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Abstract. An induced star-triangle factor of a graph G is a spanning
subgraph F of G such that each component of F is an induced subgraph
on the vertex set of that component and each component of F is a star
(here star means either K1,n, n ≥ 2 or K2) or a triangle (cycle of length
3) in G. In this paper, we establish that every graph without isolated
vertices admits an induced star-triangle factor in which any two leaves
from different stars K1,n (n ≥ 2) are non-adjacent.

1 Introduction

A simple graph is denoted by G(V(G), E(G)), where V(G) = {v1, v2, . . . , vn}

and E(G) are respectively the vertex set and edge set of G.. The order and
size of G are |V(G)| and |E(G)|, respectively. The set of vertices adjacent to
v ∈ V(G), denoted by N(v), refers to the neighborhood of v. A cycle of order n
is denoted by Cn and a triangle is denoted by C3. A complete bipartite graph
K1,n is called a star. In K1,n, the vertex of degree n is its center and all other
vertices are leaves.
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A matching in a graph is a set of independent edges. That is, a subset M

of the edge set E of G is a matching if no two edges of M have a common
vertex. A matching M is said to be maximal if there is no matching N strictly
containing M, that is, M is maximal if it cannot be enlarged. A matching
M is said to be maximum if it has the largest possible cardinality, that is,
M is maximum if there is no matching N such that |N| > |M|. A vertex
v is said to be M-saturated (or saturated by M) if there is an edge e ∈ M

incident with v. A vertex which is not incident with any edge of M is said
to be M-unsaturated. An M-alternating path in G is a path whose edges are
alternately in E(G) −M and M. That is, in an M-alternating path, the edges
alternate between M-edges and non-M-edges. An M-alternating path whose
end vertices are M-unsaturated is said to be an M-augmenting path.

For S ⊂ V(G), the induced graph on S is a subgraph of G with vertex set S

and the edge set consisting of all the edges of G which have both end vertices
in S. An induced star of G is an induced subgraph of G which itself is a star.

For a set S of connected graphs, a spanning subgraph F of a graph G is
called an S-factor of G if each component of F is isomorphic to an element
of S. A spanning subgraph F of a graph G is a star-cycle factor of G if each
component of F is a star or a cycle. A spanning subgraph S of a graph G will
be called an induced star-triangle factor of G if each component of S is an
induced star (K1,n, n ≥ 2, or K2) or a triangle of G.

For a vertex subset S of V(G), let G[S] and G − S, respectively, denote
the subgraph of G induced by S and V(G) − S. Further, let iso(G) mean the
number of isolated vertices in G and Iso(G) be the set of isolated vertices of G.
Clearly |Iso(G)| = iso(G). For more definitions and notations, we refer to [7].

Tutte [8] characterized graphs having {K2, Cn : n ≥ 3}-factor. An elemen-
tary and short proof of Tutte’s characterization can be seen in [1]. Las Vergnas
[6] and Amahashi and Kano [2] showed that, for an integer n ≥ 2, a graph has
a {K1,1, K1,2, . . . , K1,n}-factor if and only if iso(G− S) ≤ n|S| for all S ⊂ V(G).
Berge and Las Vergnas [3] showed the existence of {K1,n, Cm : n ≥ 1, m ≥ 3}-
factor in graphs. A short proof of this theorem can be seen in [4].

2 Main results

In [5], we established Boyer’s conjecture on the dimension of sphere of influence
of graphs having perfect matchings, by obtaining a factor of a given graph and
then embedding that into a suitable finite dimensional Euclidean space. While
working on the main conjecture, we encountered the following result, which
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we believe would of interest to a general reader.

Theorem 1 Every graph without isolated vertices,
admits an induced star-triangle factor in which any two leaves from different

stars K1,n (n ≥ 2) are non adjacent.

To prove the result, let G be any graph without isolated vertices.
Let V(G) and E(G), respectively, denote the vertex set and the edge set

of G. Let M be the maximum matching in G, M ′ be the set of M-saturated
vertices and I be the set of M-unsaturated vertices.

We adopt the following algorithm, which contains the gist of the proof of
Theorem 1.

Algorithm 1

1. Let M1 = M.

2. If I 6= ∅, then pick a vertex v from I, otherwise go to step 10.

3. Pick u ∈ N(v) and call the edge uv as the neighborhood edge of v. (As v

is not isolated, there exists an edge uv ∈ E(G).) Then u ∈M ′. Otherwise
M ∪ {uv} will be a larger matching than M, which is impossible.

4. Let w ∈M ′ such that uw ∈M.

5. If Su is not defined, define Su := {w, v}, otherwise go to step 7.

6. Remove uw from M1, go to step 8.

7. If Su is defined then add v to Su.

8. Set J = I \ {v}.

9. With I = J, go to step 2.

10. Stop.

At the end of this algorithm, we obtain a matching M1, finitely many vertices
u1, . . . , uk and the corresponding sets Su1

, . . . , Suk
. Before we analyze these

sets, let us consider an example to see how the algorithm works.

Example 1 Consider a graph G on 17 vertices, given by Figure 1.
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Here
M =

{
{1, 2}, {7, 8}, {9, 10}, {13, 14}, {15, 16}

}
is a maximum matching and the corresponding set I is given by {3, 4, 5, 6, 11, 12}.

Applying Algorithm 1, we obtain a factor of G, given by Figure 2.
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Figure 1: Graph G
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Figure 2: Output of Algorithm 1 on G
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Figure 3: Star-triangle factor of G

After applying the procedure specified in the proof of Theorem 1 we will
obtain the graph given by Figure 3, which is a required star-triangle factor
of G. 2

To prove Theorem 1, we need a series of lemmas. The first one is immediate.

Lemma 1 1. Each v ∈ I has exactly one neighborhood edge.
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2. Each Sui
has at least two vertices, exactly one vertex from M ′, and ui

has a matching edge with that vertex.

Using this lemma, we obtain the following result.

Lemma 2 For each 1 ≤ i < j ≤ k, we have

({ui} ∪ Sui
) ∩ ({uj} ∪ Suj

) = ∅.

Proof. It is enough to prove the result for i = 1 and j = 2. Assume that there
exists some x ∈ ({u1} ∪ Su1

) ∩ ({u2} ∪ Su2
).

If x ∈ I, then x ∈ Su1
and x ∈ Su2

. Therefore, xu1 and xu2 are the neigh-
borhood edges of x. By Lemma 1, x has only one neighborhood edge, a con-
tradiction. Therefore x /∈ I and thus x ∈M ′.

If x ∈ {u1, u2}, without loss of generality, let x = u1. Then u1 ∈ Su2
. By

Lemma 1, Su2
has only one vertex from M ′, and u2 has a matching edge

with that vertex. Therefore, u1u2 is a matching edge, that is, u1u2 ∈M. This
implies that u2 ∈ Su1

.

Also, by Lemma 1, we have |Su1
| ≥ 2 and |Su2

| ≥ 2. Choose x1 ∈ Su1
and

x2 ∈ Su2
such that {x1, x2} ∩ {u1, u2} = ∅. Then {x1, x2} ⊆ I and thus x1 6= x2.

Therefore, x1u1u2x2 is an augmenting path of M, which implies that M is
not a maximum matching, a contradiction. Hence x /∈ {u1, u2}.

Consequently x ∈ M ′ such that x ∈ Su1
and x ∈ Su2

. Again, Lemma 1
ensures that xu1 and xu2 are matching edges. Hence xu1 and xu2 are not
independent edges, a contradiction. 2

Lemma 3 The residual set M1 is a matching. Further, if M ′
1 is the set of

vertices of M1, then V(G) can be partitioned as

V(G) =
(
∪̇ki=1({ui}∪̇Sui

)
)
∪̇M ′

1.

Proof. Since M1 embeds inside the matching M, it is a matching in G.

Pick any y ∈ V(G). Then, either y ∈ M ′
1 or y /∈ M ′

1. If y /∈ M ′
1, then by

our construction y ∈ {ui} ∪ Sui
, for some i.

Therefore, y ∈ ∪ki=1({ui} ∪ Sui
).

Thence, V(G) ⊂
(
∪ki=1 ({ui} ∪ Sui

)
)
∪M

′
1. The other inclusion is trivial.

To prove that the union is disjoint, let x ∈ {u} ∪ Su, for some u ∈ V(G).
Then, either x ∈ I or x ∈ M ′. If x ∈ I, then x /∈ M ′ and thus x /∈ M ′

1. If
x ∈ M ′, then either Sx is defined or x ∈ Sx ′ where xx ′ is a matching edge
removed from M1. Therefore, x /∈M ′

1 and thence

M ′
1 ∩ (∪Su({u} ∪ Su)) = ∅.
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This along with Lemma 2, establishes the result. 2

Lemma 4 If u ∈ {u1, . . . , uk} and if there are v,w ∈ Su such that vw ∈ E(G),
then

Su = {w, v}.

Proof. If possible, choose v ′ ∈ Su \ {w, v}. By our construction, there exists
some v ′′ ∈ Su such that v ′′u ∈M. We have the following cases to consider.

1. If v ′′ /∈ {w, v}, then by construction, Su has exactly one vertex from M ′

and all other vertices from I. Therefore vw /∈M and thus {vw}∪M is a
matching in G, larger than M.

2. If v ′′ = w, then vwuv ′ is an M-augmented path.

3. If v ′′ = v, then wvuv ′ is an M-augmented path.

Therefore, in each case, the augmented paths contradict the choice of M as a
maximum matching. This proves our assertion. 2

Proof of Theorem 1: First, we make a small change in our notations from
Algorithm 1.

For each Su = {v1, v2}, if v1v2 ∈ E(G), then destroy (remove) Su means from
now onwards this Su does not exist. Instead, if such an Su exists, we do the
following.

If T is not defined, then define T := {{u, v1, v2}}, otherwise add {u, v1, v2} to T.

Basically, we are separating out the class of triangles from stars. Thus, we
have found mutually exclusive stars {u} ∪ Su, triangles and a matching M1 in
G covering all the vertices.

Now, we establish that the remaining sets {u} ∪ Su are stars.
Claim 1. Each Su is an independent set.
To see this, note that we first defined Su as having one vertex from M ′ and

other from I. Then we added some vertices from I to Su. Therefore, each Su
has one vertex from M ′ and remaining vertices from I.

Let {v1, v2} ⊆ Su. If {v1, v2} ⊆ I, then clearly v1v2 /∈ E(G). Otherwise, without
loss of generality, assume that v1 ∈M ′ and v2 ∈ I.

If |Su| = 2, then by our construction, we have
v1v2 /∈ E(G). If |Su| > 2, then there exists some v3 ∈ Su \ {v1, v2}. Therefore,

v3 ∈ I and v1u ∈M.

If v1v2 ∈ E(G), then v2v1uv3 is an M-augmenting path. Therefore, M is not
a maximum matching, a contradiction. Hence, v1v2 /∈ E(G). This establishes
claim 1.
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So we obtain a matching M1, finitely many induced stars and triangles, all
of which span our given graph G. Note that the matching M1 can also be
treated as a finite collection of induced stars K2. Consequently, we obtain an
induced star-triangle factor of G.

To conclude our main result, we claim the following.
Claim 2. The set ∪Su is independent.
To see this, let {v1, v2} ⊆ ∪Su. We have to prove that v1v2 /∈ E(G). If

{v1, v2} ⊆ Su, for some u, then this follows by Claim 1. Without loss of gener-
ality, it is enough to assume that v1 ∈ Su1

and v2 ∈ Su2
.

We have the following cases to consider.

1. {v1, v2} ⊆M ′. To prove by contradiction, assume that v1v2 ∈ E(G).

By our construction, |Su1
| ≥ 2 and |Su2

| ≥ 2. Therefore, we can choose
x1 ∈ Su1

and x2 ∈ Su2
such that x1 6= v1 and x2 6= v2. Then {x1, x2} ⊆ I

and {u1v1, u2v2} ⊆ M. Therefore, x1u1v1v2u2x2 is an M-augmenting
path, concluding that M is not the maximum matching, a contradiction.

2. {v1, v2} ⊆ I. Clearly, v1v2 /∈ E(G), as I is an independent set.

3. v1 ∈M ′ and v2 ∈ I. (The other case v1 ∈ I and v2 ∈M ′ is similar.) To
prove by contradiction, assume that v1v2 ∈ E(G).

Since |Su1
| ≥ 2, there exists some x1 ∈ Su1

\ {v1}. As Su has only one
vertex from M ′ and v1 ∈ M ′, we have x1 ∈ I. Also, u1v1 ∈ M ensures
that x1u1v1v2 is an M-augmenting path. Thus, M is not the maximum
matching, a contradiction.

Therefore, in every case v1v2 6∈ E(G). This establishes claim 2. Hence, Theorem
1 is proved. 2
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