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Abstract. A rectifying curve in the Euclidean 4-space E4 is defined as
an arc length parametrized curve γ in E4 such that its position vector
always lies in its rectifying space (i.e., the orthogonal complement Nγ

⊥ of
its principal normal vector fieldNγ) in E4. In this paper, we introduce the
notion of an f-rectifying curve in E4 as a curve γ in E4 parametrized by its
arc length s such that its f-position vector γf, defined by γf(s) =

∫
f(s)dγ

for all s, always lies in its rectifying space in E4, where f is a nowhere
vanishing integrable function in parameter s of the curve γ. Also, we
characterize and classify such curves in E4.

1 Introduction

Let E3 denote the Euclidean 3-space. Let γ : I −→ E3 be a unit-speed curve
(parametrized by arc length s) with at least four continuous derivatives. It is
needless to mention that I denotes a non-trivial interval in R, i.e., a connected
set in R containing at least two points. For the curve γ in E3, we consider
the Frenet apparatus {Tγ, Nγ, Bγ, κγ, τγ}, where Tγ = γ ′ is the unit tangent
vector field of γ, Nγ is the unit principal normal vector field of γ obtained by
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normalizing the acceleration vector field T ′
γ, Bγ = Tγ×Nγ is the unit binormal

vector field of the curve γ so that the Frenet frame {Tγ, Nγ, Bγ} is positive
definite along γ having the same orientation as that of E4, and κγ : I −→ R is
at least twice differentiable function with κγ > 0, known as the curvature of
γ, and τγ : I −→ R is a differentiable function, called the torsion of the curve
γ. Then the Frenet formulae for the curve γ are given by ([1, 2]) T ′

γ

N ′
γ

B ′
γ

 =

 0 κγ 0

−κγ 0 τγ
0 −τγ 0

 Tγ
Nγ
Bγ

 .
The planes spanned by {Tγ, Nγ}, {Nγ, Bγ} and {Tγ, Bγ} are called the osculating
plane, the normal plane and the rectifying plane of the curve γ, respectively
(cf. [1, 2, 3]).

In the Euclidean 3-space E3, the notion of a rectifying curve was introduced
by B.Y. Chen in [3] as a tortuous curve whose position vector always lies in
the rectifying plane of the curve. That is, for a rectifying curve γ : I −→ E3,
the position vector of γ can be expressed as

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), s ∈ I,

for two unique smooth functions λ, µ : I −→ R.

Several characterizations and classification of the rectifying curves in E3
were studied in [3, 4, 5, 6]. Meanwhile, the notion of rectifying curves were
extended to several sorts of Riemannian and pseudo-Riemannian spaces. As
for example, many interesting characterizations and classification of rectifying
curves in the higher dimensional Euclidean spaces were studied in [7, 8], and
the same in Minkowski 3-space E31 were studied in [9, 10].

In [7], a rectifying curve in the Euclidean 4-space E4 was defined as a curve
γ : I −→ E4 parametrized by its arc length s such that its position vector
always lies in its rectifying space, i.e., in the orthogonal complement Nγ

⊥ of
its principal normal vector field Nγ. In collateral to this, in this paper, we
introduce the notion of an f-rectifying curve in E4 as a curve γ : I −→ E4
parametrized by its arc length s such that its f-position vector, denoted and
defined by γf(s) ··=

∫
f(s)dγ for all s ∈ I, always lies in its rectifying space.

Here f : I −→ R is a nowhere vanishing integrable function in arc length
parameter s of the curve γ. In this regard, let us mention that non-null and
null f-rectifying curves were investigated in Minkowski 3-space E31 [11, 12] and
null f-rectifying curves were explored in Minkowski space-time E41 [13].
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In the first section, we give requisite basic preliminaries and then introduce
the notion of f-rectifying curves in E4. Thereafter, the second section is devoted
to investigate some geometric characterizations of f-rectifying curves in E4. In
the concluding section, we attempt for some classification of f-rectifying curves
in terms of their f-position vectors in E4. Finally, we cite an example of an
f-rectifying curve lying wholly in E4. This is how this paper is organised.

2 Preliminaries

The Euclidean 4-space E4 is the four dimensional real vector space R4 equipped
with the standard inner product 〈· , ·〉 defined by

〈v,w〉 ··=
4∑
i=1

viwi

for all vectors v = (v1, v2, v3, v4), w = (w1, w2, w3, w4) ∈ R4. As usual, the
norm or length of a vector v = (v1, v2, v3, v4) ∈ R4 is denoted and defined by

‖v‖ ··=
√
〈v, v〉 =

√√√√ 4∑
i=1

v2i .

Let γ : J −→ E4 be an arbitrary smooth curve in E4 parametrized by t and γ ′

stands for its velocity vector field. If we change the parameter t by arc length
function s = s(t) based at some t0 ∈ J given by s(t) =

∫t
t0
‖γ ′(u)‖ du such

that 〈γ ′(s), γ ′(s)〉 = 1 for all possible s, then γ is a curve in E4 parametrized
by arc length s or a unit-speed curve in E4. We may assume that γ is at least
4-times continuously differentiable. Now, let Tγ, Nγ, Bγ1 and Bγ2 denote the
unit tangent vector field, the unit principal normal vector field, the unit first
binormal vector field and the unit second binormal vector field of the curve γ
in E4, respectively, so that for each s ∈ I, the set {Tγ(s), Nγ(s), Bγ1(s), Bγ2(s)}
forms an orthonormal basis for E4 at the point γ(s). Also, let κγ1, κγ2 and
κγ3 denote the first curvature, the second curvature and the third curvature of
the curve γ in E4, respectively. Thus

{
Tγ, Nγ, Bγ1, Bγ2

}
is the dynamic Frenet

frame along the curve γ having the same orientation as that of E4. Then the
Frenet formulae for the curve γ are given by ([14, 15])

T ′
γ

N ′
γ

Bγ
′
1

Bγ
′
2

 =


0 κγ1 0 0

−κγ1 0 κγ2 0

0 −κγ2 0 κγ3
0 0 −κγ3 0




Tγ
Nγ
Bγ1
Bγ2

 . (1)
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From the above formulae, it follows that κγ3 6≡ 0 if and only if the curve γ
lies wholly in E4. This is equivalent to saying that κγ3 ≡ 0 if and only if the
curve γ lies wholly in a hypersurface in E4 (cf. [14, 15]). We recall that the
hypersurface in E4 defined by

S3(1) ··=
{
v ∈ E4 : 〈v, v〉 = 1

}
is called the unit-sphere with centre at the origin in E4. We also recall that
the rectifying space of the curve γ is the orthogonal complement Nγ

⊥ of its
principal normal vector field Nγ defined by

Nγ
⊥ :=

{
v ∈ E4 : 〈v,Nγ〉 = 0

}
.

Consequently, Nγ
⊥ at each point γ(s) on γ is a three dimensional subspace of

E4 spanned by
{
Tγ(s), Bγ1(s), Bγ2(s)

}
.

3 f-rectifying curves in E4

As defined in [7], a unit-speed curve γ : I −→ E4 (parametrized by arc length
function s) is a rectifying curve if and only if its position vector always lies in
its rectifying space, i.e., if and only if its position vector can be expressed as

γ(s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for some differentiable functions λ, µ1, µ2 : I −→ R in parameter s, for each
s ∈ I. Now, for some nowhere vanishing integrable function f : I −→ R in
parameter s, the f-position vector of γ in E4 is denoted and defined by

γf(s) ··=
∫
f(s)dγ

for all s ∈ I. Here the integral sign is used in the sense that γf is an integral
curve of the vector field fTγ and after differentiating the previous equation we
find γ ′

f(s) = f(s)Tγ(s) for all s ∈ I. Keeping in mind this notion of position
vector of a curve in E4, we define an f-rectifying curve in E4 as follows:

Definition 1 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc
length function s) with Frenet apparatus {Tγ, Nγ, Bγ1, Bγ2, κγ1, κγ2, κγ3}. Also,
let f : I −→ R be a nowhere vanishing integrable function in parameter s with at
least twice differentiable primitive function F. Then γ is called an f-rectifying
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curve in E4 if its f-position vector γf always lies in its rectifying space in E4,
i.e., if its f-position vector γf in E4 can be expressed as

γf(s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s) (2)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are three unique smooth functions in
parameter s.

4 Some geometric characterizations of f-rectifying
curves in E4

In this section, we characterize unit-speed f-rectifying curves in E4 in terms
of their curvatures and components of their f-position vectors. First, in the
following theorem, we establish a necessary as well as sufficient condition for
a unit-speed curve in E4 to be an f-rectifying curve.

Theorem 1 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. Then, up to isometries of E4, γ is congruent
to an f-rectifying curve in E4 if and only if the following equation is satisfied:

d

ds

 d
ds

(
κγ1(s)
κγ2(s)

F(s)
)

κγ3(s)

+
κγ1(s)κγ3(s)

κγ2(s)
F(s) = 0 (3)

for all s ∈ I.

Proof. Let us first assume that γ : I −→ E4 be an f-rectifying curve having
nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then for some differentiable
functions λ, µ1, µ2 : I −→ R in parameter s, its f-position vector γf satisfies
equation (2). Differentiating (2) and then applying (1), we obtain

f(s)Tγ(s) = λ ′(s)Tγ(s) +
(
λ(s)κγ1(s) − µ1(s)κγ2(s)

)
Nγ(s) (4)

+
(
µ ′
1(s) − µ2(s)κγ3(s)

)
Bγ1(s)

+
(
µ ′
2(s) + µ1(s)κγ3(s)

)
Bγ2(s)

for all s ∈ I. Equating the coefficients from both sides of (4), we get
λ ′(s) = f(s),

λ(s)κγ1(s) − µ1(s)κγ2(s) = 0,

µ ′
1(s) − µ2(s)κγ3(s) = 0,

µ ′
2(s) + µ1(s)κγ3(s) = 0

(5)
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for all s ∈ I. From first three equations of (5), after some steps, we find

λ(s) = F(s),

µ1(s) =
κγ1(s)

κγ2(s)
F(s),

µ2(s) =
1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

) (6)

for all s ∈ I. Substituting (6) in the fourth one of (5), we obtain

d

ds

 d
ds

(
κγ1(s)
κγ2(s)

F(s)
)

κγ3(s)

+
κγ1(s)κγ3(s)

κγ2(s)
F(s) = 0

for all s ∈ I.
Conversely, we assume that γ : I −→ E4 is a unit-speed curve having nowhere

vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R is a nowhere vanishing
integrable function in parameter s with at least twice differentiable primitive
function F such that the equation (3) is satisfied.

Let us define a vector field V along γ by

V(s) = γf(s) − F(s)Tγ(s) −
κγ1(s)

κγ2(s)
F(s)Bγ1(s) (7)

−
1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
Bγ2(s)

for all s ∈ I. Differentiating (7) and then applying (1) and (3), we find that
V ′(s) = 0 for all s ∈ I. This implies that V is constant along γ. Hence, up to
isometries of E4, γ is congruent to an f-rectifying curve in E4. �

Remark 1 For an f-rectifying curve in E4, if all of its curvature functions
κγ1, κγ2 and κγ3 are non-zero constants, say, κγ1(s) = a1 6= 0, κγ2(s) = a2 6= 0
and κγ3(s) = a3 6= 0 for all s ∈ I, then from (3), we obtain

F ′′(s) + a23F(s) = 0. (8)

If f is non-zero constant or linear, then from (8) we find a3 = 0 which is
a contradiction. Again, if f is non-linear, then from (8) we find a3 is non-
constant which is also a contradiction.

According to the above remark, we have the following theorem:
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Theorem 2 Let γ : I −→ E4 be a unit-speed curve having nowhere vanishing
curvatures κγ1, κγ2 and κγ3. Then γ is not congruent to an f-rectifying curve
for any choice of f if and only if all of its curvatures κγ1, κγ2 and κγ3 are
constants.

Now, it may happen that any two among the three nowhere vanishing curva-
tures κγ1, κγ2 and κγ3 are constants. Then, as some immediate consequences of
Theorem 1, the following theorem provides some characterizations regarding
the non-constant one.

Theorem 3 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. We have the following:

(i) If the first curvature κγ1 and the second curvature κγ2 are constants,
then γ is congruent to an f-rectifying curve in E4 if and only if the third
curvature κγ3 satisfies the following differential equation:

κγ3(s)F
′′(s) − κγ

′
3(s)F

′(s) + κγ
3
3(s)F(s) = 0.

(ii) If the first curvature κγ1 and the third curvature κγ3(= a) are constants,
then γ is congruent to an f-rectifying curve in E4 if and only if the second
curvature κγ2 satisfies the following differential equation:

d2

ds2

(
F(s)

κγ2(s)

)
+ a2

F(s)

κγ2(s)
= 0.

(iii) If the second curvature κγ2 and the third curvature κγ3(= a) are con-
stants, then γ is congruent to an f-rectifying curve in E4 if and only if
the first curvature κγ1 satisfies the following differential equation:

d2

ds2

(
κγ1(s)F(s)

)
+ a2κγ1(s)F(s) = 0.

Analogous characterizations can be derived as consequences of Theorem 1
when any one of κγ1, κγ2 or κγ3 is a constant.

Next, in the following theorem, we characterize unit-speed f-rectifying curves
in E4 in terms of norm functions, tangential, normal, first and second binormal
components of their f-position vectors.
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Theorem 4 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. If γ is an f-rectifying curve in E4, then the
following statements are true:

(i) The norm function ρ = ‖γf‖ is given by

ρ(s) =
√
F2(s) + c2

for all s ∈ I, where c is a non-zero constant.

(ii) The tangential component 〈γf, Tγ〉 of the f-position vector γf of γ is given
by

〈γf(s), Tγ(s)〉 = F(s)

for all s ∈ I.

(iii) The normal component γ
Nγ
f of the f-position vector γf of γ has constant

length and the norm function ρ is non-constant.

(iv) The first binormal component
〈
γf, Bγ1

〉
and the second binormal com-

ponent
〈
γf, Bγ2

〉
of the f-position vector γf of γ are respectively given

by

〈
γf(s), Bγ1(s)

〉
=
κγ1(s)

κγ2(s)
F(s),

〈
γf(s), Bγ2(s)

〉
=

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I.

Conversely, if γ : I −→ E4 is a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R
is a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F such that any one of the statements (i), (ii),
(iii) or (iv) is true, then γ is an f-rectifying curve in E4.

Proof. Let us first assume that γ : I −→ E4 is an f-rectifying curve having
nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then for some differentiable
functions λ, µ1, µ2 : I −→ R in parameter s, the f-position vector γf of the
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curve γ in E4 satisfies equation (2) and from the proof of Theorem 1, we have
(5) and (6). Now, from last two equations of (5), we easily find

µ1(s)µ
′
1(s) + µ2(s)µ

′
2(s) = 0

for all s ∈ I. Integrating previous equation, we obtain

µ21(s) + µ
2
2(s) = c

2 (9)

for all s ∈ I, where c is an arbitrary non-zero constant. We have the following:

(i) Using (2), (6) and (9), the norm function ρ = ‖γf‖ is given by

ρ2(s) = ‖γf(s)‖2 = 〈γf(s), γf(s)〉 = F2(s) + c2,

i.e.,

ρ(s) =
√
F2(s) + c2

for all s ∈ I, where c is a non-zero constant.

(ii) Using (2) and (6), the tangential component 〈γf, Tγ〉 of γf is given by

〈γf(s), Tγ(s)〉 = λ(s) = F(s)

for all s ∈ I.
(iii) An f-position vector αf of an arbitrary curve α : J −→ E4 can be decom-
posed as

αf(t) = ν(t) Tγ(t) + α
Nγ
f (t), t ∈ J,

for some differentiable function ν : I −→ R, where α
Nγ
f denotes the normal

component of αf. Here, γ is an f-rectifying curve in E4 and hence from (2), it

is evident that the normal component γ
Nγ
f of γf is given by

γ
Nγ
f (s) = µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for all s ∈ I. Therefore, we have∥∥∥γNγf (s)
∥∥∥ =

√〈
γ
Nγ
f (s), γ

Nγ
f (s)

〉
=
√
µ21(s) + µ

2
2(s)

for all s ∈ I. Now, by using (9), we see that ‖γNγf (s)‖ = c. This implies that

γ
Nγ
f has constant length. Furthermore, from statement (i), it follows that the

norm function ρ = ‖γf‖ is non-constant.
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(iv) Using (2) and (6), the first binormal component
〈
γf, Bγ1

〉
of γf is given

by 〈
γf(s), Bγ1(s)

〉
= µ1(s) =

κγ1(s)

κγ2(s)
F(s)

for all s ∈ I, and the second binormal component
〈
γf, Bγ2

〉
of γf is given by

〈
γf(s), Bγ2(s)

〉
= µ2(s) =

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I.

Conversely, we assume that γ : I −→ E4 is a unit-speed curve having nowhere
vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R is a nowhere vanishing
integrable function in parameter s with at least twice differentiable primitive
function F such that statement (i) or statement (ii) is true. For statement (i),
we have

〈γf(s), γf(s)〉 = F2(s) + c2

for all s ∈ I, where c is a non-zero constant. On differentiation of last equation,
we obtain

〈γf(s), Tγ(s)〉 = F(s) (10)

for all s ∈ I. So in either case we have equation (10). Differentiating (10) and
by using (1), we finally obtain

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. This asserts us that γ is an f-rectifying curve in E4.
Next, we assume that statement (iii) is true. Then ‖γNγf ‖ = c, say. Now, the

normal component γ
Nγ
f is given by

γf(s) = F(s) Tγ(s) + γ
Nγ
f (s)

for all s ∈ I. Therefore, we have

〈γf(s), γf(s)〉 = 〈γf(s), Tγ(s)〉2 + c2

for all s ∈ I. Differentiating previous equation and using (1), we obtain

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. This implies that γ is an f-rectifying curve in E4.
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Finally, we assume that statement (iv) is true. Then we have〈
γf(s), Bγ1(s)

〉
=

κγ1(s)

κγ2(s)
F(s), (11)

〈
γf(s), Bγ2(s)

〉
=

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
(12)

for all s ∈ I. Differentiating (11) and using (1), we obtain

−κγ2(s) 〈γf(s), Nγ(s)〉+ κγ3(s)
〈
γf(s), Bγ2(s)

〉
=
d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I. From the equations (12) and last equation, we find

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. Consequently, γ is an f-rectifying curve in E4. �

5 Classification of f-rectifying curves in E4

In many papers, e.g., [3, 7, 8, 9], several interesting results were found primarily
attempting towards the classification of the rectifying curves which are mostly
based on their parametrizations. In this section we attempt for the same in
the case of unit-speed f-rectifying curves in E4 but this classification is totally
based on the parametrizations of their f-position vectors.

Theorem 5 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s) having nowhere vanishing curvatures κγ1, κγ2 and κγ3, and let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. Then γ is an f-rectifying curve in E4 if and
only if, up to a parametrization, its f-position vector γf is given by

γf(t) =
c

cos
(
t+ arctan

(
F(s0)
c

)) α(t) (13)

for all t ∈ J, where c is a positive constant, s0 ∈ I and α : J −→ S3(1) is a
unit-speed curve having t : I −→ J as arc length function based at s0.

Proof. Let us first assume that γ : I −→ E4 be an f-rectifying curve hav-
ing nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then from the proof of
Theorem 4, we have

ρ(s) =
√
F2(s) + c2 (14)
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for all s ∈ I, where we may choose c as a positive real constant. Now, we define
a new curve α in E4 by

α(s) ··=
1

ρ(s)
γf(s) (15)

for all s ∈ I. Then we find
〈α(s), α(s)〉 = 1 (16)

for all s ∈ I. Therefore, α is a curve whose trace is lying wholly in the unit
sphere S3(1). Differentiating (16), we get〈

α(s), α ′(s)
〉
= 0, (17)

for all s ∈ I. Now, from (14) and (15), we have

γf(s) = α(s)
√
F2(s) + c2 (18)

for all s ∈ I. Differentiating (18), we find

f(s)Tγ(s) = α
′(s)
√
F2(s) + c2 +

α(s)f(s)F(s)√
F2(s) + c2

(19)

for all s ∈ I. Using (16), (17) and (19), we obtain

〈
α ′(s), α ′(s)

〉
=

c2 f2(s)

(F2(s) + c2)
2

for all s ∈ I. Therefore, we get

∥∥α ′(s)
∥∥ =

√
〈α ′(s), α ′(s)〉 = c f(s)

F2(s) + c2

for all s ∈ I. Let s0 ∈ I and t : I −→ J be arc length function of α based at s0
given by

t =

∫ s
s0

∥∥α ′(u)
∥∥du.

Then we find

t =

∫ s
s0

c f(u)

F2(u) + c2
du

=⇒ t = arctan

(
F(s)

c

)
− arctan

(
F(s0)

c

)
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=⇒ F(s) = c tan

(
t+ arctan

(
F(s0)

c

))
.

Substituting previous equation in (18), we obtain the f-position vector of γ as
follows:

γf(t) =
c

cos
(
t+ arctan

(
F(s0)
c

)) α(t)
for all t ∈ J.

Conversely, let γ be a curve in E4 such that its f-position vector γf is given
by (13), where c is a positive constant, s0 ∈ I and α : J −→ S3(1) is a unit-speed
curve having t : I −→ J as arc length function based at s0. Differentiating (13),
we obtain

γ ′
f(t) =

c sin
(
t+ arctan

(
F(s0)
c

))
cos2

(
t+ arctan

(
F(s0)
c

)) α(t) +
c

cos
(
t+ arctan

(
F(s0)
c

)) α ′(t) (20)

for all t ∈ J. Since α is a unit-speed curve in the unit-sphere S3(1), we have
〈α ′(t), α ′(t)〉 = 1, 〈α(t), α(t)〉 = 1 and consequently 〈α(t), α ′(t)〉 = 0 for all
t ∈ J. Therefore, from (13) and (20), we have



〈γf(t), γf(t)〉 =
c2

cos2
(
t+ arctan

(
F(s0)
c

)) ,
〈
γf(t), γ

′
f(t)
〉
=
c2 sin

(
t+ arctan

(
F(s0)
c

))
cos3

(
t+ arctan

(
F(s0)
c

)) ,
〈
γ ′
f(t), γ

′
f(t)
〉
=

c2

cos4
(
t+ arctan

(
F(s0)
c

))
(21)

for all t ∈ J. We may reparametrize γ by

t = arctan

(
F(s)

c

)
− arctan

(
F(s0)

c

)
.
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Then s becomes arc length parameter of γ and equations (21) reduce to

〈γf(s), γf(s)〉 =
c2

cos2
(

arctan
(
F(s)
c

)) ,
〈
γf(s), γ

′
f(s)

〉
=
c2 sin

(
arctan

(
F(s)
c

))
cos3

(
arctan

(
F(s)
c

)) ,
〈
γ ′
f(s), γ

′
f(s)

〉
=

c2

cos4
(

arctan
(
F(s)
c

))
(22)

for all s ∈ I. Now, the normal component γ
Nγ
f of γf is given by

〈
γ
Nγ
f (s), γ

Nγ
f (s)

〉
= 〈γf(s), γf(s)〉−

〈γf(s), γ ′
f(s)〉

2〈
γ ′
f(s), γ

′
f(s)

〉
for all s ∈ I. Then substituting (22) in last equation, we obtain

g
(
γ
Nγ
f (s), γ

Nγ
f (s)

)
=
∥∥∥γNγf (s)

∥∥∥2 = c2
for all s ∈ I. This implies that γ

Nγ
f has a constant length. Also, the norm

function ρ is given by

ρ(s) =
√
g (γf(s), γf(s)) =

c

cos
(

arctan
(
F(s)
c

))
for all s ∈ I, and it is non-constant. Hence, by applying Theorem 4, we conclude
that γ is an f-rectifying curve in E4. �

Finally, we cite an example of an f-rectifying curve lying wholly in E4.

Example 1 Let γ be a unit-speed curve (parametrized by arc length s) in
E4. Let f be a nowhere vanishing integrable function in parameter s defined
by

f(s) ··= exp s.

Then its primitive function F is given by

F(s) = exp s+ c1,
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where c1 is an arbitrary constant. We choose c1 = 0 and substitute

F(s) = tan

(
t+ arctan

(
F(0)

1

))
= tan

(
t+

π

4

)
,

i.e.,

s = ln
∣∣∣tan

(
t+

π

4

)∣∣∣ .
Now, let, up to a parametrization, the f-position vector γf of γ is given by

γf(t) =
1

cos
(
t+ π

4

) α(t),
where α be a curve in E4 defined by

α(t) ··=
1√
2
(sin t, cos t, sin t, cos t) .

Evidently, we have 〈α(t), α(t)〉 = 1 and 〈α ′(t), α ′(t)〉 = 1 for all t. Therefore,
α is a unit-speed curve in S3(1) having t as arc length function based at 0.
Consequently, γ is an f-rectifying curve and, up to a parametrization, it is
given by

γ(t) =
1

2

(
ln

∣∣∣∣1+ sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1− sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1+ sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1− sin 2t

cos 2t

∣∣∣∣) .
Note: Examples of curves in E4 which are not f-rectifying for any choice of
f are trivial and can be easily constructed by violating the condition stated
in Theorem 1. For example, according to Theorem 2 (which is an immediate
consequence of Theorem 1), curves in E4 having non-zero constant first, second
and third curvatures are not f-rectifying.
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