2 − 1
−
22k − 2

22k − 2β

)
=
22k+3

π2k
.
22k+2(2− 2β) − 22k

(22k+2 − 1)(22k − 2β)

=
24k+3

π2k
.

4(2− 2β) − 1

(22k+2 − 1)(22k − 2β)
.

Since 4(2 − 2β) ≈ 1.7268, we get ak > 0 for k ∈ N. This shows that
(ψ3)p(x) is strictly increasing on (0, π/2). By Lemma 1, ψp(x) is also
strictly increasing on (0, π/2).

�

If p < 4, then the function ψp(x) cannot be defined for x ≥ π/2. Suppose
now that p > 4 and consider the function ψp(x) defined for x ∈ (0, π/

√
p).

Then, the following result holds.

Theorem 3 The function ψp(x) is strictly decreasing on (0, π/
√
p) if p ≥

84/15.

Proof. Repeating verbatim the arguments used in the proof of Theorem 2,
we get that

(ψ3)p(x) =
2π2

3
+

∞∑
k=1

akx
2k, x ∈ (0, π/2),

where ak (k ∈ N) is given through (12). Let c := 84/(15π2). Then, we have

ak ≤ π2
(
22k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− c

22k(22k − 2)

(2k)!
|B2k|

)
=: l(k), k ∈ N.

Then l(k) < 0 if and only if

|B2k+2|

|B2k|
< c

22k(22k − 2)

(2k)!

(2k+ 2)!

22k+2(22k+2 − 2)
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=
c

4

(2k+ 1)(2k+ 2)(22k−1 − 1)

(22k+1 − 1)
.

From Lemma 2, we have

|B2k+2|

|B2k|
<

(22k − 1)

(22k+2 − 1)

(2k+ 1)(2k+ 2)

π2
.

Keeping in mind the arguments used in the proof of Theorem 2, it remains to
be shown that

4(22k − 1)(22k+1 − 1) < cπ2(22k−1 − 1)(22k+2 − 1), k ∈ N.

After making a substitution x = 4k (x ≥ 4), it suffices to show that

2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
≤ c
4
π2, x ≥ 4.

The equality holds for x = 4, while the strict inequality holds for x > 4 because
the function

y = 2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
, x ≥ 4

is strictly decreasing (https://www.desmos.com/calculator), as it can be easily
approved. �

Next, we will show how our results give some known and other inequalities
for x/ tan x. First of all, we can see by Theorem 1 that the function

φ2(x) =
tan x− x

x2 tan x

is strictly increasing on (0, π/2). Hence,

φ2(0
+) =

1

3
< φ2(x) =

tan x− x

x2 tan x
< φ2(π/2

−) =
4

π2
,

which gives the inequality (4). Similarly, φ1(x) is strictly increasing on (0, π/2)
and thus with limits at extremities we obtain

1−
2x

π
<

x

tan x
< 1; x ∈ (0, π/2). (13)

This gives the left inequality of (5). Looking at the strictly decreasing function
φ3(x) on (0, π/2) and the limit φ3(π/2

−) = 8/π3, we get the right inequality
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of (3). Indeed, this inequality can be sharpened by considering φp(x) for p =
π2/4. Since (φp(x))p=π2/4 is strictly decreasing on (0, π/2), we obtain

(φp(x))p=π2/4 >
(
φp(π/2

−)
)
p=π2/4

,

i.e.,

x

tan x
< 1−

(
2x

π

)π2/4
; x ∈ (0, π/2). (14)

The inequality (14) is better than the right inequality of (2) near the point
x = π/2−. However, there is no strict comparison between the two.

Now it is easy to formulate the following

Corollary 1 The exponents 2 and π2/4 such that

1−

(
2x

π

)2
<

x

tan x
< 1−

(
2x

π

)π2/4
; x ∈ (0, π/2) (15)

are optimal.

Proof. Let

g(x) =
ln
(
1− x

tan x

)
ln
(
2x
π

) =
g1(x)

g2(x)
.

Here g1(x) and g2(x) are such that g1(π/2
−) = 0 = g2(π/2). Then

g ′1(x)

g ′2(x)
=
x2 sec2 x− x tan x

tan x · (tan x− x)
= f(x),

which is strictly increasing on (0, π/2) as discussed in the proof of Theorem 1.
Calculating the limits at extremities, we obtain the required. �

Several other inequalities can be established by using Theorem 1. We also
have the following corollaries of Theorem 2.

Corollary 2 If p ∈ (0, 4] and x ∈ (0, λ), where λ ∈ (0, π/2], then the inequal-
ities (

1− p
x2

π2

)α
<

x

tan x
<

(
1− p

x2

π2

)β
(16)

hold with the best possible constants α = ψp(λ
−) and β = π2/3p.
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Proof. From Theorem 2, ψp(x) is strictly increasing on (0, λ) for p ∈ (0, 4].
So,

ψp(0
+) < ψp(x) < ψ(λ

−).

Since ψp(0
+) = π2/3p, we get (16). �

Remark 2 The inequality (2) can be deduced from Corollary 2, with p = 4

and λ = π/2.

Corollary 3 If a > 0, then the following inequality holds:

x

tan x
<

(
π2

π2 + ax2

)π2/3a
; x ∈ (0, π/2). (17)

Remark 3 Graphically it is observed that the inequality (17) is in fact true
for x ∈ (0, π).

We can use Theorem 3 to prove the following important corollary:

Corollary 4 If x ∈ (0, π/
√
p), where p ≥ 84/15, then the following inequality

holds:

x

tan x
≥
(
1− p

x2

π2

)π2/3p
. (18)

Furthermore, α = π2/3p is the optimal value for which (18) holds with a
number p ≥ 84/15 given in advance.

Albeit not used henceforward, we will state and prove the following result:

Proposition 1 Suppose that 0 < p1 < p2 and x ∈ (0, π/
√
p2). Then, we have(

1− p2
x2

π2

)π2/3p2
<

(
1− p1

x2

π2

)π2/3p1
. (19)

Proof. Let 0 < a < 1. Then, the mapping t 7→ ln(1 − at) − a ln(1 − t),
0 ≤ t < 1 is strictly increasing because its first derivative is given by

t 7→ a(1− a)t(1− t)−1(1− at)−1, t ∈ [0, 1).

Therefore, we have

ln(1− at) > a ln(1− t), 0 < a < 1, 0 < t < 1. (20)
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Applying (20) with a = p1/p2 and t = p2x
2/π2, we get

ln(1− p2x
2/π2)

p2
<

ln(1− p1x
2/π2)

p1
.

Multiplying both sides of the above inequality with π2/3 and taking the ex-
ponents, we immediately get (19). �

Suppose now that 4 < p < 84/15. We want to better explore the inequality
(18) and the right part of the inequality (2) in this intermediate case. First
of all, it is clear that there exists a sufficiently small real number εp > 0 such
that

x

tan x
>

(
1− p

x2

π2

)π2/3p
, x ∈

(
(π/
√
p) − εp, π/

√
p
)
. (21)

Set now

A :=

{
p > 4 ;

x

tan x
>

(
1− p

x2

π2

)π2/3p
for all x ∈

(
0, π/

√
p
)}
.

By Corollary 4, we have [84/15,+∞) ⊆ A. On the other hand, Proposition
yields that, if p0 > 4 and p0 /∈ A, then (4, p0]∩A = ∅. Therefore, it is natural
to ask: Can we calculate the set A intrinsically?

The answer is affirmative as the next result shows:

Theorem 4 We have A = [7π2/15,+∞).

Proof. Define

h(x) := ln
( x

tan x

)
−
π2

3p
ln
(
1− p

x2

π2

)
, x ∈ (0, π/

√
p).

Then h(0+) = 0 and

h′(x) =
3π2 + x2(2π2 − 3p)

3x(π2 − px2)
−

2

sin(2x)

=
[3π2 + x2(2π2 − 3p)] sin(2x) − 6x(π2 − px2)

3x(π2 − px2) sin(2x)
, x ∈ (0, π/

√
p).

Set t := 2x ∈ (0, 2π/
√
p) and

g(t) :=
sin t

t
−

12π2 − 3pt2

12π2 + t2(2π2 − 3p)
, t ∈ (0, 2π/

√
p).
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Then, it can be easily seen that h′(x) > 0 if and only if g(t) > 0 if and only if
q(t) > 0, where

q(t) := sin(t) ·
[
12π2 + t2(2π2 − 3p)

]
− t
[
12π2 − 3pt2

]
, t ∈ [0, 2π/

√
p).

Using https://www.symbolab.com/solver/partial-derivative-calculator, we get
that q(i)(0) = 0 for i = 0, 1, 2, 3, 4 as well as that

q(v)(t) = t2 cos t · (2π2 − 3p) + 10t sin t · (2π2 − 3p) + cos t · (60p− 28π2),

for any t ∈ [0, 2π/
√
p). Since 2π2 − 3p > 0 for p < 84/15, we have that

the assumption p ≥ 7π2/15 implies q(v)(0) ≥ 0 and q(v)(t) > 0 for all t ∈
(0, 2π/

√
p). This simply implies q(t) > 0 for all t ∈ (0, 2π/

√
p) and therefore

the function h(x) is strictly increasing on (0, π/
√
p); therefore h(x) > h(0+) =

0 for all x ∈ (0, π/
√
p) and [7π2/15,+∞) ⊆ A. If p < 7π2/15, then we have

q(i)(0) = 0 for i = 0, 1, 2, 3, 4 and q(v)(0) < 0, so that t = 0 is a local maximum
of function q(t) (which can be extended to the even function defined on the
whole real line) and therefore q(t) < 0 in a right neighborhood of point t = 0,
which implies that h′(x) < 0 in a right neighborhood of point x = 0 and
therefore h(x) < 0 in a right neighborhood of point x = 0; hence, p /∈ A.
Theorem 4 is proved. �

We now propose an alternative proof of Theorem 4 through the same base-
line and the use of power series expansions.
Proof. [Alternative proof] Define

h(x) := ln
( x

tan x

)
−
π2

3p
ln
(
1− p

x2

π2

)
, x ∈ (0, π/

√
p).

Then, by the power series expansion of the logarithmic function and (10), we
have

h(x) =
π2

3p

∞∑
k=1

1

k

pk

π2k
x2k −

∞∑
k=1

(22k−1 − 1)22k

k(2k)!
|B2k|x

2k.

Since |B2| = 1/6, after simplification, we get

h(x) =

∞∑
k=2

c2kx
2k, (22)

where

c2k :=
1

k

[
1

3

pk−1

π2k−2
−

(22k−1 − 1)22k

(2k)!
|B2k|

]
.
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Now, since |B4| = 1/30, we have c4 = p/(6π2) − 7/90. So, if p ≥ 7π2/15, we
obtain c4 ≥ 0. The rest of the proof consists in proving that c2k > 0 for k ≥ 3.
It follows from Lemma 4 that, for any k ∈ N,

|B2k| <
22k−1

22k−1 − 1

2(2k)!

(2π)2k
,

which implies that

(22k−1 − 1)22k

(2k)!
|B2k| <

24k

(2π)2k
=

(
4

π2

)k
.

Therefore, if p ≥ 7π2/15, the following inequality holds:

c2k >
1

k

[
1

3

(
7

15

)k−1
−

(
4

π2

)k]
.

Now, remark that the inequality (1/3) (7/15)k−1 >
(
4/π2

)k
is equivalent to

21/15 < (7π2/60)k, which is true for k ≥ 3 since 21/15 = 1.4, 7π2/60 ≈
1.151454 > 1 and (7π2/60)3 ≈ 1.52665. Thus, for k ≥ 3, we have c2k > 0.
Now, if p < 7π2/15, we have c4 < 0. Owing to the expansion (22) and [15],
there exists a δ > 0 such that h(x) < 0 for x ∈ (0, δ). This ends the proof of
Theorem 4. �

Now, Corollary 4 holds with p ≥ 7π2/15. For p = 7π2/15, from Corollary
4, we get (

1−
7x2

15

)15/21
<

x

tan x
; x ∈ (0, δ), (23)

where δ =
√
15/7 ≈ 1.46385 · · · .

Now, let us compare graphically the bounds of x/ tan x given in (2) with
those obtained in (14) and in (23) in Figures 1 and 2, respectively. In each
case, we distinguish two non-overlapping intervals of values for x to show some
hierarchy for these bounds.

Based on Figure 1 and a numerical analysis, we see that, for x ∈ (0, δ∗)
where δ∗ ≈ 1.3407, the lower bound in (23) is stronger than the lower bound
in (2). It is weaker for x ∈ (δ∗, δ), where δ ≈ 1.4638. Also, based on Figure 2
and a numerical analysis, for x ∈ (0, µ), where µ ≈ 1.1913, the upper bound
in (2) is stronger than the upper bound in (14). It is weaker for x ∈ (µ, π/2).
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Figure 1: Graphs of lower bounds of x/ tan x in (2) and (23) for (a) x ∈ (0, 1.2)
and (b) x ∈ (1.2,

√
15/7).
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Figure 2: Graphs of upper bounds of x/ tan x in (2) and (14) for (a) x ∈ (0, 1)
and (b) x ∈ (1, π/2).

We conclude the paper by posing an open problem as follows:

Open Problem. Suppose that p, ζ > 0. Then, determine the best possible
constants αp,ζ, βp,ζ ∈ R such that the inequality

(
1−

pxζ

πζ

)βp,ζ
<

x

tan x
<

(
1−

pxζ

πζ

)αp,ζ
; x ∈ (0, π/2) ∩ (0, π/p1/ζ)

holds.
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