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Abstract. In this paper, we investigate the existence of a positive so-
lution to the third-order boundary value problem{

−u′′′(t) + k2u′(t) = φ (t) f(t, u(t), u′(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

where k is a positive constant, φ ∈ L1 (0,+∞) is nonnegative and does
vanish identically on (0,+∞) and the function f : R+ × (0,+∞) ×
(0,+∞) → R+ is continuous and may be singular at the space variable
and at its derivative.

1 Introduction and main results

Boundary value problems for third-order differential equations arise in many
branches of physics and engineering where, for physical considerations, the
positivity of the solution is required. For instance, Danziger and Elemergreen
(see [15], p. 133) have obtained the following third-order linear differential
equations:
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α3u
′′′ + α2u

′′ + α1u
′ + (1+ k)u = kc, θ < c and

α3u
′′′ + α2u

′′ + α1u
′ + u = 0, θ > c.

(1)

These equations describe the variation of thyroid hormone with time. Here
u = u(t) is the concentration of thyroid hormone at time t and α3, α2, α2, k
and c are constants.

A reduced version of the Hodgkin–Huxley model was proposed by Nagumo.
He suggested the class of third-order differential equation

u′′′ − cu′′ + f′(u)u′ −
b

c
u = 0 (2)

as a model exhibiting many of the features of the Hodgkin–Huxley equations,
where f is a regular function. The Hodgkin–Huxley model is a system of non-
linear differential equations that approximates the electrical characteristics of
excitable cells such as neurons and cardiac myocytes. Recall that the Hodgkin–
Huxley model describes the ionic mechanisms underlying the initiation and
propagation of action potentials in the squid giant axom. The model has played
a vital role in biophysics and neuronal modelling. For more details of Nagumo’s
equations, we refer to the paper by McKeen [22].

The Kuramoto–Sivashinsky equation

ut + uxxxx + uxx +
1

2
u2 = 0

arises in a wide variety of physical phenomena. It was introduced to describe
pattern formulation in reaction diffusion systems, and to model the instabil-
ity of flame front propagation (see Y. Kuramoto and T. Yamada [18] and
D. Michelson [23]). The travelling wave solutions of this partial differential
equation (i.e. u(x, t) = u(x − ct)) solve the nonlinear third-order differential
equation

λu′′′(x) + u′(x) + f(u) = 0, (3)

where λ is a parameter depend on the constant c and f is an even function.
A three-layer beam is formed by parallel layers of different materials. For an

equally loaded beam of this type, Krajcinovic in [17] proved that the deflection
u is governed by the third order differential equation

− u′′′ + k2u′ = a, (4)

where k and a are physical parameters depending on the elasticity of the
layers.
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Study of existence of positive solutions for third-order bvps has received a
great deal of attention and was the subject of many articles, see, for instance,
[10, 11, 12, 13, 14, 21, 25, 27, 28, 29, 30, 31], for the case of finite intervals
and [1, 2, 3, 4, 6, 7, 8, 9, 16, 19, 20, 24, 26] for the case posed on the half-
line. Naturally, in such boundary value problems, the nonlinearity may have
a singular dependence on time or on the space variable. This was the case in
the papers [3, 6, 7, 8, 20, 21, 27, 28, 29], which motivated this work.

We are concerned in this paper by existence of a positive solution to the
boundary value problem (bvp for short),{

−u′′′(t) + k2u′(t) = φ (t) f(t, u(t), u′(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

(5)

where k is a positive constant, φ : (0,+∞)→ R+ is a measurable function,
f : R+ × (0,+∞) × (0,+∞) → R+ is a continuous function and observe that
the form of the differential equation in (5) is more general to those of (1)-(4).
Here the constant k which may have a physical signification as in (4), will play
an important role in finding a suitable framework for a fixed point formulation
of bvp (5).

By positive solution to the bvp (5), we mean a function u ∈ C2 (R+) ∩
W3,1 (0,+∞) such that u > 0 in (0,+∞) and u(0) = u′(0) = limt→+∞ u′(t) =
0, satisfying the differential equation in (5).

In all this paper, we let

γ1(t) = (e2kt − 1)e−4kt,
γ̃(t) = k∗ektγ1(t) = k

∗ (1− e−kt) (1+ e−kt)e−kt,
γ(t) =

∫t
0 γ̃(s)ds =

k∗

3k

(
2− 3e−kt + e−3kt

)
=
k∗

3k

(
1− e−kt

)2
(2+ e−kt)

where k∗ = min(1, k)/2 and we assume that the functions φ and f satisfy the
following condition:

for all R > 0 there exists a function ΨR : (0,+∞)× (0,+∞)→ (0,+∞)
such that ΨR nonincreasing following its two variables,
f(t, ektw, ektz) ≤ ΨR (w, z) for all t,w, z ≥ 0 with |(w, z)| ≤ R,
lims→+∞φ (s)ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
= 0 and∫+∞

0 φ (s)ΨR
(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞ for all r ∈ (0, R] .

(6)
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Remark 1 Notice that functions m in L1 (0,+∞) do not satisfy limt→+∞
m(t) = 0. Indeed, the function

m0(t) =


2n4t− n(2n4 − 1) if t ∈

[
n− 1

2n3
, n
]

−2n4t+ n(2n4 + 1) if t ∈
[
n,n+ 1

2n3

]
0 if not

is integrable since
∫+∞
0 m0(t)dt ≤

∑
n≥1

1
n2
< ∞, and limn→+∞m0 (n) =

limn→+∞ n = +∞.
Hence, the condition

∫+∞
0 φ (s)ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞ in Hypoth-

esis (6) does not imply that lims→+∞φ (s)ΨR
(
re−ksγ(s), re−ksγ̃(s)

)
= 0.

Remark 2 Observe that the case where the nonlinearity f satisfies the poly-
nomial growth condition

f(t, u, v) ≤ C (1+ uσ + vµ)

with c, σ, µ > 0, lims→+∞φ (s) = 0 and
∫+∞
0 φ (s)ds <∞, is a particular case

where Condition (6) is satisfied.

Remark 3 Notice that if Hypothesis (6) holds then |φ|1 =
∫+∞
0 φ (s)ds <∞.

Indeed, for R = 1 we have

∞ >

∫+∞
0

φ (s)Ψ1

(
e−ksγ(s), e−ksγ̃(s)

)
ds ≥ Ψ1

(
γ+, γ+

)
|φ|1 ,

where γ+ = maxs>0
(
e−ks (γ(s) + γ̃(s))

)
.

The statement of the main result needs to introduce the following notations.
Let

f0 = lim sup
|(w,z)|→0

(
sup
t≥0

f(t, ektw, ektz)

w+ z

)
,

f∞ = lim sup
|(w,z)|→+∞

(
sup
t≥0

f(t, ektw, ektz)

w+ z

)
,

f0 (θ) = lim inf
|(w,z)|→0

(
min
t∈Iθ

f(t, ektw, ektz)

w+ z

)
,

f∞ (θ) = lim inf
|(w,z)|→+∞

(
min
t∈Jθ

f(t, ektw, ektz)

w+ z

)
,

where |(w, z)| = |w|+ |z|, for θ > 0 Iθ = [0, θ] and for θ > 1 Jθ = [1/θ, θ] .
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Let also,

Γ = (Γ1 + Γ2)
−1 ,

Θ0(θ) = (Θ1,0(θ) +Θ2,0(θ))
−1 if θ > 0,

Θ∞(θ) = (Θ1,∞(θ) +Θ2,∞(θ))−1 if θ > 1,

where

Γ1 = sup
t>0

(
e−kt
∫+∞
0

G(t, s)φ(s)ds

)
,

Γ2 = sup
t>0

(
e−kt
∫+∞
0

G̃(t, s)φ(s)ds

)
,

Θ1,0(θ) = sup
t>0

(
e−kt
∫θ
0

G(t, s)φ(s)e−ksγ (s)ds

)
,

Θ2,0(θ) = sup
t>0

(
e−kt
∫θ
0

G̃(t, s)φ(s)e−ksγ (s)ds

)
,

Θ1,∞(θ) = sup
t>0

(
e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksγ (s)ds

)
,

Θ2,∞(θ) = sup
t>0

(
e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksγ (s)ds

)
,

and notice that Remark 3 guarantees that the constants Γ1 and Γ2 are finite.

Theorem 1 Assume that Hypothesis (6) holds and one of the following con-
ditions

f0 < Γ, Θ∞(θ) < f∞ (θ) for some θ > 1 (7)

f∞ < Γ, Θ0(θ) < f0 (θ) for some θ > 0 (8)

is satisfied. Then the bvp (5) admits at least one positive solution.

Remark 4 For the particular case where f(t, u, v) =
(
e−kt(u+ v)

)σ
with σ >

0 and σ 6= 1, we have f0 = 0 and f∞ (θ) = +∞ for all θ > 0 if σ > 1, and
f∞ = 0 and f0 (θ) = +∞ for all θ > 0 if σ < 1. Hence, Conditions (7) and
(8) in Theorem 1 correspond to the superlinear case and the sublinear case of
the nonlinearity f, respectively.
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2 Example

Consider the case of the bvp (5) where φ(t) = e−αt, α > 0 and

f(t, u, v) = A

(
u+ v

ekt + u+ v

)p
+ B

(
u+ v

ekt

)q
,

with A,B > 0, p ≤ 1 and q ≥ 1.
Thus, for all t,w, z > 0 we have

f(t, ektw, ektz) = A

(
w+ z

1+w+ z

)p
+ B (w+ z)q ,

and if |(w, z)| = w+ z < R, then

f(t, ektw, ektz) = A

(
w+ z

1+w+ z

)p
+ B (w+ z)q ≤ ΨR (w, z) ,

where

ΨR (w, z) =

{
ARp + BRq if p ≥ 0,
A (w+ z)p (1+ R)−p + BRq if p < 0.

Thus, if p ≥ 0 then

lim
s→+∞φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= (ARp + BRq) lim

s→+∞ e−αs = 0,∫+∞
0

φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds =

ARp + BRq

α
<∞,

and if p < 0 then

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= BRqe−αs+

A (1+ R)−p (k∗R)p e−(α+pk)s
(
1− e−ks

)p
ρ(s),

where

ρ(s) =

(
1

3k

(
1− e−ks

)(
2+ e−ks

)
+ e−ks

(
1+ e−ks

))p
satisfies (

max

(
2,
2

3k

))p
≤ ρ(s) ≤

(
min

(
2,
2

3k

))p
.

Therefore, we have

lim
s→+∞φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= 0 if and only if α > −pk
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and ∫+∞
0 φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds <∞ if and only if

α > −pk and p > −1.

Straightforward computations lead to

f∞ = f∞ (θ) = f∞ =

{
+∞ if q > 1,

B if q = 1,
for all θ > 1

f0 = f0 (θ) = f0 =


+∞ if p < 1,

A if p = 1 < q,
A+ B if p = q = 1,

for all θ > 0.

We conclude from Theorem 1 and all the above calculations that this case
of the bvp (5) admits a positive solution in each of the following situations:

1. p = 1, q = 1, B < Γ and A+ B > Θ0 (θ) for some θ > 0,

2. p = 1, q > 1, and A > Θ0 (θ) for some θ > 0,

3. p ∈ [0, 1) , q = 1 and B < Γ,

4. p ∈ (−1, 0) , q = 1, B < Γ and α > −pk.

3 Abstract background

Let (E, ||.||) be a real Banach space. A nonempty closed convex subset C of E
is said to be a cone in E if C ∩ (−C) = {0E} and tC ⊂ C for all t ≥ 0.

Let Ω be a nonempty subset in E. A mapping A : Ω → E is said to be
compact if it is continuous and A (Ω) is relatively compact in E.

The main tool of this work is the following Guo-Krasnoselskii’s version of
expansion and compression of a cone principal in a Banach space.

Theorem 2 Let P be a cone in E and let Ω1,Ω2 be bounded open subsets of
E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : P ∩ (Ω2\Ω1) → P is a compact mapping
such that either

1. ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω2, or

2. ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2\Ω1).
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4 Fixed point formulation

In all this paper, we let

E = {u ∈ C1(R+,R) : limt→+∞ e−ktu(t) = 0, limt→+∞ e−ktu′(t) = 0}.
Endowed with the norm ‖u‖ = ‖u‖k+‖u′‖k where ‖u‖k = supt≥0

(
e−kt|u(t)|

)
,

E becomes a Banach space.
The following lemma is an adapted version for the case of the space E of

Corduneanu’s compactness criterion ([5], p. 62). It will be used in this work
to prove that some operator is completely continuous.

Lemma 1 A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E,

(b) the sets {u : u(t) = e−ktx(t), x ∈M} and {u : u(t) = e−ktx′(t), x ∈M}
are locally equicontinuous on [0,+∞), and

(c) the sets
{
u : u(t) = e−ktx(t), x ∈M

}
and
{
u : u(t) = e−ktx′(t), x ∈M

}
are equiconvergent at +∞.

In all this work, P denotes the cone in E defined by

P =
{
u ∈ E : u′(t) ≥ γ̃(t)||u|| and u(t) ≥ γ(t)||u|| for all t > 0

}
.

Let G, G̃ : R+ × R+ → R+ be the functions defined by

G(t, s) =
1

k2

{
e−ks (cosh (kt) − 1) if t ≤ s,
−e−kt sinh (ks) +

(
1− e−ks

)
if s ≤ t,

G̃(t, s) =
∂G

∂t
(t, s) =

1

k

{
e−ks sinh (kt) if t ≤ s,
e−kt sinh (ks) if s ≤ t.

Lemma 2 The functions G and G̃ satisfy:

(a) For all t, s ∈ R+ we have G(t, s) ≥ 0 and G̃(t, s) ≥ 0.

(b) The functions G and G̃ are continuous and for all s ≥ 0, we have

G(0, s) = G̃(0, s) = 0. (9)
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(c) For all t, s ≥ 0, we have

G(t, s) ≤ 1

k2
(1− e−ks) ≤ 1

k2
, G̃(t, s) ≤ G̃(s, s) ≤ 1

2k
.

(d) For all s, t, τ ≥ 0, we have

G̃(t, s)e−kt ≥ γ1(t)G̃(τ, s)e−kτ.

(e) For all t2, t1 ≥ 0, we have∣∣∣e−kt2G(t2, s) − e−kt1G(t1, s)∣∣∣ ≤ 3

2k
|t2 − t1| (10)∣∣∣e−kt2G̃(t2, s) − e−kt1G̃(t1, s)∣∣∣ ≤ |t2 − t1| (11)

Proof. Assertions (a), (b) and (c) are easy to prove, Assertion (d) is proved
in [8]. Assertion (e) is obtained by the mean value theorem. �

Lemma 3 Assume that Hypothesis (6) holds, then there exists a continuous
operator T : P r {0}→ P such that for all r, R with 0 < r < R, T(P ∩ (B(0, R)r
B(0, r))) is relatively compact and fixed points of T are positive solutions to the
bvp (5).

Proof. The proof is divided into four steps.
Step 1. In this step we prove the existence of the operator T. To this aim

let u ∈ P r {0} . By means of Hypothesis (6) with R = ‖u‖, for all t > 0 we
have∫+∞
0

G(t, s)φ (s) f(s, u(s), u′(s))ds

≤ 1

k2

∫+∞
0

φ (s) f
(
s, u(s), u′(s)

)
ds

=
1

k2

∫+∞
0

φ (s) f
(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ 1

k2

∫+∞
0

φ (s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞

and∫+∞
0

G̃(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds ≤ 1

2k

∫+∞
0

φ(s)f
(
s, u(s), u′(s)

)
ds
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≤ 1

2k

∫+∞
0

φ(s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞.

Thus, let v and w be the functions defined by

v(t) =

∫+∞
0

G(t, s)φ (s) f(s, u(s), u′(s))ds

w(t) =

∫+∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds.

Since for all t > 0,

v(t) = −
e−kt

k2

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+
1

k2

∫ t
0

(1− e−ks)φ (s) f(s, u(s), u′(s))ds

+
cosh(kt) − 1

k2

∫ t
0

e−ksφ (s) f(s, u(s), u′(s))ds,

we see that v is differentiable on R+ and for all t ≥ 0,

v′(t) =
e−kt

k

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f(s, u(s), u′(s))ds

=

∫+∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds = w(t)

with w continuous on R+.

At this stage we have proved that v belongs to C1(R+,R) and we need to
prove that v ∈ E. Thus, we have to show that limt→+∞ e−ktv(t) = limt→+∞
e−ktv′(t) = 0. Clearly for all t > 0, v(t), v′(t) > 0 and we have

e−ktv(t) = e−kt
∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds

≤ e
−kt

k2

∫+∞
0

φ (s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds

and

e−ktv′(t) = e−kt
∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds
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≤ e
−kt

2k

∫+∞
0

φ(s)ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds.

The above two estimates prove that limt→+∞ e−ktv(t) = limt→+∞ e−ktv′(t) =
0.

Now for all t, τ > 0, we have from Assertion (c) in Lemma 2

v′(t) = ekt
∫+∞
0

e−ktG̃(t, s)f
(
s, u(s), u′(s)

)
ds

≥ ektγ1(t)
∫+∞
0

e−kτG̃(τ, s)f
(
s, u(s), u′(s)

)
ds

= ektγ1(t)e
−kτv′(τ).

Passing to the supremum on τ, we obtain

v′(t) ≥ ektγ1(t)
∥∥v′∥∥

k
for all t > 0. (12)

Since for all t > 0

v(t) =

∫ t
0

ekξ
(
e−kξv′(ξ)

)
dξ ≤

∫ t
0

ekξdξ
∥∥v′∥∥

k
≤ e

kt

k

∥∥v′∥∥
k
,

we have ∥∥v′∥∥
k
≥ k ‖v‖k . (13)

Therefore, (12) Combined with (13) leads to

v′(t) ≥ kektγ1(t)
∥∥v′∥∥

k
for all t > 0,

then to

v′(t) ≥ γ̃(t) ‖v‖ for all t > 0. (14)

Integrating (14), yields v(t) ≥ γ(t) ‖v‖ for all t > 0.
Thus, we have proved that v ∈ P and the operator T : P r {0} → P where

for u ∈ P r {0}

Tu(t) =

∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds,

is well defined.
Step 2. In this step we prove that the operator T is continuous. Let (un)

be a sequence in P r {0} such that limn→∞ un = u∞ in E with u∞ in P r {0}
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and let R > r > 0 be such that (un) ⊂ B(0, R)r B(0, r). If ΨR is the function
given by Hypothesis (6), then for all n ≥ 1 we have

‖Tun − Tu∞‖k = sup
t≥0

|Tun (t) − Tu∞ (t)|

≤ 1

k2

∫+∞
0

φ(s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣ds
and∥∥ (Tun)′ − (Tu∞)′

∥∥
k
= sup

t≥0

∣∣ (Tun)′ (t) − (Tu∞)′ (t)
∣∣

≤ 1

2k

∫+∞
0

φ (s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣ds.
Because of∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣→ 0, as n→ +∞
for all s > 0 and

φ(s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣
≤ 2φ (s)ΨR

(
re−ksγ(s), re−ksγ(s)

)
with

∫+∞
0 φ (s)ΨR

(
re−ksγ(s), re−ksγ(s)

)
ds < ∞, the Lebesgue dominated

convergence theorem guarantees that limn→∞ ‖Tun − Tu∞‖ = 0. Hence, we
have proved that T is continuous.
Step 3. In this step, we prove that for R > r > 0, T

(
P ∩

(
B(0, R)r B(0, r)

))
is relatively compact. Set Ω = P ∩

(
B(0, R)r B(0, r)

)
and let Φr,R be defined

by

Φr,R(s) = ΨR

(
re−ksγ(s), re−ksγ(s)

)
where ΨR is the function given by Hypothesis (6). For all u ∈ Ω, we have

‖Tu‖ ≤
(
1

k2
+
1

2k

) ∫+∞
0

φ (s)Φr,R(s)ds <∞,
proving that TΩ is bounded in E.

Now, let t1, t2 ∈ [η, ξ], for all u ∈ Ω, we have from (10) and (11) the
estimates

|e−kt1Tu(t1) − e
−kt2Tu(t2)| ≤

∫+∞
0

|e−kt1G(t1, s) − e
−kt2G(t2, s)|φ (s)Φr,R(s)ds
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≤ 3

2k
|t2 − t1|

∫+∞
0

φ (s)Φr,R(s)ds

and

|e−kt1(Tu)′(t1)−e
−kt2(Tu)′(t2)| ≤

∫+∞
0

|e−kt1G̃(t1, s)−e
−kt2G̃(t2, s)|φ(s)Φr,R(s)ds

≤ |t2 − t1|

∫+∞
0

φ (s)Φr,R(s)ds.

Proving the equicontinuity of TΩ on bounded intervals.
For all u ∈ Ω and t > 0, we have

|e−ktTu(t)| ≤ e
−kt

k2

∫+∞
0

φ (s)Φr,R(s)ds

and

|e−kt (Tu)′ (t)| ≤ e
−kt

k

∫+∞
0

φ (s)Φr,R(s)ds.

Thus, the equiconvergence of TΩ follows from the fact that limt→∞ e−kt = 0.
In view of Lemma 1, TΩ is relatively compact in E.
Step 4. In this step we prove that fixed points of T are positive solutions

to the bvp (5). Let u ∈ Pr {0} be a fixed point of T , then for all t > 0 we have

u(t) =

∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds and

u′(t) =

∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds.

These with (9) lead to u(0) = u′(0) = 0.
Differentiating twice in

u′(t) =

∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds

=
e−kt

k

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds,

we see that −u′′′ (t) + ku′(t) = φ (t) f(t, u(t), u′(t)) for all t > 0.
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It remains to prove that limt→+∞ u′(t) = 0. We have

u′(t) =
1

kekt

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds.

By means of Hypothesis (6) with R = ‖u‖ and the L’Hopital’s rule, we obtain

lim
t→+∞ 1

kekt

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

≤ lim
t→+∞ 1

kekt

∫ t
0

sinh(ks)φ (s)ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds

= lim
t→+∞ sinh(kt)

kekt
φ (t)ΨR

(
Re−ktγ(t), Re−ktγ(t)

)
ds = 0.

Also, we have

sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds

≤ sinh(kt)e−kt

k

∫+∞
t

φ (s) f
(
s, u(s), u′(s)

)
ds→ 0 as t→ +∞.

The above calculations show that limt→+∞ u′(t) = 0, completing the proof
of the lemma. �

5 Proof of Theorem 1

Step 1. Existence in the case where (7) holds
Let ε > 0 be such that (f0 + ε) < Γ . For such a ε, there exists R1 > 0 such

that f(t, ektw, ektz) ≤ (f0 + ε)(w + z) for all w, z with |(w, z)| ≤ R1 and let
Ω1 = {u ∈ E, ‖u‖ < R1} .

Therefore, for all u ∈ P ∩ ∂Ω1 and all t > 0, we have

e−ktTu(t) = e−kt
∫+∞
0

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤
(
f0 + ε

)
e−kt
∫+∞
0

G(t, s)φ(s)e−ks
(
u(s) + u′(s)

)
ds

≤ ‖u‖
(
f0 + ε

)
e−kt
∫+∞
0

G(t, s)φ(s)ds ≤ Γ1
(
f0 + ε

)
‖u‖ ,
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leading to

‖Tu‖k = sup
t>0

(
e−ktTu(t)

)
≤
(
f0 + ε

)
Γ1 ‖u‖ . (15)

Similarly, we have

e−kt (Tu)′ (t) = e−kt
∫+∞
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤
(
f0 + ε

)
e−kt
∫+∞
0

G̃(t, s)φ(s)e−ks
(
u(s) + u′(s)

)
ds

≤ ‖u‖
(
f0 + ε

)
e−kt
∫+∞
0

G̃(t, s)φ(s)ds

≤
(
f0 + ε

)
Γ2 ‖u‖ ,

leading to ∥∥(Tu)′∥∥
k
= sup

t>0

(
e−kt (Tu)′ (t)

)
≤
(
f0 + ε

)
Γ2 ‖u‖ . (16)

Summing (15) with (16), we obtain

‖Tu‖ ≤ ‖u‖
(
f0 + ε

)
Γ−1 ≤ ‖u‖ .

Now, suppose that f∞ (θ) > Θ∞(θ) for some θ > 1 and let ε > 0 be such
that
(f∞ (θ) − ε) > Θ∞(θ). There exists R̃2 > R1 such that f(t, ektw, ektz) >
(f∞ (θ) − ε) (w+ z) for all t ∈ Jθ and all w, z with |(w, z)| ≥ R̃2. Let γθ =
min
{
γ(s)e−ks : s ∈ Jθ

}
, R2 = R̃2/γθ and Ω2 = {u ∈ E : ‖u‖ < R2} . For all

u ∈ P ∩ ∂Ω2, and all t > 0 we have

‖Tu‖k ≥ e
−ktTu(t) ≥ e−kt

∫θ
1/θ

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksγ (s)ds
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and

∥∥(Tu)′∥∥
k
≥ e−kt

∫θ
1/θ

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksγ (s)ds.

The above estimates lead to

‖Tu‖k ≥ (f∞ (θ) − ε)Θ1,∞(θ) ‖u‖ ,∥∥(Tu)′∥∥
k
≥ (f∞ (θ) − ε)Θ2,∞(θ) ‖u‖

then to

‖Tu‖ ≥ (f∞ (θ) − ε) (Θ∞(θ))−1 ‖u‖ ≥ ‖u‖ .

We deduce from Assertion 1 of Theorem 2, that T admits a fixed point u ∈ P
with
R1 ≤ ‖u‖1 ≤ R2 which is, by Lemma 3, a positive solution to Problem (5).

Step 2. Existence in the case where (8) holds
Suppose that f0 (θ) > Θ0(θ) for some θ > 0 and let ε > 0 be such that

(f0 (θ) − ε) > Θ0(θ). There exists R1 such that f(t, ektw, ektz) > (f0 (θ) −
ε) (w+ z) for all w, z with |(w, z)| ≤ R1. Let Ω1 = {u ∈ E : ‖u‖ < R1} , for all
u ∈ P ∩ ∂Ω1 and all t > 0, we have

‖Tu‖k ≥ e
−ktTu(t) ≥ e−kt

∫θ
0

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ) − ε)e−kt
∫θ
0

G(t, s)φ(s)e−ksγ (s)ds
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and

∥∥(Tu)′∥∥
k
≥ e−ktTu(t) ≥ e−kt

∫θ
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G̃(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ) − ε)e−kt
∫θ
0

G̃(t, s)φ(s)e−ksγ (s)ds.

The above estimates lead to

‖Tu‖k ≥
(
f0 (θ) − ε

)
Θ1,0(θ) ‖u‖ ,∥∥(Tu)′∥∥

k
≥
(
f0 (θ) − ε

)
Θ2,0(θ) ‖u‖

then to

‖Tu‖ ≥
(
f0 (θ) − ε

)
(Θ0(θ))

−1 ‖u‖ ≥ ‖u‖ .

Let ε > 0 be such that (f∞ + ε) < Γ, there exists Rε > 0 such that

f(t, ektw, ektz) ≤ (f∞ + ε)(w+ z) + ΨRε (w, z) , for all t,w, z > 0,

where ΨRε is the functions given by Hypothesis (6) for R = Rε.
Let

Φε (t) = ΨRε
(
Rεe

−ksγ(s), Rεe
−ksγ̃(s)

)
R̃2 =

2ΨεΓ

Γ − (f∞ + ε)

with Φε = supt≥0

(
e−kt
∫+∞
0 G(t, s)Φε (s)ds

)
and notice that Γ−1(f∞ + ε)R+ 2Φε ≤ R for all R ≥ R̃2.

Let R2 > max(R1, R̃2, Rε) and Ω2 = {u ∈ E, ‖u‖ < R2} . For all u ∈ P ∩ ∂Ω2
and all t > 0, we have

e−ktTu(t) =

∫+∞
0

G(t, s)φ(s)f
(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ e−kt
∫+∞
0

G(t, s)φ(s)
(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds
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≤ (f∞ + ε) ‖u‖ e−kt
∫+∞
0

G(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖ Γ1 + Ψε,

leading to
‖Tu‖k ≤ (f∞ + ε) ‖u‖ Γ1 + Ψε. (17)

Similarly, we have

e−kt (Tu)′ (t) =

∫+∞
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ e−kt
∫+∞
0

G̃(t, s)φ(s)
(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds

≤ (f∞ + ε) ‖u‖ e−kt
∫+∞
0

G̃(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖ Γ2 + Ψε,

leading to ∥∥(Tu)′∥∥
k
≤ (f∞ + ε) Γ2 ‖u‖+ Ψε. (18)

Summing (17) with (18), we obtain

‖Tu‖ ≤ (f∞ + ε) Γ−1 ‖u‖+ 2Ψε ≤ ‖u‖ .

We deduce from Assertion 2 of Theorem 2, that T admits a fixed point u ∈ P
with R1 ≤ ‖u‖ ≤ R2 which is, by Lemma 3, a positive solution to Problem (5).

Thus, the proof of Theorem 1 is complete.

6 Comments

1. Notice that the obtained positive solution in Theorem 1 is nondecreasing
and bounded. Indeed, if u ∈ P r {0} is a fixed point of T with ‖u‖ = R,
then for all t > 0

u′(t) = (Tu)′ (t) =

∫+∞
0

G̃(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds > 0

and Hypothesis (6) leads to

u(t) = Tu(t) =

∫+∞
0

G(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds
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≤
∫+∞
0

G(t, s)φ(s)ΨR

((
e−ksu(s)

)
,
(
e−ksu′(s)

))
ds

≤ 1

k2

∫+∞
0

φ(s)ΨR(Re
−ksγ(s), Re−ksγ̃(s))ds <∞.

2. From the above comment arise the following question. Why we looked
for solutions in the space E instead of looking for them in the natural
space
F =
{
u ∈ C1 (R+) : max (supt>0 |u(t)| , supt>0 |u

′(t)|) <∞}?
The answer is: There is no cone in F where we can realize the inequality
‖Tu‖ ≥ ‖u‖ in Theorem 2.

3. Notice that for θ > 1, Γ < Θ0(θ) < Θ∞(θ) and let the interval I =
(Γ,Θ∞(θ)). In the particular case where the limits

f0 = lim
|(w,z)|→0

f
(
t, ektw, ektz)

w+ z
, f∞ = lim

|(w,z)|→0
f(t, ektw, ektz)

w+ z

exist, then Theorem 1 claims that the bvp (5) admits a positive solution
if f0 and f∞ are oppositely located relatively to the interval I, that is the
ratio

(
f(t, ektw, ektz)/w+ z

)
crosses the interval I. Two questions arise

from this observation; what happens if
(
f(t, ektw, ektz)/w+ z

)
> Θ∞(θ)

or
(
f(t, ektw, ektz)/w+ z

)
< Γ for all t,w, z > 0?

The second question is: are the constants Γ,Θ0(θ), Θ∞(θ) the best ones?
In an other manner, does exist two positive constants α and β with Γ <
α < β < Θ0(θ) such that if f0 and f∞ are oppositely located relatively
to the interval (α,β), then the bvp (5) admits a positive solution?

4. Let p > 1 and consider the case where E is equipped with the norm

‖u‖p = p

√
‖u‖pk + ‖u‖

p
k. In this case, under Hypothesis (6), we prove

by the same arguments that the bvp (5) admits a positive solution if
f0 < Γp < Θ

p∞(θ) < f∞ (θ) for some θ > 1 or f∞ < Γ < Θ
p
0(θ) < f0 (θ)

for some θ > 0, where

Γp = ((Γ1)
p + (Γ2)

p)
−1/p

,

Θ
p
0(θ) = ((Θ1,0(θ))

p + (Θ2,0(θ))
p)

−1/p
for θ > 0,

Θ
p∞(θ) = ((Θ1,∞(θ))p + (Θ2,∞(θ))p)

−1/p
for θ > 0.

Noticing that Γp > Γ, Θ
p
0(θ) > Θ0(θ) and Θp∞(θ) > Θp,∞(θ) we under-

stand that the problem posed in the above comment is a serious problem.
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