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Abstract. We show that the sum of two intervals in an ordered dense
Abelian group is also an interval such that the endpoints of the sum
are equal to the sums of the endpoints. We prove analogous statements
concerning to the product of two intervals.

1 Introduction

It is well known from elementary real analysis that if a, b, ¢, d are real numbers
with a < b and ¢ < d, then

la,b[+]c,d[=]a+c,b+d[, (1)
moreover, if 0 < a<band 0 <c < d, then
]aab[']cyd[:]ac)bd[- (2)

The main purpose of this article is to show that equations (1), (2) remain valid
in more general settings. Our references to ordered structures are [4], [8], [12],
[13], [18].
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Now, we shall give a sort list of the necessary concepts and notations:

We say that X = X(<) is a partially ordered set or a poset if X is a set and
< is a relation on X such that it is reflexive, symmetric and transitive.

A poset X = X(<) is said to be ordered or a loset, if either x <y or y < x
for all x,y € X.

Let X = X(*) be a groupoid in the sense that X is a nonempty set, * is a
binary operation on X. Then for any A, B C X and a € X define

AxB:={axbeX]|aeA,be B},
ax*B:={a}*B.

Let X = X(<) be a poset and a ,b € X such that a < b, that is, a < b but
a # b. The open interval is defined by

la,b[:={x € X| a < x and x < b}.

The a and b are the endpoints of the interval Ja, b[. Similarly, we can define
la,bl i={x e X|a<x<b} [aqbl:={xeX|a<x<b} [abl:={xeX|
a<x<bh

A poset X = X(<) is said to be dense (in itself) if ]x,y[ # 0 for all x,y € X
with x <y.

An ordered group G = G(+,<) is a group together with an order that
is compatible with the group operation. A set of all positive elements of an
ordered group G is denoted by G, that is, G4 :={x € G | x > 0}.

An ordered group G = G(+, <) is said to be Archimedean ordered if for all
X, Y € G, there exits a positive integer n such that nx :=x+---+x > y.

An ordered field F = F(+,+,<) is a field (the operation - is commutative)
together with an order that is compatible with the field operations, in the
sense, that if x <y, then x +z <y + z for all x,y,z € F and if x <y, then
xz<yzforallx,y e Fand ze F, :={x € F|x > 0}.

The foundations of the so-called interval arithmetic were laid by E. Moore,
the first appearance of this topic was in 1959 [14], see also [15], [16] and [1].
Now, we shall show the Moore’s formulas

[a,al + [b,b] = [a+ b, a+ b],

[a,a) — m@] —=[a—b,a—bl, B - 5
[a,a] - [b, b] = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)],
la,al/[b,b] =[a,a] - [1/b,1/b] 0 ¢ [b,D]

forall a,a, b, beR witha<aandb <b.
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Due to [9] the results of Moore was extended to open ended unbounded
intervals by R. J. Hanson (1968) [5], W. Kahan (1968) [10], E. Davis (1987)

[2].
The famous Kohan-Novoa-Ratz arithmetic concerning to the division by an
interval coutaining zero can be found in [11]:

a-[1/b,1/b] for 0 ¢ b
[—o00,+o0] for 0 caand 0 €b
[a/b,+oo] fora<O0and b <b=
[—o0,a/b] U [a/b, +oo] fora<0and b <0<

a/b =
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o
3
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o)
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o
)
=
o,
o
(on
A
|l o <l o o

[—o00,a/b] for 0 <aand b < b=
[—o0,a/b]lU[a/b,+oo] for 0<aandb<0<b

la/b,+o00] fora<0and 0=b < b
) for0¢aand 0 €b

for all closed ended bounded interval a, b of the real line.
An other way to extend the results of E. Moore that is to use the set R =
R U {—00, +00} with uppear additions of J. Moreau [17], that is,

+00 + (+00) = 4+0c0 and + oo+ (—o0) = +oo.

For example, in [3] can be found that

Ix 41y, +ool =x, col+]y, +ool (x,y € R),
Ix +y,+o0] = [x,00] + [y, +00] (x,y € R),
[—00,x + Y[ = [—00, X[+] — 00, Y] (x,y € RU{—o0} or RU{+400}),
[—o0,x + Y] = [—o0 ]+[—oo,y} (x,y € RU{—o00} or RU{400}).
In [11] the author use intervals X = [X,X] where X is the vector or matrix

whose components are lower bounds of corresponding components of X, and
X is the vector or matrix whose components are upper bounds of corresponding
components of X.

In our former paper [6] we have investigated the sums and the products of
intervals in ordered semigroups.

In our present paper we investigate the sums of open ended bounded inter-
vals in ordered groups and the products of open ended buonded intervals in
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ordered fields. To obtained results will be used to extend additive and loga-
rithmic functions [7].

Cases that arise when proving results for a product of two intervals a and
b can be grouped according to the following criteria: the point O is an interior
point neither of a nor of b; the point 0 is an interior point either of a or of b;
the point 0 is an interior point both of a and b.

Finally, it is worth mentioning that if X = X(<) is a loset, Ja,b[ C X and
c € ]a, b, then

la,bl=]a,c]U]c, bl. (5)

If X = X(<) is only a poset but is not a loset, then (5), in general, is not true.
Thus, our applied arguments lose their validity on ordered structures in which
the order is not linear.

2 Sum of intervals in ordered dense Abelian groups

In this section G = G(+,<) is an ordered dense Abelian group, a, a, b, b

v € G witha<daandb <b.
The following Proposition is trivial.

Proposition 1 vy +]a,al =]y +a,y +al, and y +]a,al =]y +a,vy +al.
Proposition 2 If «, B € G, then ]0,0c + B[ C 10, o[+ 10, B[.

Proof. Let x € ]0, o« + BI[. Since 0 < a < & + 3 there are two cases:

1. Assume that x € ]0, . Since x > 0 and 3 > 0 there exists an y € G such
that y < x and y < f3. Since y < x < x+y thus we have that 0 < x—y < x < «
whence we obtain that

x=(x—y)+yelo,al+]0,BI.

2. Assume that x € Ja, x + B[. Then by Proposition 1. x — « € ]0, B[ thus
there exists an element y € G, such that y < f — (x — «) and y < «. Since
Yy < & < o+ y thus we have that 0 < « —y < . Since y < f — (x — «) thus
we have that 0 < x —ax <y + (x —a) =x+y — « < 3. Thus

x=(x—y)+(x+y—oa) €]0,a[+]0,B[.

The following Proposition is trivial.
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N

Ja+b,a+bl.

Proposition 3 ]q, [—i—]b B[
b,

Theorem 1 ]a,al + ] b

—

=]a+b,a+bol.

Proof. By Proposition 3 it is enough to show that
Ja+b,a+b[Cla,al+ |b,bl.

By Proposition 1. and by Proposition 2. we have that

Ja+b,a+b[=(a+b)+]0,(@a—a)+(b-Db)[C
(a+]0,a—al)+ (b+]0,b—b]) =
Ja,al+ ]b,b]

The following Theorem can be easily obtained by simply calculation.

Theorem 2 If G = G(+,-,<) is an Archimedean ordered group, then the
following assertions are equivalent:

1. G is dense.
2. la,al+b,bl=la+b,a+bl foralla,a@, b, be G witha<aandb <b.

3. G(+,<) is not isomorphic to the ordered group Z = Z(+,<) (which is
the group of all integers).

3 The products of intervals in ordered fields

In this section F = F(+,-,<) is an ordered field, a, @, b, b € F with a < @
and b < b. Define the intervals a and b by

=la,al and  b:=]b,b][.

As a temporary device, use the notation for any open ended bounded interval

x that
0 <x, if 0 <x for all x € x,

x < 0, if x < 0 for all x € x.
Proposition 4 If «, 3, v € F with o < 3, then

_ ] WByyad, iy <0;
vBl= O e
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Proof. If y > 0 and x € 'y, yBI[, then yo < x <y thus a < % < 3 whence
X
x=v-—€v-lBl
Y

The converse inclusion is trivial.
The case Y < 0 can be proved analogously. O

The following Proposition is trivial.
Proposition 5 [f0 <a and 0 <b, thena-b C ]Lb,ﬁg[.
Proposition 6 If0 <a and 0 < b, then ]afb,ﬁB[ Ca-b.

Proof. Let x € ]afb, HB[. There are two cases:
1. If either a =0 or b =0, say a = 0, then there exists an ¢ > 0 such that

£<B—%, and e<b—b.
Since 0 < £<B—% we have that 0 < ﬁ < @. Since 0 < ¢ < b—Db we have

that b < b — ¢ < b. Thus we obtain that

X
X = =
b—¢

-(b—¢) €la,al-]b,b].

2. If a # 0 and b # 0, then it is easy to see that ab < ab < @b thus there is
two sub-cases: B
a. If x € ]afb, gb], then there exists an ¢ > 0 such that

e<a—a and < -——a.

o' | =

Since0<s<ﬁ—gthuswehavethatg<g—|—s<ﬁandsince0<s<%—g

hence b < 2 < b. Thus we obtain that

x=(a+e)-

Q+ c € ]Qaa[']bag['

b. If x € ]QB, EB[, then there exists an ¢ > 0 such that
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Since 0 < £<B—% we have that a < ﬁ < aandsince0 < e <b—D> we
have that b < b — ¢ < b. Thus we obtain that

X _ . _
x=z—-(b—¢claal-|bb[.

0

As an immediate consequence of Propositions 4., 5. and 6. we can state that
Theorem 3 IfO0<aand 0 <b, thena-b= ]Lb,ﬁg[.

First, we investigate the case, when the point 0 is an interior point neither
of the interval a nor of the interval b.

Theorem 4 1. If0<a and 0 <b, then a-b =]ab,ab|.
2. Ifa<0 andb <0, thena'b:]ﬁg,@[.
3. Ifa< 0 and 0 <b, thena-b:]gg,ﬁh[.
4. Ifb< 0 and 0 < a, thena'b:]ﬁb,gg[.

The following figures illustrate some cases of the Theorem.

e = I =T T

Proof.
1. Is evident by Theorem 3.
2. By Proposition 4. and by assertion 1. we obtain that

3. By Proposition 4. and by assertion 1. we obtain that

]a)a[']b)g[ = (_1)]_6)_(1[' ]D)E[ = (_1)]_ab>_gg[ = ]Q >af[°

4. Is an immediate consequence of assertion 3. U

Now we investigate the case, when the point 0 is an interior point either of
the interval a or of the b.
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Theorem 5 1. If0 €a and 0 <Db, thena-b:]Lb,ﬁB[.
2. If0€aandb <0, then a-b =]ab, abl.
3. If0eband 0 < a, thena-b:]Lb,ﬁE[.
4. If0eb and a <0, thena-b:]gi, b[.

The following figures illustrate some cases of the Theorem.

Proof.
1. By assertions 2. and 1. of Theorem 4. we obtain that
Ja, al- b, b[ = (la,0[ U{0}U10,al) - |b, B[ =
Ja,0[- ]b, B[ U{0} U0, al - ]b, B[ =
]ab,0[U{0}U]0,ab| =
ab, abl.
2. By assertions 2. and 4. of Theorem 4. we obtain that
la,al-]b,b[ = (Ja,al- u{o}ulo,al) - Jb,b[ =
(]Q)O[ ° ]h)ED U {0} U (]O)a[ : ]h)BD =
10,ab[U{0}UJab, 0l =
,abl.

=2

la

3. Can be obtained from assertion 1. by changing the roles of a and b.
4. Can be obtained from assertion 2. by changing the roles of a and b. O

Finally, we investigate the case, when the point 0 is an interior point both
of ]a, al and ]Q,b[.

Theorem 6 IfO€anb, thena-b= ]min {gﬁ,ﬁb} , max {Lb,ﬁg} [

The following figure illustrates the Theorem.
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Proof. By Theorem 5. we obtain that

Ja,al-]b,b[ =1a,al- (Jb,0[U{0}U]0,b]) =
Ja,al-]b,0[U{0}Ula,al-]0,b[ =
Jab, ab[U{0}U ]ab,ab[ =
]min {QE,HQ} , max {Lb,ﬁg}[.

g

Example 1 Let F = Q(v/2) equipped with the usuall field operations and or-
der. Leta:=]—1— \ﬁ, 1 +2ﬁ], b:=11 —Zﬁ,Z— V2], Calculate the product
a-b. Since

a-b=—-V2=-14142... and :_7
la-b|=3+2V2=44142... and T-b=-2+3V2=2242...,

thus by Theorem 6. we obtain that
a-b— [—7,3+2\f2[.

Problem 1 Check equation (4) for any ordered field F = F(+, -, <).
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