

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 13, 1 (2021) 209-216

DOI: 10.2478/ausm-2021-0012

Induced star-triangle factors of graphs

S. P. S. Kainth Department of Mathematics,

Panjab University, Chandigarh, India email: sps@pu.ac.in

R. Kumar Punjab State Power Corporation Limited, Amritsar, India email: ramanjit.gt@gmail.com S. Pirzada Department of Mathematics, University of Kashmir, Srinagar, India email: pirzadasd@kashmiruniversity.ac.in

Abstract. An induced star-triangle factor of a graph G is a spanning subgraph F of G such that each component of F is an induced subgraph on the vertex set of that component and each component of F is a star (here star means either $K_{1,n}$, $n \ge 2$ or K_2) or a triangle (cycle of length 3) in G. In this paper, we establish that every graph without isolated vertices admits an induced star-triangle factor in which any two leaves from different stars $K_{1,n}$ ($n \ge 2$) are non-adjacent.

1 Introduction

A simple graph is denoted by G(V(G), E(G)), where $V(G) = \{v_1, v_2, \ldots, v_n\}$ and E(G) are respectively the vertex set and edge set of G. The order and size of G are |V(G)| and |E(G)|, respectively. The set of vertices adjacent to $v \in V(G)$, denoted by N(v), refers to the *neighborhood* of v. A cycle of order n is denoted by C_n and a *triangle* is denoted by C_3 . A complete bipartite graph $K_{1,n}$ is called a *star*. In $K_{1,n}$, the vertex of degree n is its *center* and all other vertices are *leaves*.

²⁰¹⁰ Mathematics Subject Classification: 05C60, 05C62, 05C70 Key words and phrases: Matching, factor, star-triangle factor

A matching in a graph is a set of independent edges. That is, a subset M of the edge set E of G is a matching if no two edges of M have a common vertex. A matching M is said to be maximal if there is no matching N strictly containing M, that is, M is maximal if it cannot be enlarged. A matching M is said to be maximum if it has the largest possible cardinality, that is, M is maximum if there is no matching N such that |N| > |M|. A vertex v is said to be *M*-saturated (or saturated by M) if there is an edge $e \in M$ incident with v. A vertex which is not incident with any edge of M is said to be M-unsaturated. An M-alternating path in G is a path whose edges are alternate between M-edges and non-M-edges. An M-alternating path, the edges end vertices are M-unsaturated is said to be an M-augmenting path.

For $S \subset V(G)$, the *induced graph* on S is a subgraph of G with vertex set S and the edge set consisting of all the edges of G which have both end vertices in S. An *induced star* of G is an induced subgraph of G which itself is a star.

For a set S of connected graphs, a spanning subgraph F of a graph G is called an S-factor of G if each component of F is isomorphic to an element of S. A spanning subgraph F of a graph G is a *star-cycle* factor of G if each component of F is a star or a cycle. A spanning subgraph S of a graph G will be called an *induced star-triangle factor* of G if each component of S is an induced star ($K_{1,n}$, $n \ge 2$, or K_2) or a triangle of G.

For a vertex subset S of V(G), let G[S] and G - S, respectively, denote the subgraph of G induced by S and V(G) – S. Further, let iso(G) mean the number of isolated vertices in G and Iso(G) be the set of isolated vertices of G. Clearly |Iso(G)| = iso(G). For more definitions and notations, we refer to [7].

Tutte [8] characterized graphs having { K_2 , $C_n : n \ge 3$ }-factor. An elementary and short proof of Tutte's characterization can be seen in [1]. Las Vergnas [6] and Amahashi and Kano [2] showed that, for an integer $n \ge 2$, a graph has a { $K_{1,1}, K_{1,2}, \ldots, K_{1,n}$ }-factor if and only if $iso(G - S) \le n|S|$ for all $S \subset V(G)$. Berge and Las Vergnas [3] showed the existence of { $K_{1,n}, C_m : n \ge 1, m \ge 3$ }-factor in graphs. A short proof of this theorem can be seen in [4].

2 Main results

In [5], we established Boyer's conjecture on the dimension of sphere of influence of graphs having perfect matchings, by obtaining a factor of a given graph and then embedding that into a suitable finite dimensional Euclidean space. While working on the main conjecture, we encountered the following result, which we believe would of interest to a general reader.

Theorem 1 Every graph without isolated vertices,

admits an induced star-triangle factor in which any two leaves from different stars $K_{1,n}$ $(n \ge 2)$ are non adjacent.

To prove the result, let G be any graph without isolated vertices.

Let V(G) and E(G), respectively, denote the vertex set and the edge set of G. Let M be the maximum matching in G, M' be the set of M-saturated vertices and I be the set of M-unsaturated vertices.

We adopt the following algorithm, which contains the gist of the proof of Theorem 1.

Algorithm 1

- 1. Let $M_1 = M$.
- 2. If $I \neq \emptyset$, then pick a vertex ν from I, otherwise go to step 10.
- 3. Pick $u \in N(v)$ and call the edge uv as the *neighborhood edge* of v. (As v is not isolated, there exists an edge $uv \in E(G)$.) Then $u \in M'$. Otherwise $M \cup \{uv\}$ will be a larger matching than M, which is impossible.
- 4. Let $w \in M'$ such that $uw \in M$.
- 5. If S_u is not defined, define $S_u := \{w, v\}$, otherwise go to step 7.
- 6. Remove uw from M_1 , go to step 8.
- 7. If S_u is defined then add ν to S_u .
- 8. Set $J = I \setminus \{v\}$.
- 9. With I = J, go to step 2.
- 10. Stop.

At the end of this algorithm, we obtain a matching M_1 , finitely many vertices u_1, \ldots, u_k and the corresponding sets S_{u_1}, \ldots, S_{u_k} . Before we analyze these sets, let us consider an example to see how the algorithm works.

Example 1 Consider a graph G on 17 vertices, given by Figure 1.

Here

$$\mathcal{M} = \{\{1, 2\}, \{7, 8\}, \{9, 10\}, \{13, 14\}, \{15, 16\}\}$$

is a maximum matching and the corresponding set I is given by $\{3, 4, 5, 6, 11, 12\}$. Applying Algorithm 1, we obtain a factor of G, given by Figure 2.

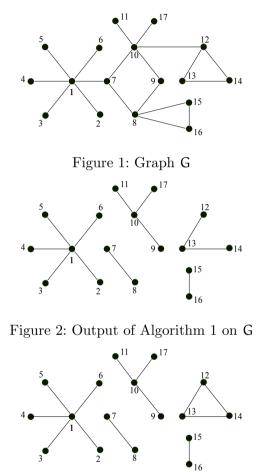


Figure 3: Star-triangle factor of G

After applying the procedure specified in the proof of Theorem 1 we will obtain the graph given by Figure 3, which is a required star-triangle factor of G.

To prove Theorem 1, we need a series of lemmas. The first one is immediate.

Lemma 1 1. Each $v \in I$ has exactly one neighborhood edge.

2. Each S_{u_i} has at least two vertices, exactly one vertex from M', and u_i has a matching edge with that vertex.

Using this lemma, we obtain the following result.

Lemma 2 For each $1 \le i < j \le k$, we have

 $(\{u_i\} \cup S_{u_i}) \cap (\{u_j\} \cup S_{u_j}) = \emptyset.$

Proof. It is enough to prove the result for i = 1 and j = 2. Assume that there exists some $x \in (\{u_1\} \cup S_{u_1}) \cap (\{u_2\} \cup S_{u_2})$.

If $x \in I$, then $x \in S_{u_1}$ and $x \in S_{u_2}$. Therefore, xu_1 and xu_2 are the neighborhood edges of x. By Lemma 1, x has only one neighborhood edge, a contradiction. Therefore $x \notin I$ and thus $x \in M'$.

If $x \in \{u_1, u_2\}$, without loss of generality, let $x = u_1$. Then $u_1 \in S_{u_2}$. By Lemma 1, S_{u_2} has only one vertex from M', and u_2 has a matching edge with that vertex. Therefore, u_1u_2 is a matching edge, that is, $u_1u_2 \in M$. This implies that $u_2 \in S_{u_1}$.

Also, by Lemma 1, we have $|S_{u_1}| \ge 2$ and $|S_{u_2}| \ge 2$. Choose $x_1 \in S_{u_1}$ and $x_2 \in S_{u_2}$ such that $\{x_1, x_2\} \cap \{u_1, u_2\} = \emptyset$. Then $\{x_1, x_2\} \subseteq I$ and thus $x_1 \neq x_2$.

Therefore, $x_1u_1u_2x_2$ is an augmenting path of M, which implies that M is not a maximum matching, a contradiction. Hence $x \notin \{u_1, u_2\}$.

Consequently $x \in M'$ such that $x \in S_{u_1}$ and $x \in S_{u_2}$. Again, Lemma 1 ensures that xu_1 and xu_2 are matching edges. Hence xu_1 and xu_2 are not independent edges, a contradiction.

Lemma 3 The residual set M_1 is a matching. Further, if M'_1 is the set of vertices of M_1 , then V(G) can be partitioned as

$$V(G) = \left(\dot{\cup}_{i=1}^{k} (\{u_i\} \dot{\cup} S_{u_i}) \right) \dot{\cup} M_1'.$$

Proof. Since M_1 embeds inside the matching M, it is a matching in G.

Pick any $y \in V(G)$. Then, either $y \in M'_1$ or $y \notin M'_1$. If $y \notin M'_1$, then by our construction $y \in \{u_i\} \cup S_{u_i}$, for some i.

Therefore, $y \in \bigcup_{i=1}^{k} (\{u_i\} \cup S_{u_i})$.

Thence, $V(G) \subset \left(\bigcup_{i=1}^{k} (\{u_i\} \cup S_{u_i}) \right) \cup M'_1$. The other inclusion is trivial.

To prove that the union is disjoint, let $x \in \{u\} \cup S_u$, for some $u \in V(G)$. Then, either $x \in I$ or $x \in M'$. If $x \in I$, then $x \notin M'$ and thus $x \notin M'_1$. If $x \in M'$, then either S_x is defined or $x \in S_{x'}$ where xx' is a matching edge removed from M_1 . Therefore, $x \notin M'_1$ and thence

$$M_1' \cap (\cup_{S_u} (\{u\} \cup S_u)) = \emptyset.$$

This along with Lemma 2, establishes the result.

Lemma 4 If $u \in \{u_1, \ldots, u_k\}$ and if there are $v, w \in S_u$ such that $vw \in E(G)$, then

$$S_{u} = \{w, v\}.$$

Proof. If possible, choose $\nu' \in S_u \setminus \{w, \nu\}$. By our construction, there exists some $\nu'' \in S_u$ such that $\nu'' u \in M$. We have the following cases to consider.

- 1. If $\nu'' \notin \{w, \nu\}$, then by construction, S_u has exactly one vertex from M' and all other vertices from I. Therefore $\nu w \notin M$ and thus $\{\nu w\} \cup M$ is a matching in G, larger than M.
- 2. If v'' = w, then vwuv' is an M-augmented path.
- 3. If v'' = v, then wvuv' is an M-augmented path.

Therefore, in each case, the augmented paths contradict the choice of M as a maximum matching. This proves our assertion. $\hfill \Box$

Proof of Theorem 1: First, we make a small change in our notations from Algorithm 1.

For each $S_u = \{v_1, v_2\}$, if $v_1v_2 \in E(G)$, then destroy (remove) S_u means from now onwards this S_u does not exist. Instead, if such an S_u exists, we do the following.

If T is not defined, then define $T := \{\{u, v_1, v_2\}\}$, otherwise add $\{u, v_1, v_2\}$ to T.

Basically, we are separating out the class of triangles from stars. Thus, we have found mutually exclusive stars $\{u\} \cup S_u$, triangles and a matching M_1 in G covering all the vertices.

Now, we establish that the remaining sets $\{u\} \cup S_u$ are stars.

Claim 1. Each S_u is an independent set.

To see this, note that we first defined S_u as having one vertex from M' and other from I. Then we added some vertices from I to S_u . Therefore, each S_u has one vertex from M' and remaining vertices from I.

Let $\{v_1, v_2\} \subseteq S_u$. If $\{v_1, v_2\} \subseteq I$, then clearly $v_1v_2 \notin E(G)$. Otherwise, without loss of generality, assume that $v_1 \in M'$ and $v_2 \in I$.

If $|S_u| = 2$, then by our construction, we have

 $v_1v_2 \notin E(G)$. If $|S_u| > 2$, then there exists some $v_3 \in S_u \setminus \{v_1, v_2\}$. Therefore, $v_3 \in I$ and $v_1u \in M$.

If $v_1v_2 \in E(G)$, then $v_2v_1uv_3$ is an M-augmenting path. Therefore, M is not a maximum matching, a contradiction. Hence, $v_1v_2 \notin E(G)$. This establishes claim 1.

So we obtain a matching M_1 , finitely many induced stars and triangles, all of which span our given graph G. Note that the matching M_1 can also be treated as a finite collection of induced stars K_2 . Consequently, we obtain an induced star-triangle factor of G.

To conclude our main result, we claim the following.

Claim 2. The set $\cup S_u$ is independent.

To see this, let $\{v_1, v_2\} \subseteq \cup S_u$. We have to prove that $v_1v_2 \notin E(G)$. If $\{v_1, v_2\} \subseteq S_u$, for some u, then this follows by Claim 1. Without loss of generality, it is enough to assume that $v_1 \in S_{u_1}$ and $v_2 \in S_{u_2}$.

We have the following cases to consider.

1. $\{v_1, v_2\} \subseteq M'$. To prove by contradiction, assume that $v_1v_2 \in E(G)$.

By our construction, $|S_{u_1}| \ge 2$ and $|S_{u_2}| \ge 2$. Therefore, we can choose $x_1 \in S_{u_1}$ and $x_2 \in S_{u_2}$ such that $x_1 \ne v_1$ and $x_2 \ne v_2$. Then $\{x_1, x_2\} \subseteq I$ and $\{u_1v_1, u_2v_2\} \subseteq M$. Therefore, $x_1u_1v_1v_2u_2x_2$ is an M-augmenting path, concluding that M is not the maximum matching, a contradiction.

- 2. $\{v_1, v_2\} \subseteq I$. Clearly, $v_1v_2 \notin E(G)$, as I is an independent set.
- 3. $\nu_1 \in M'$ and $\nu_2 \in I$. (The other case $\nu_1 \in I$ and $\nu_2 \in M'$ is similar.) To prove by contradiction, assume that $\nu_1\nu_2 \in E(G)$.

Since $|S_{u_1}| \ge 2$, there exists some $x_1 \in S_{u_1} \setminus \{v_1\}$. As S_u has only one vertex from M' and $v_1 \in M'$, we have $x_1 \in I$. Also, $u_1v_1 \in M$ ensures that $x_1u_1v_1v_2$ is an M-augmenting path. Thus, M is not the maximum matching, a contradiction.

Therefore, in every case $v_1v_2 \notin E(G)$. This establishes claim 2. Hence, Theorem 1 is proved.

Acknowledgements

We are grateful to the anonymous referee for his useful suggestions.

References

- J. Akiyama and M. Kano, Factors and factorizations of graphs, *Lecture Notes in Math.*, 2031 Springer, 2011.
- [2] A. Amahashi and M. Kano, On factors with given components, *Discrete Math.*, 42 (1983), 1–6.

- [3] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Nederl. Akad. Wetensch. Indag. Math., 40 (1978), 165–170.
- [4] Y. Egawa, M. Kano and Z. Yan, Star-cycle factors of graphs, Discussiones Mathematicae Graph Theory, 34 (2014), 193–198.
- [5] R. Kumar and S. P. Singh, SIG-dimension conjecture proved for graphs having a perfect matching, *Discrete Math. Algorithms Appl.*, 9,1 (2017), 1750008 (24 pages).
- [6] M. Las Vergnas, An extension of Tutte's 1-factor theorem, *Discrete Math.*, 23 (1978), 241–255.
- [7] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012.
- [8] W. T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc., 4 (1953), 922–931.

Received: August 22, 2020