M‘ Acta UNIV. SAPIENTIAE, MATHEMATICA, 13, 1 (2021) 239-257

DOI: 10.2478 /ausm-2021-0014

Some new inequalities via s-convex
functions on time scales

Naila Mehreen Matloob Anwar
School of Natural Sciences, National School of Natural Sciences, National
University of Sciences and Technology, University of Sciences and Technology,
H-12 Islamabad, Pakistan H-12 Islamabad, Pakistan
email: nailamehreen@gmail. com email: matloob.t@gmail.com

Abstract. In this paper, we prove some new integral inequalities for
s-convex function on time scale. We give results for the case when time
scale is R and when time scale is N.

1 Introduction

The study of various types of integral inequalities for convex functions has been
the focus of great attention for well over a century by a number of scientists,
interested both in pure and applied mathematics. Out of these inequalities
Ostrowski inequality and Hermite-Hadamard inequality are the most common
inequalities. These two inequalities have applications in numerical analysis,
probability, optimization theory, stochastic, statistics, information and inte-
gral operator theory. Also these inequalities have various implementation in
trapezoid, Simpson and quadrature rules, etc. The basic definitions of Os-
trowski and Hermite-Hadamard inequalities are as follows.

The Ostrowski inequality [21] for a differetiable mapping Y on the interior
of an interval T with | Y/ (c)] < M, where Y’ implies first derivative of Y, is
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defined as:

1 k — bitba
< M(bz —by) 4+<(bz—12)1)2> , (1)

- — v
Y(k)— J Y(c)dc
‘ by — by Jy,

for by < by € 7. This inequality gives an upper bound for the approximation of
the integral average —ﬁ f&z Y (c)dc by the value Y (c) at point ¢ € [by, bs].
The above inequality is then further generalized by researchers. For instance
see [2, 6, 19]. On the other hand, for a convex function Y : T — R on an
interval T, the Hermite-Hadamard inequality [10, 11] is defined as:

b;+b 1 b2 b b
Y< 142r 2> sz_mJ v(e)de < Y ( 1)-2FY( 2)) (2)

by

for all by, by € 7 with by < by. The inequality (2) is the special case of Jensen
inequality. For more generalizations and details see [9, 13, 14, 15, 16, 17, 18, 20].

During last few decades, the inequalities (1) and (2) have been proved on
time scale, see [1, 3, 7, 8, 23] for more information. Of course the role of
inequalities (1) and (2) on time scales are similar as in usual sense. Here we
prove some Ostrowski and Hermite-Hadamard’s type inequalities for s-convex
functions on time scale. We also extend the results given in [22]. In [22], Tahir
et. al. proved several useful identities for convex functions on time scales. By
using some of these identities we find certain useful inequalities for s-convex
functions. Our work has many mathematical applications and has flexibility
to extend it for more useful results.

2 Preliminaries

A time scale is a nonepmty closed subset T of R. Most common examples are
R and N.

The forward and the backward jump operators respectively, denoted by o
and p, are defined as:

o(k)=inflce T:c >k}, p(k)=sup{c € T:c <k},

for all k € T.

The number k is called right-scattered if o(k) > k and is called left scattered
if p(k) < k. Moreover, k is called isolated if both the right-scattered and the
left-scattered. Similarly, the number k is called right dense or left dense if
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o(k) =k or p(k) =k, respectively. Furthermore, k is called dense if it is right
dense and left dense simultaneously.
The mappings @, t: T — [0, 00) defined by

are known as forward and backward graininess functions, respectively.

A function Y : T — R is called rd-continuous C,4 if it is continuous at right-
dense points of T and its left-sided limits exist (finite) at left-dense points of
T.

If Yy € Cq and kg € T, then we have

F(k) = J: Y(c)Ac, keT.

That is, for ¥ € Cpq implies j};j Y (c)Ac = F(by) — F(b,), where FA = v

Theorem 1 ([4]) Letb;,by,b3 €T, Y, Y1, Y2 € Crq, @ € R and o is forward
Jump operator, then

(@) Je2(¥1(e) + Yale))Ac = [ Yi(e)Ac + [12 Ya(c)Ac;
(ii). f;j ® Y (c)Ac =@ [¢* Y (c)Ac;
(iii). [o! ¥ = _fgf Y(c)Ac
) Je2 Y(e)Ac = [2 Y(c)Ac+ [2 ¥ (c)Ac;
(v). Ef Y9(c) Y& (e)Ac = (Y172)(ba) — (Y1Y2)(b1) — [2 ¥{(c) Y2 (¢)Ac;
(vi). ﬂjf Yi(c) Y2 (e)Ac = (Y1Y¥2)(b2) — (Y1¥2)(b1) — Ef Yi(e) Y9 (e)Ac;
(vii). [o! Y = 0;
(viii). If Y(c) > 0 for all c, then fb c)Ac > 0;

(ix). If | Y1 (c)] < Ya(c) on [by,by], then

Jbz Y1(c)Ac

b2
< J Y3 (c)Ac.
by

by
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From Theorem 1 (ix), for Y,(c) =1 Y5 (c)| on [by,b;], we have

b, by
J Y (c)Ac gJ | Y (c)|Ac.
by by

Definition 1 ([12]) Consider a time scale T and s € (0,1]. A function Y :
T C T — Ry, where Ry = [0,00), is called s-convex function in second sense,
if
Y (thy + (T —t)bz) < t° ¥ (b1) + (1 —1)° Y (b2), (3)
for all by, b2 € T and t € [0,1].

3 Main results

First we prove the following identity.

Lemma 1 Consider a time scale T and T = [b1,bz] C T such that by < by €
T. Let Y : T — R be a delta differentiable mapping on T°, where T° is the
interior of T. If Y& € Cyq then following equality holds:

Y(bi)+ (b)) 1
2 b, — by

_ ]“bz(c—b ) yA (c)Ac—Jbz(b o) vA (C)AC]
“ 206, —bp) Lo, b '

b2
J Y9(c)Ac
(4)

Proof. By using the formula
bz bZ
J Y1) ¥4 ()Ac(¥1Y2)(ba) — (Y172)(b) —J vA(e) ¥$ (¢)Ac,
b] b]

with Yq(c) = bc bb‘ , Ya2(c) = Y (c) in first integral and Y1 (c) = bc1 % v,(c) =
Y (¢) in second 1ntegral , we have

b, —b b, —b
J ¢ L ya (c)Ac —J c—m Y2 (¢)Ac
b, b1 —b2

12, L
el @ad - [~ o0+ [ | )

bs
Y (b1)+ Y (by) — —2 J ¥7(c)Ac.
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Then by multiplying % on both sides of equation (5), we get the required
equality (4) (also see the proof of Lemma 3.1 in [5]). O

Corollary 1 Let T =R in Lemma 1, then we have

Y (by) + Y(by) B 1
2 b, — b,
1 . ©)

b, / /
= 30, =57] Um (c—b1) Y (C)dC_L] (by—c) Y (c)dc}

Corollary 2 Let T =N in Lemma 1. Let by =0, by =d, c =x and Y (k) =
Cx, then

Jbz Y(c)dc

d d—1
Co -I- Cq

4 Z Z XAcy — Z (d —x)Acy (7)

x=0 x=0 x=0

Corollary 3 Under the assumptions of Lemma 1, we have
b b 1 b2
Y(b1) 4+ ¥(b2) J YOl Ac
2 by — by

1 (8)

bz—b] ! A A
= H ty (tbz—i—U—t)b])At—J ty
0

(tby + (1 —t)bz)At].
2 0

Proof. In Lemma 1 using change of variable method, that is, by taking t =

C—b]
b, by We find

by c— b] A 1 A
J Y2 (¢)Ac = (by — bq) J t Y2 (tby + (1 — t)by)At. (9)
0

b, b2 — Dy
Similarly, by taking t = bb , we get
Y2 (c)Ac = (b —by) | t Y2 (tby + (1 —t)by)At. (10)
b, b1 —b2 0
Hence by using (9) and (10), we get the required equality (8). O

Theorem 2 Consider a time scale T and T = [by,by] C T such that by <
by € T. Let Y : T — R be a delta differentiable mapping on 1°, where T° is the
interior of T. If | Y2 | is s-convex then following inequality holds:
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by — by

M (172 2 +1 Y2 (01)])
()

Y (b1) + Y (by) 1 Jbz

o
_ <
> —— Y (c)Ac‘ <

by

where

1
A :J (! + t(1 — t)%)At.
0

Proof. Using Corollary 3, property of modulus and convexity of | Y2|, we find

Y (b2) + Y (b1) 1 Jbz -
— Y°(c)Ac
’ 2 by — by Jy, (c)
. 1
< szJ U t] Y2 (tby + (1 — t)by)|At

0

1
+J t] Y2 (tby + (1 — t)bz)IAt]
0

IN

1
b2 b U {617 (b)) + (1 — 1)) ¥4 (br) )AL (12)
2 0

1
+ L H{E] A (1) + (1 — 1)) v (bz)|}At]

=222 (1 ool + 12 o)) |

by — by

= 220 (12 o)+ 2 (b))

1

(! + (1 — t)S)At}

Hence the proof. O

Remark 1 If T =R, then inequality (11) becomes:

b2
Y (b1) 4 Y (b2) 1 J (I (B2l + 1Y (b1)l) . (13)

by — by
- <
> —— Y(c)dc‘

b - Z(S + 1 )
Theorem 3 Consider a time scale T and T = [by,by] C T such that by <
by € T. Let Y : T = R be a delta differentiable mapping on 1°, where 7° is
the interior of T. If | Y2 |9 is s-convex, for q > 1 such that % + % =1, then
following inequality holds:
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‘Y(szY(bﬂ 1 Jbz Yo(c)Ac

2 " by — by

1
B ! 1

< bz h (J tTAt>
2 0

| i W
x [(J (ﬁ|vA(bznq+-u-—tr|vﬂtb1n€)At>
0

by

: 3
- (J (tsl YA (b)|9+ (1 —1)% v2 (bz)lq) At)

0

Proof. Using Corollary 3, property of modulus, Holder’s integral inequality
and convexity of | Y2 |9, we find

Y (ba) + Y (b1) 1 fzg
— Y9 (c)Ac
‘ 2 by — by Jy, (c)
by —bi| (', 4 Tooa
== tY2 (thy + (1 —t)by)At — | t Y2 (tby + (1 —t)by)At
0 0
b—bi [, _a Tooa
< —5 t Y2 (tby+(1—t)by)At| + t Y2 (tby + (1—1t)by)At
0 0
1 1
bZ —b] 1 . T 1 A q
< _ q
<2 <Lt At> [(L ‘Y (tby + (1 t)bﬂ’At (15)

n <J] ‘YA(tb1 + (1 —t)bz)‘q At);]

0

_ 1

<25 (J ) |
2 0

1 3
+ <J (tsl YA (by)|9 4+ (1 — )] ¥4 (bz)lq> At>

0

1

1 q
J‘(PIYAﬂan+(1—tPIYA(h)W)A{>

0

==

Hence the proof. O

Remark 2 If T =R, then inequality (14) becomes

Y (by) + ¥ (by) 1 by—by (17 (b7)9+ ¥ (by)9\ @
' : _m_mLqu<HHﬂ< o ).

(16)
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Lemma 2 Consider a time scale T and T = [b1,bz] C T such that by < by €
T. Let Y : T — R be a delta differentiable mapping on T°, where T° is the
interior of T. If Y2 € Cyq then following equality holds:

b2
Y <b1 +b2> — ] J Y9(c)Ac
by

2 b, — by
bitby (17)
T c—by _, Jbz c— by A
= Y A —1)Y Ac.
Lﬁ by — by (c)Ac + bl;bz by — by (c)Ac
Proof. By using the formula
b2 b2
| viter v te1ae = triva)(en) = (riva)(on = | vie) 8 (elac,
by by

with Yi(c) = bC;bb]], Y2(c) = Y(c) in first integral and Y;(c) = bcz_fb‘] -1,
Y>(c) = Y(c) in second integral, we have

by+by

2 C_b] A bz C_b2 A
Y A Y A
Jm by — by (e) C+Jbl§‘”2 by — by (e)ac

by+by

1 bi+b 1
:y<1+2>— J ’ Y9(c)Ac
2 2 b2 - b] b] (18)
1 b; + by 1 b2 o
— A
2 < 2 ) b, — by Jbﬁzrbz rrleac
b + b2> 1 Jbz 5
— Y°(c)Ac.
< ba — by Jy, (e)
Hence the proof. O
Corollary 4 Let T =R in Lemma 2, then
by + bz) 1 Jbz
Y . Y(c)dc
( 2 bz — b1 Jy, le)
(19)

b]erbz C—b] b2 C—b1
:J Y’(c)dc—i—J < 1) v/ (¢)de.

by +b2 by — by
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Corollary 5 Let T = N in Lemma 2. Let by = 0, by = d(with d is even),
c =x and Y(k) = cy, then

1 & 1 7 d—1
—-q Z &=y xAc+ — ) (x—d)Ac. (20)
x=0

x=0 _d
X=3

Cc

(SN

Corollary 6 Under the assumptions of Lemma 2, we have

b] +b2> 1 Jbz o
Y — Y (c)Ac
( 2 by — by Jp, )

12
~ (b, —by) H £ (tby + (1 — )by )AL (21)

0

1
+J (t—1)YA(tb2—|—(1—t)b1)At}
1/2

Proof. In Lemma 2 using change of variable method, that is, by taking t =
C—b]

b, by We find

1; 2 c—b 1/2
J L YA (¢)Ac = (bz—b1)J t Y2 (tby + (1 —t)by)AL,  (22)
b, b, — by 0

and

b> —b 1
J <° ‘ —1>YA (c)Ac:(bz—bﬂJ (t—1) Y2 (tby + (1 — t)by)At.
bl;bz bz—b] 1/2

(23)
Hence by using (22) and (23), we get the required equality (21). O

Theorem 4 Consider a time scale T and T = [b1,b2] C T such that by <
by € T. Let Y : T — R be a delta differentiable mapping on 1°, where T° is the
interior of T. If | Y2 | is s-convex then following inequality holds:

by + bz) 1 Jbz o
Y — Y°(c)Ac
' < 2 bZ - b] b ( )

where

< (02=b1) (il ¥ (02) + Hal Y2 (01)]),
(24)

1 1

2 1 2 1
H; :J ts“AtJrL t5(1 —t)At, and H, :J t(1 —t)SAt—i—J] (1—t)At.

0 3 0 2
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Proof. Using Corollary 6, property of modulus and s-convexity of | Y2 |, we

find
b1-+5b2) 1 Jbz o
Y — Y°(c)Ac
‘ ( 2 by — by Jy, (c)

1/2
< (by —by) UO t] Y2 (thy + (T —t)by)lAt

1
+J It— 1] Y2 (tby, + (1 —t)b1)|At]
1/2 (25)

1/2
< (b2~ b) “O (81 (02)l + (1 0% 7 (b)) At
1
# ] 01 o)+ 0= ¥ o) ¢

< (02— br) (il Y2 (02)] + Hal Y2 (01)]),

where

1 1 1

2 s+1 1 N 2 s s+1
Hi= | ¢7At+ | (1 —0AL and Hy = |~ t(1—t°At+ | (1— 1) AL,
2

1
0 0 1

Hence the proof is completed. O

Corollary 7 If T =R in Theorem 4, we get

1

H; :r tS“dt—i—J] (1 —t)dt = ] [1 ] }
0 1 (s+1)(s+2) 251 )0
and
1 1
szjzt(]—t)sdt—kJ’ (1—t)dt = 1 [1— 1 ]
0 1 (s+1)(s+2) 2s+1

Hence inequality (24) becomes

by + by 1 b2

'Y ( > ) b, D, L” Y(c)dc
by — by 1 , /

= G+1)(s+2) (1 —23+1> (I ()l + 1Y (b2)]) .

(26)
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Theorem 5 Consider a time scale T and T = [by,by] C T such that by <
by € T. Let Y : T = R be a delta differentiable mapping on 1°, where 7° is
the interior of T. If | Y2 |9 is s-convex, for q > 1 such that % —|—% =1, then

following inequality holds:
1
b1 +b 1 (b 12 T
‘Y ( 1 2) — J Y°%(c)Ac J t'At
2 by — b1 Jy, 0

1/2 12 q
X ( A (bz)qj AL+ YA (b1)|qJ (1 —t)SAt>

< (b2 —by)

0 0

1 T
+ (L/zﬂ —t) At)

: : 3
x(YA(bz)qJ tsAt+|YA(b1)|qJ (1—t)5At>

1/2 12

Proof. Using Corollary 6, property of modulus, Holder’s integral inequality
and s-convexity of | Y2 |9, we find

b +b2> 1 Jbz o
Y — Y°(c)Ac
‘ < 2 bz_b] b ( )

< (bz—b1)[

12
J t Y2 (tby + (1 —t)by)At
0

1
+ J (t—1) Y2 (tby + (1 — t)by)At

1/2

1/2 ¥ 1/2 q
g(bz—bn[(L t*At) (L IYA(tb2+(l—t)b1)|th> (25)

1 1
1 T 1 q
+ (J Im— tMt) (J | Y2 (tby 4 (1 — t)by )|th)
1/2 1/2

12 ¥/ a
S(bz—bﬂlg tht) <J (tswﬂ(bznwm—t)swA(bumAt)

0 0

i v
(e

1

1
L/z(tsl YA (b)) +(1 = )° v2 (b1)lq)At>
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12
= (by — by) [ (Jo tTAt)

1 1

1 T 1 1 q
+ (J (1 —t)TAt> (| & (b2)|qJ tAt+| v (b1)|qJ (1 —t)SAt> .
1/2 1/2 1/2

Hence the proof. O

1

1/2 1/2 ]
<| A (b2)|qj AL+ | ¥2 (b1)|qJ (1 —t)SAt>
0 0

==

Corollary 8 If T =R in Theorem 5, then we have

1 1
2 T _ T _ 1
Ltdt_JU t) dt_i(r+1)2“r1’

1
(s + ])25+1 )

1

JZ tsdt:J (1—t)%dt =

1
0 2

- N=

and

%] t)5dt ]tsdt ! ]
Jo( -y _L Ts+1 (s 125t

Hence the inequality (27) becomes
by +bz> 1 Jbz
Y — Y(c)dc
’ < 2 by — by Jyp, (c)
1 i 1
< — ' ! q
1
1 1 , ql?
- <s+1 _25+‘(s+1)> Y7 (1)l }

1
1 , q 1 1 , ql?
R L i) ML
Definition 2 ([5]) Let hy: T? — R, k € Ny be defined by
ho(t,r) =1 for allr,t €T

and then recursively by
t

hier (6, 7) = j h(T, T)AT

T

forallr,t e T.
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For next result we need following lemma.

Lemma 3 ([22]) Let Y : T — R be a differentaible mapping and b1 < by € T.
Let Y& € Cpq then following holds:

b2
¥ (o)1 = ha(1, 001+ ¥ (b2)a(1,0) — = [ * r¥(e)ac
:bz_b{[J[w%w1+m—ﬂbg—vﬁﬂn+(r—ﬂmnw—ﬂAum.
2 Jolo

Theorem 6 Let Y : T — R be a differentaible mapping and by < by € T. Let
| YA | be s-convex function, then following inequality holds:

Jbz Y9 (c)Ac

by

' ¥ (011 = Ra(1, 00} 4 ¥ (b2)ha (T, 0) —

by — by
2

< (AT Y2 (01)] + Azl Y2 (b)),

where

1 pl
Ay = J J (£ +15)(r + t)AtAT,
0

11
A :J J (T—=1)°4+ (1 —=7)°)(r + t)AtAr.
0Jo

Proof. Using Lemma 3, modulus property and s-convexity of | Y2 |, we have

b2
]v (611 = ha(1, 00} + ¥ (b2)ha(1,0) — |7 oo

by

by — by

1 1
< o ;b] J J | Y2 (tby 4+ (1 — t)bz) — YA (rby + (1 — 1)by)|[r — t/AtAr
0Jo
BRI
= bzzb] J J [ v® (tbr+(1—t)ba)|+| Y2 (rby+(1—7)ba)[J(r+t)AtAr
0Jo
PRt (32)
< 22700 s A (b)) 4 (1= 5] Y2 (b))

-2 Jolo
+ (Y2 (b)) 4+ (1 =1)% Y2 (b2))](r + t)AtAT
Cba—by 1

2 Jolo
b,—Db
= 22 LAY Y2 (b1)] + Aal Y2 (1),

(519 YA (by)| 4+ ((1—t)+(1—7)9)[ Y2 (by)[] () AtAr
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where

11
A4 :J J (t° +1°)(r + t)AtAr,

1 p1
A, = J J (1—1)° + (1 —1)%)(r + ) AtAT.
0Jo

Hence the proof. O

Corollary 9 Let T =R in Theorem 6, then we have o(b) =b and

1
1
h,(1,0) :J (t—1)dt = =.
0 2

Also,
L 3s+4

— N S —

Aq L L(t +r )(T+t)dtdri—(s+1)(s+2)’

101 |
Az:Jo Jo(“ —+(1—1) )(T+t)dth=2[3(2,s+1)+ma

and hence inequality (31) becomes,

Y (b7) + Y (by) 1 Jbz

— Y (c)dc
’ 2 by — by Jy, (e)
<b2—b1 3s+4

)> Y’ (b1)] + <2[3(2,S+ 1)+ Sl]> s (b2)|]>
(34)

- 2 [((s+1)(s+2

where 3 is Beta function.

Lemma 4 ([22]) Let Y : 71 C T — R be a delta differentaible mapping on T°
and by < by € 7. Let Y2 € Cpq then following equality holds:

b +b2> 1 Jbz o
Y — Y°%(c)Ac
( 2 bz_b] b ( )

—by 1 35
_ b 5 b LL [Y2(tb; + (1 —t)by) (35)

—Y2(rby + (1 = 1)b2)](m(r)—m(t)AtAr,



Inequalities for s-convex functions on time scales 253

where
1
c, ceE [O, 2}

1
7] 7‘]-
c—1, cE(z,]

Theorem 7 Let Y : 7T C T — R be a delta differentaible mapping on 1° and
by < by € 7. Let | Y2 | be s-convex function, then following inequality holds:

b1+bz> 1 Jbz 5
Y — Y% (c)Ac
' ( 2 by — by Jy, (c)

where

b,—Db
< %[Bn Y2 (by)] + Bz Y2 (b2)]],

(36)

11
B —J J (t* +7r*)(m(r) + m(t))AtAr,
0Jo

1 1
B> :J J (1T—=1)°+ (1 —=1)%)(m(r) + m(t))AtAr.
0JoO

Proof. Using Lemma 4, modulus property and s-convexity of | Y2 |, we have

by +b2> 1 Jbz .
Y — Y7 (c)Ac
( 2 bz — by Jy, (€)

- bz—b] rl 1
o 2 Jo Jo
— Y2(rb; + (1 = 1)b3)[[m(r) — m(t)|AtAT
_ bz—b] r1 1
- 2 Jolo
+ Y2 (rby + (1 = 1)b2)|l(m(r) + m(t))AtAr
bz—b] rl 1
<
2 JO JO
p)l+ (1 =11 Y2 (p2)DI(m(r) + m(t))AtAr
by —by 1ol
2 Jodo
+((T=1)5+ (1 =7)%) Y2 (b)[I(m(r) + m(t))AtAr
_ by—by
-2

| Y2 (tby + (1 —t)by)

[ Y2 (thy + (1 —t)by)|

(£ Y (b1)] + (1= £)°] Y2 (b2)])

+

=

<
>

[(t° + 1) Y2 (by)]

[B1l Y2 (b1)| + Bal Y2 (b2)1l,



254 N. Mehreen, M. Anwar

where
1 pl
By = L L(t %) (mr) + m(t))AtAr,
1 pl
B, :J J (1= 1) + (1 — 1)) (m(r) + m(t)) AtAr.
0JO
Hence the proof. O

Corollary 10 Let T =R in Theorem 7, then we have o(b) =b and

11 . . B 1 1 2
B, =L L(t +19)(m{r) + m{t)dedr = —— [Z—HZ] (38)

:JJ (1=0)° + (1= 1)%)(m(r) + m(t)dtdr

] (39)
— ZBZ (2 S + ]) m,
and hence inequality (36) becomes,
Y (b1) + ¥ (b2) 1 Jbz
' > —— Y (c)dc
by — by 1 1 2 ,
- 1_ 40
=72 Ksﬂ [28 s+2]>|Y (b1) (40)

+ (2832540~ ) 1Y ]

where By is incomplete Beta function defined by

U
Bu(by, by) = J (1 =P dx, ue (0,1).
0

4 Conclusion

This research investigation includes some inequalities for s-convex function on
time scales such as Hermite-Hadamard type inequalities. Some special cases
are discussed, that is, when the time scale is T=R and T = N.
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