

DOI: 10.2478/ausm-2021-0015

Certain classes of bi-univalent functions associated with the Horadam polynomials

Halit Orhan

Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey email: orhanhalit607@gmail.com

Paduvalapattana Kempegowda Mamatha

Department of Mathematics, R. V. College of Engineering, Bangalore-560 059 Karnataka, India email: mamatharaviv@gmail.com

Nanjundan Magesh

Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India email: nmagi_2000@yahoo.co.in

Sondekola Rudra Swamy

Department of Computer Science and Engineering, R. V. College of Engineering, Bangalore-560 059 Karnataka, India email: mailtoswamy@rediffmail.com

Jagadeesan Yamini Department of Mathematics, Govt First Grade College, Vijayanagar, Bangalore-560104, Karnataka, India email: yaminibalaji@gmail.com

Abstract. In this paper we consider two subclasses of bi-univalent functions defined by the Horadam polynomials. Further, we obtain coefficient estimates for the defined classes.

²⁰¹⁰ Mathematics Subject Classification: 11B39, 30C45, 33C45, 30C50, 33C05. Key words and phrases: univalent functions, bi-univalent functions, bi-convex functions, bi-starlike functions, Fekete-Szegő inequality, Horadam polynomials

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
(1)

which are analytic in the open unit disk $\Delta = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by S we shall denote the class of all functions in \mathcal{A} which are univalent in Δ .

It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \qquad (z \in \Delta)$$

and

$$f(f^{-1}(w)) = w$$
 $(|w| < r_0(f); r_0(f) \ge \frac{1}{4}),$

where

$$f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if both the function f and its inverse f^{-1} are univalent in Δ . Let Σ denote the class of bi-univalent functions in Δ given by (1).

In 2010, Srivastava et al. [28] revived the study of bi-univalent functions by their pioneering work on the study of coefficient problems. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ in the Taylor-Maclaurin series expansion (1) were found in the very recent investigations (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30]) and including the references therein. The afore-cited all these papers on the subject were actually motivated by the work of Srivastava et al. [28]. However, the problem to find the coefficient bounds on $|a_n|$ $(n = 3, 4, \dots)$ for functions $f \in \Sigma$ is still an open problem.

For analytic functions f and g in Δ , f is said to be subordinate to g if there exists an analytic function w such that

$$w(0) = 0$$
, $|w(z)| < 1$ and $f(z) = g(w(z))$ $(z \in \Delta)$.

This subordination will be denoted here by

$$f \prec g$$
 $(z \in \Delta)$

or, conventionally, by

$$f(z) \prec g(z) \qquad (z \in \Delta).$$

In particular, when g is univalent in Δ ,

$$\mathsf{f}\prec\mathsf{g} \qquad (z\in\Delta)\ \Leftrightarrow\ \mathsf{f}(\mathsf{0})=\mathsf{g}(\mathsf{0}) \quad ext{and} \quad \mathsf{f}(\Delta)\subset\mathsf{g}(\Delta).$$

The Horadam polynomials $h_n(x, a, b; p, q)$, or briefly $h_n(x)$ are given by the following recurrence relation (see [14, 15]):

$$h_1(x) = a$$
, $h_2(x) = bx$ and $h_n(x) = pxh_{n-1}(x) + qh_{n-2}(x)$ $(n \ge 3)$ (2)

for some real constants a, b, p and q.

The generating function of the Horadam polynomials $h_n(x)$ (see [15]) is given by

$$\Pi(\mathbf{x}, z) := \sum_{n=1}^{\infty} h_n(\mathbf{x}) z^{n-1} = \frac{a + (b - ap)xz}{1 - pxz - qz^2} .$$
(3)

Here, and in what follows, the argument $x \in \mathbb{R}$ is independent of the argument $z \in \mathbb{C}$; that is, $x \neq \Re(z)$.

Note that for particular values of a, b, p and q, the Horadam polynomial $h_n(x)$ leads to various polynomials, among those, we list a few cases here (see, [14, 15] for more details):

- 1. For a = b = p = q = 1, we have the Fibonacci polynomials $F_n(x)$.
- 2. For a = 2 and b = p = q = 1, we obtain the Lucas polynomials $L_n(x)$.
- 3. For a = q = 1 and b = p = 2, we get the Pell polynomials $P_n(x)$.
- 4. For a = b = p = 2 and q = 1, we attain the Pell-Lucas polynomials $Q_n(x)$.
- 5. For a = b = 1, p = 2 and q = -1, we have the Chebyshev polynomials $T_n(x)$ of the first kind
- 6. For a = 1, b = p = 2 and q = -1, we obtain the Chebyshev polynomials $U_n(x)$ of the second kind.

Abirami et al. [1] considered bi- Mocanu - convex functions and bi- μ - starlike functions to discuss initial coefficient estimations of Taylor-Macularin series which is associated with Horadam polynomials, Abirami et al. [2] discussed coefficient estimates for the classes of λ -bi-pseudo-starlike and bi-Bazilevič functions using Horadam polynomial, Alamoush [3, 4] defined subclasses of bi-starlike and bi-convex functions involving the Poisson distribution series involving Horadam polynomials and a class of bi-univalent functions associated with Horadam polynomials respectively and obtained initial coefficient estimates, Altınkaya and Yalçın [7, 8] obtained coefficient estimates for Pascutype bi-univalent functions and for the class of linear combinations of biunivalent functions by means of (p,q)-Lucas polynomials respectively. Aouf et al. [10] discussed initial coefficient estimates for general class of pascu-type bi-univalent functions of complex order defined by q-Sălăgean operator and associated with Chebyshev polynomials, Awolere and Oladipo [11] found initial coefficients of bi-univalent functions defined by sigmoid functions involving pseudo-starlikeness associated with Chebyshev polynomials, Naeem et al. [18] considered a general class of bi-Bazilevič type functions associated with Faber polynomial to discuss n-th coefficients estimates. Magesh and Bulut [19] discussed Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Orhan et al. [21] discussed initial estimates and Fekete-Szegö bounds for bi-Bazilevič functions related to shell-like curves, Sakar and Aydogan [23] obtained initial bounds for the class of generalized Sălăgean type bi- α – convex functions of complex order associated with the Horadam polynomials, Singh et al. [24] found coefficient estimates for bi- α -convex functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Srivastava et al. [25] introduced a technique by defining a new class bi-univalent functions associated with the Horadam polynomials to discuss the coefficient estimates, Srivastava et al. [27] gave a direction to study the Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Srivastava et al. [29] obtained general coefficient $|a_n|$ for a general class analytic and bi-univalent functions defined by using differential subordination and a certain fractional derivative operator associated with Faber polynomial, Wanas and Alina [30] discussed applications of Horadam polynomials on Bazilevič bi-univalent functions by means of subordination and found initial bounds. Motivated in these lines, estimates on initial coefficients of the Taylor-Maclaurin series expansion (1) and Fekete-Szegő inequalities for certain classes of bi-univalent functions defined by means of Horadam polynomials are obtained. The classes introduced in this paper are motivated by the corresponding classes investigated in [16, 20].

2 Coefficient estimates and Fekete-Szegő inequalities

A function $f \in \mathcal{A}$ of the form (1) belongs to the class $\mathcal{G}_{\Sigma}^{*}(\alpha, x)$ for $0 \leq \alpha \leq 1$ and $z, w \in \Delta$, if the following conditions are satisfied:

$$\alpha\left(1+\frac{zf''(z)}{f'(z)}\right)+(1-\alpha)f'(z)\prec\Pi(x,\ z)+1-\alpha$$

and for $g(w) = f^{-1}(w)$

$$\alpha\left(1+\frac{wg''(w)}{g'(w)}\right)+(1-\alpha)g'(w)\prec\Pi(x,\ w)+1-\alpha,$$

where the real constant a is as in (2).

Remark 1 The classes $\mathcal{K}_{\Sigma}(x)$ and $\mathcal{H}_{\Sigma}(x)$ are defined by $\mathcal{G}_{\Sigma}^{*}(1, x) := \mathcal{K}_{\Sigma}(x)$ and introduced by [1] and $\mathcal{G}_{\Sigma}^{*}(0, x) := \mathcal{H}_{\Sigma}(x)$ introduced by [4] respectively.

For functions in the class $\mathcal{G}^*_{\Sigma}(\alpha, x)$, the following coefficient estimates and Fekete-Szegő inequality are obtained.

Theorem 1 Let
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 be in the class $\mathfrak{G}_{\Sigma}^*(\alpha, x)$. Then

$$|a_2| \le \frac{|bx|\sqrt{|bx|}}{\sqrt{|(3-\alpha)b^2x^2 - 4(px^2b + qa)|}}, \quad and \quad |a_3| \le \frac{|bx|}{3(\alpha+1)} + \frac{b^2x^2}{4}$$

and for $\nu \in \mathbb{R}$

$$\left|a_{3}-va_{2}^{2}\right| \leq \begin{cases} \frac{|bx|}{3\alpha+3} & if |v-1| \leq \frac{\left|(3-\alpha)b^{2}x^{2}-4(px^{2}b+qa)\right|}{b^{2}x^{2}(3\alpha+3)} \\ \frac{|bx|^{3}|v-1|}{|(3-\alpha)b^{2}x^{2}-4(px^{2}b+qa)|} & if |v-1| \geq \frac{\left|(3-\alpha)b^{2}x^{2}-4(px^{2}b+qa)\right|}{b^{2}x^{2}(3\alpha+3)} \end{cases}$$

Proof. Let $f \in \mathcal{G}^*_{\Sigma}(\alpha, x)$ be given by the Taylor-Maclaurin expansion (1). Then, there are analytic functions r and s such that

$$r(0) = 0; \quad s(0) = 0, \quad |r(z)| < 1 \quad \text{and} \quad |s(w)| < 1 \quad (\forall \ z, \ w \in \Delta),$$

and we can write

$$\alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) + (1 - \alpha) f'(z) = \Pi(x, r(z)) + 1 - a$$
(4)

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) + (1 - \alpha)g'(w) = \Pi(x, \ s(w)) + 1 - \alpha.$$
 (5)

Equivalently,

$$\alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) + (1 - \alpha) f'(z)$$

$$= 1 + h_1(x) - a + h_2(x) r(z) + h_3(x) [r(z)]^2 + \cdots$$
(6)

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) + (1 - \alpha)g'(w)$$

= 1 + h₁(x) - a + h₂(x)s(w) + h₃(x)[s(w)]² + (7)

From (6) and (7) and in view of (3), we obtain

$$\alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) + (1 - \alpha) f'(z)$$

$$= 1 + h_2(x) r_1 z + [h_2(x) r_2 + h_3(x) r_1^2] z^2 + \cdots$$
(8)

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) + (1 - \alpha)g'(w)$$

$$= 1 + h_2(x)s_1w + [h_2(x)s_2 + h_3(x)s_1^2]w^2 + \cdots .$$
(9)

If

$$\mathbf{r}(z) = \sum_{n=1}^{\infty} \mathbf{r}_n z^n$$
 and $\mathbf{s}(w) = \sum_{n=1}^{\infty} \mathbf{s}_n w^n$,

then it is well known that

 $|r_n| \leq 1 \qquad {\rm and} \qquad |s_n| \leq 1 \qquad (n \in \mathbb{N}).$

Thus upon comparing the corresponding coefficients in (8) and (9), we have

$$2\mathfrak{a}_2 = \mathfrak{h}_2(\mathbf{x})\mathfrak{r}_1 \tag{10}$$

$$3(\alpha + 1)a_3 - 4a_2^2\alpha = h_2(x)r_2 + h_3(x)r_1^2$$
(11)

$$-2a_2 = h_2(\mathbf{x})s_1 \tag{12}$$

and

$$2(\alpha+3)a_2^2 - 3(\alpha+1)a_3 = h_2(x)s_2 + h_3(x)s_1^2.$$
 (13)

From (10) and (12), we can easily see that

$$\mathbf{r}_1 = -\mathbf{s}_1, \quad \text{provided} \quad \mathbf{h}_2(\mathbf{x}) = \mathbf{b}\mathbf{x} \neq \mathbf{0}$$
 (14)

and

$$8 a_2^2 = (h_2(x))^2 (r_1^2 + s_1^2)$$

$$a_2^2 = \frac{1}{8} (h_2(x))^2 (r_1^2 + s_1^2).$$
(15)

If we add (11) to (13), we get

$$2 a_2^2 (3 - \alpha) = (r_2 + s_2) h_2 (x) + h_3 (x) (r_1^2 + s_1^2).$$
 (16)

By substituting (15) in (16), we obtain

$$a_2^2 = \frac{(r_2 + s_2) (h_2(x))^3}{2 (3 - \alpha) (h_2(x))^2 - 8 h_3(x)}$$
(17)

and by taking $h_2(x) = bx$ and $h_3(x) = bpx^2 + qa$ in (17), it further yields

$$|a_{2}| \leq \frac{|bx|\sqrt{|bx|}}{\sqrt{|(3-\alpha)b^{2}x^{2}-4(px^{2}b+qa)|}}.$$
 (18)

By subtracting (13) from (11) we get

6
$$(\alpha + 1) (a_3 - a_2^2) = (r_2 - s_2) h_2 (x) + (r_1^2 - s_1^2) h_3 (x).$$

In view of (14), we obtain

$$a_{3} = \frac{(r_{2} - s_{2})h_{2}(x)}{6(\alpha + 1)} + a_{2}^{2}.$$
(19)

Then in view of (15), (19) becomes

$$a_{3} = \frac{(r_{2} - s_{2})h_{2}(x)}{6(\alpha + 1)} + \frac{1}{8}(h_{2}(x))^{2}(r_{1}^{2} + s_{1}^{2}).$$

Applying (2), we deduce that

$$|\mathfrak{a}_3| \leq \frac{|\mathfrak{b}x|}{3\,(\alpha+1)} + \frac{\mathfrak{b}^2 x^2}{4}$$

From (19), for $\nu \in \mathbb{R}$, we write

$$a_3 - \nu a_2^2 = \frac{h_2(x) (r_2 - s_2)}{6 (\alpha + 1)} + (1 - \nu) a_2^2.$$
⁽²⁰⁾

By substituting (17) in (20), we have

$$a_{3} - \nu a_{2}^{2} = \frac{h_{2}(x) (r_{2} - s_{2})}{6 (\alpha + 1)} + \left(\frac{(1 - \nu) (r_{2} + s_{2}) (h_{2}(x))^{3}}{2 (3 - \alpha) (h_{2}(x))^{2} - 8 h_{3}(x)} \right)$$

= $h_{2}(x) \left\{ \left(\Lambda_{1}(\nu, x) + \frac{1}{6 (\alpha + 1)} \right) r_{2} + \left(\Lambda_{1}(\nu, x) - \frac{1}{6 (\alpha + 1)} \right) s_{2} \right\},$ (21)

where

$$\Lambda_{1}(\nu, x) = \frac{(1-\nu) [h_{2}(x)]^{2}}{2 (3-\alpha) (h_{2}(x))^{2} - 8 h_{3}(x)}.$$

Hence, in view of (2) we conclude that

$$\begin{split} \left| a_3 - \nu a_2^2 \right| &\leq \begin{cases} \begin{array}{l} \frac{|h_2(x)|}{3(\alpha + 1)} & ; 0 \leq |\Lambda_1(\nu, \ x)| \leq \frac{1}{6(\alpha + 1)} \\ \\ 2 \left| h_2(x) \right| \left| \Lambda_1(\nu, \ x) \right| & ; \left| \Lambda_1(\nu, \ x) \right| \geq \frac{1}{6(\alpha + 1)} \end{cases} \end{split}$$

and in view of (2), it evidently completes the proof of Theorem 1. Taking $\alpha = 1$ in Theorem 1, we have following corollary.

Corollary 1 Let
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 be in the class $\mathcal{K}_{\Sigma}(x)$. Then

$$|a_2| \le \frac{|bx|\sqrt{|bx|}}{\sqrt{|2b^2x^2 - 4(px^2b + qa)|}}, \quad and \quad |a_3| \le \frac{|bx|}{6} + \frac{b^2x^2}{4}$$

and for $\nu \in \mathbb{R}$

$$\begin{split} \left| a_3 - \nu a_2^2 \right| &\leq \begin{cases} \left| \frac{|bx|}{6} & \text{if } |\nu - 1| \leq \frac{\left| b^2 x^2 - 2 \, \left(p x^2 b + q a \right) \right|}{3 b^2 x^2} \\ \\ \left| \frac{|bx|^3 \, |\nu - 1|}{|2 b^2 x^2 - 4 \, \left(p x^2 b + q a \right) |} & \text{if } |\nu - 1| \geq \frac{\left| b^2 x^2 - 2 \, \left(p x^2 b + q a \right) \right|}{3 b^2 x^2}. \end{cases} \end{split}$$

Taking $\alpha = 0$ in Theorem 1, we have following corollary.

Corollary 2 Let
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 be in the class $\mathfrak{H}_{\Sigma}(x)$. Then

$$|a_2| \le \frac{|bx|\sqrt{|bx|}}{\sqrt{|3b^2x^2 - 4(px^2b + qa)|}}, \quad and \quad |a_3| \le \frac{|bx|}{3} + \frac{b^2x^2}{4}$$

and for $\nu \in \mathbb{R}$

$$\begin{aligned} \left| a_{3} - \nu a_{2}^{2} \right| &\leq \begin{cases} \frac{|bx|}{3} & \text{if } |\nu - 1| \leq \frac{|3b^{2}x^{2} - 4(px^{2}b + qa)|}{3b^{2}x^{2}} \\ \frac{|bx|^{3}|\nu - 1|}{|3b^{2}x^{2} - 4(px^{2}b + qa)|} & \text{if } |\nu - 1| \geq \frac{|3b^{2}x^{2} - 4(px^{2}b + qa)|}{3b^{2}x^{2}} \end{aligned}$$

Next, a function $f \in \mathcal{A}$ of the form (1) belongs to the class $\mathcal{L}_{\Sigma}(x)$ and $z, w \in \Delta$, if the following conditions are satisfied:

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \prec \Pi(x, z) + 1 - a$$

and for $g(w) = f^{-1}(w)$

$$\frac{1+\frac{wg''(w)}{g'(w)}}{\frac{wg'(w)}{g(w)}} \prec \Pi(x, w) + 1 - a,$$

where the real constant a is as in (2).

For functions in the class $\mathcal{L}_{\Sigma}(x)$, the following coefficient estimates and Fekete-Szegő inequality are obtained.

Theorem 2 Let
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 be in the class $\mathcal{L}_{\Sigma}(x)$. Then

$$|\mathfrak{a}_2| \leq \frac{|\mathfrak{b} x| \sqrt{|\mathfrak{b} x|}}{\sqrt{|\mathfrak{p} x^2 \mathfrak{b} + \mathfrak{q} \mathfrak{a}|}}, \qquad and \qquad |\mathfrak{a}_3| \leq \frac{|\mathfrak{b} x|}{4} + \mathfrak{b}^2 x^2$$

and for $\nu \in \mathbb{R}$

$$\left|a_3-\nu a_2^2\right| \leq \begin{cases} \frac{|\mathbf{b}\mathbf{x}|}{4} & \text{if} \quad |\nu-1| \leq \frac{\left|\mathbf{b}\mathbf{p}\mathbf{x}^2+\mathbf{a}\mathbf{q}\right|}{4\mathbf{b}^2\mathbf{x}^2} \\\\ \frac{|\mathbf{b}\mathbf{x}|^3\left|\nu-1\right|}{|\mathbf{b}\mathbf{p}\mathbf{x}^2+\mathbf{a}\mathbf{q}|} & \text{if} \quad |\nu-1| \geq \frac{\left|\mathbf{b}\mathbf{p}\mathbf{x}^2+\mathbf{a}\mathbf{q}\right|}{4\mathbf{b}^2\mathbf{x}^2}. \end{cases}$$

Proof. Let $f \in \mathcal{L}_{\Sigma}(x)$ be given by the Taylor-Maclaurin expansion (1). Then, there are analytic functions r and s such that

$$r(0) = 0; \quad s(0) = 0, \quad |r(z)| < 1 \quad \text{and} \quad |s(w)| < 1 \quad (\forall \ z, \ w \in \Delta),$$

and we can write

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} = \Pi(x, r(z)) + 1 - a$$
(22)

and

$$\frac{1 + \frac{wg''(w)}{g'(w)}}{\frac{wg'(w)}{g(w)}} = \Pi(x, \ s(w)) + 1 - a.$$
(23)

Equivalently,

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} = 1 + h_1(x) - a + h_2(x)r(z) + h_3(x)[r(z)]^2 + \cdots$$
(24)

and

$$\frac{1 + \frac{wg''(w)}{g'(w)}}{\frac{wg'(w)}{g(w)}} = 1 + h_1(x) - a + h_2(x)s(w) + h_3(x)[s(w)]^2 + \cdots .$$
(25)

From (24) and (25) and in view of (3), we obtain

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} = 1 + h_2(x)r_1z + [h_2(x)r_2 + h_3(x)r_1^2]z^2 + \cdots$$
(26)

and

$$\frac{1 + \frac{wg''(w)}{g'(w)}}{\frac{wg'(w)}{g(w)}} = 1 + h_2(x)s_1w + [h_2(x)s_2 + h_3(x)s_1^2]w^2 + \cdots .$$
(27)

If

$$\mathbf{r}(z) = \sum_{n=1}^{\infty} \mathbf{r}_n z^n$$
 and $\mathbf{s}(w) = \sum_{n=1}^{\infty} \mathbf{s}_n w^n$,

then it is well known that

$$|r_n| \leq 1 \qquad {\rm and} \qquad |s_n| \leq 1 \qquad (n \in \mathbb{N}).$$

Thus upon comparing the corresponding coefficients in (26) and (27), we have

$$a_2 = h_2(x)r_1 \tag{28}$$

$$4\left(a_{3}-a_{2}^{2}\right) = h_{2}(x)r_{2} + h_{3}(x)r_{1}^{2}$$
(29)

$$-a_2 = h_2(x)s_1 \tag{30}$$

and

$$4\left(a_{2}^{2}-a_{3}\right) = h_{2}(x)s_{2} + h_{3}(x)s_{1}^{2}.$$
(31)

From (28) and (30), we can easily see that

$$\mathbf{r}_1 = -\mathbf{s}_1, \quad \text{provided} \quad \mathbf{h}_2(\mathbf{x}) = \mathbf{b}\mathbf{x} \neq \mathbf{0}$$
 (32)

and

$$2 a_2^2 = (h_2(x))^2 (r_1^2 + s_1^2)$$

$$a_2^2 = \frac{1}{2} (h_2(x))^2 (r_1^2 + s_1^2) .$$
(33)

If we add (29) to (31), we get

$$0 = (r_2 + s_2) h_2(x) + h_3(x) (r_1^2 + s_1^2).$$
(34)

By substituting (33) in (34), we obtain

$$a_2^2 = -\frac{(r_2 + s_2)(h_2(x))^3}{2h_3(x)}$$
(35)

268

and by taking $h_2(x) = bx$ and $h_3(x) = bpx^2 + qa$ in (35), it further yields

$$|a_2| \leq \frac{|bx|\sqrt{|bx|}}{\sqrt{|px^2b+qa|}}.$$
(36)

By subtracting (31) from (29) we get

$$-8 \left(a_2^2 - a_3\right) = (r_2 - s_2) h_2(x) + \left(r_1^2 - s_1^2\right) h_3(x)$$

In view of (32), we obtain

$$a_3 = \frac{1}{8} (r_2 - s_2) h_2 (x) + {a_2}^2.$$
 (37)

Then in view of (33), (37) becomes

$$a_3 = \frac{1}{8} (r_2 - s_2) h_2 (x) + \frac{1}{2} (h_2 (x))^2 (r_1^2 + s_1^2).$$

Applying (2), we deduce that

$$|\mathfrak{a}_3| \leq \frac{|\mathfrak{b}\mathfrak{x}|}{4} + \mathfrak{b}^2\mathfrak{x}^2.$$

From (37), for $\nu \in \mathbb{R}$, we write

$$a_3 - \nu a_2^2 = \frac{1}{8} h_2(x) (r_2 - s_2) + (1 - \nu) a_2^2.$$
(38)

By substituting (35) in (38), we have

$$a_{3} - \nu a_{2}^{2} = \frac{1}{8} h_{2}(x) (r_{2} - s_{2}) + \left(\frac{(\nu - 1) (r_{2} + s_{2}) (h_{2}(x))^{3}}{2 h_{3}(x)} \right)$$

= $h_{2}(x) \left\{ \left(\Lambda_{2}(\nu, x) + \frac{1}{8} \right) r_{2} + \left(\Lambda_{2}(\nu, x) - \frac{1}{8} \right) s_{2} \right\},$ (39)

where

$$\Lambda_{2}(\nu, x) = \frac{(\nu - 1) (h_{2}(x))^{2}}{2 h_{3}(x)}.$$

Hence, in view of (2) we conclude that

$$\left| a_3 - \nu a_2^2 \right| \le \begin{cases} \frac{|h_2(x)|}{4}; & 0 \le |\Lambda_2(\nu, x)| \le \frac{1}{8} \\ \\ 2 |h_2(x)| |\Lambda_2(\nu, x)|; & |\Lambda_2(\nu, x)| \ge \frac{1}{8} \end{cases}$$

and in view of (2), it evidently completes the proof of Theorem 2.

Acknowledgements

The authors would like to thank the referee(s) for their constructive suggestions which improved basically the final version of this work.

References

- C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. 2020, Art. ID 7391058, 8 pp.
- [2] C. Abirami, N. Magesh, J. Yamini, and N. B. Gatti, Horadam polynomial coefficient estimates for the classes of λ-bi-pseudo-starlike and bi-Bazilevič functions, J. Anal., (2020), 1-10.
- [3] A. G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, *Malaya* J. Mat., 7 (2019), no. 4, 618–624.
- [4] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, Int. J. Open Problems Complex Anal., 12 (2020), no. 1, 58 - 65.
- [5] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-Univalent functions defined by Frasin differential operator, *Mathematics*, 8 (2020), 783, 1–11.
- [6] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, *Appl. Math. Lett.*, **25** (2012), no. 3, 344–351.
- [7] Ş. Altınkaya and S. Yalçın, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mex., (3) 25 (2019), no. 3, 567–575.
- [8] Ş. Altınkaya and S. Yalçın, (p, q)-Lucas polynomials and their applications to bi-univalent functions, *Proyecciones*, 38 (2019), no. 5, 1093–1105.
- [9] O. Al-Refai and M. Ali, General coefficient estimates for bi-univalent functions: a new approach, *Turk. J. Math.*, 44 (2020), 240–251.

- [10] M. K. Aouf, A. O. Mostafa, R. E. El. Morsy, Coefficient bounds for general class of bi-univalent functions of complex order associated with q-Sălăgean operator and Chebyshev polynomials, *Electr. J. Math. Anal. Appl.*, 8 (2020), no. 2, 251–260.
- [11] I. T. Awolere and A. T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, *Khayyam J. Math.*, 5 (2019), no. 1, 140–149.
- [12] M. Çağlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, *Turk J. Math.*, **41**, (2017), 694–706.
- [13] S. M. El-Deeb, T. Bulboaca and B. M. El-Matary, Maclaurin coefficient estimates of bi-Univalent functions connected with the q-derivative, *Mathematics*, 8 (2020), 418, 1–14.
- [14] A. F. Horadam, J. M. Mahon, Pell and Pell–Lucas polynomials, *Fibonacci Quart.*, 23, (1985), 7–20.
- [15] T. Hörçum, E. Gökçen Koçer, On some properties of Horadam polynomials, Int Math Forum, 4 (2009), 1243–1252.
- [16] A. Y. Lashin, Coefficient estimates for two subclasses of analytic and bi-univalent functions, Ukrainian Math. J., 70 (2019), no. 9, 1484–1492
- [17] P. Long, H. Tang, W. Wang, Fekete-Szegö functional problems for certain subclasses of bi-univalent functions involving the Hohlov operator, *J. Math. Res. Appl.*, **40** (2020), no. 1, 1–12.
- [18] M. Naeem, S. Khan, and F. M. Sakar, Faber polynomial coefficients estimates of bi-univalent functions, *Inter. J. Maps Math.*, 3 (2020), no. 1, 57–67.
- [19] N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, *Afr. Mat.*, **29** (2018), no. 1-2, 203–209.
- [20] N. Magesh and J. Yamini, Fekete-Szegő problem and second Hankel determinant for a class of bi-univalent functions, *Thilisi Math. J.*, **11** (2018), no. 1, 141–157.
- [21] H. Orhan, N. Magesh and C. Abirami, Fekete-Szegö problem for bi-Bazilevič functions related to shell-like curves, *AIMS Mathematics*, 5 (2020), no. 5, 4412–4423.

- [22] S. Porwal and S. Kumar, New subclasses of bi-univalent functions defined by multiplier transformation, *Stud. Univ. Babeş-Bolyai Math.*, 65 (2020), no. 1, 47–55.
- [23] F. M. Sakar and S. M. Aydogan, Initial bounds for certain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam polynomials, J. Quality. Measur. Anal., 15 (2019), no. 1, 89– 100.
- [24] G. Singh, G. Singh and G. Singh, A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, *Int. J. Math. Math. Sci.*, 2019, Art. ID 7628083, 1–7.
- [25] H. M. Srivastava, Altınkaya and S. Yalçın, Certain subclasses of biunivalent functions associated with the Horadam polynomials, *Iran. J. Sci. Technol. Trans. A Sci.*, 43 (2019), no. 4, 1873–1879.
- [26] H. M. Srivastava, F. M. Sakar and H. Özlem Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, *Filomat*, **32** (2018), no. 4, 1313–1322.
- [27] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, *Bull. Iranian Math. Soc.*, 44 (2018), no. 1, 149–157.
- [28] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, *Appl. Math. Lett.*, **23** (2010), no. 10, 1188–1192.
- [29] H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, *Mathematics*, 8 (2020), 172, 1–12.
- [30] A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, *IOP Conf. Series: J. Phy.*, **1294** (2019), 032003, 1–6.

Received: June 30, 2020