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1 Introduction

Let A denote the class of functions of the form
f(z) =z + Z anz" (1)
n=2

which are analytic in the open unit disk A ={z:z € C and |z| < 1}. Further,
by & we shall denote the class of all functions in A which are univalent in A.
It is well known that every function f € 8 has an inverse f~', defined by

' (f(z) =2z (z€A)

[y

f(f ' w) =w (W] <1o(f); Tol(f) =

Z)a

1 w) =w— an? + (Za% —az)w® — (5a3 —S5aya3 4+ az)wt + - -

A function f € A is said to be bi-univalent in A if both the function f and its
inverse f~! are univalent in A. Let £ denote the class of bi-univalent functions
in A given by (1).

In 2010, Srivastava et al. [28] revived the study of bi-univalent functions by
their pioneering work on the study of coefficient problems. Various subclasses
of the bi-univalent function class £ were introduced and non-sharp estimates on
the first two coefficients |ay| and |a3| in the Taylor-Maclaurin series expansion
(1) were found in the very recent investigations (see, for example, [1, 2, 3, 4,
5,6,7,8,9,10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30])
and including the references therein. The afore-cited all these papers on the
subject were actually motivated by the work of Srivastava et al. [28]. However,
the problem to find the coefficient bounds on |a,| (n = 3,4,---) for functions
f € X is still an open problem.

For analytic functions f and g in A, f is said to be subordinate to g if there
exists an analytic function w such that

w(0) =0, w(z)| <1 and f(z) =g(w(z)) (z € A).
This subordination will be denoted here by

f<g (ze A)
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or, conventionally, by
f(z) < g(z) (zeA).

In particular, when g is univalent in A,
f<g (ze A) & f(0)=g(0) and f(A) C g(A).

The Horadam polynomials hy(x, a, b; p, q), or briefly h;,,(x) are given by
the following recurrence relation (see [14, 15]):

R =a, hx)=bx and ha(x) =pxha1(x)+qhn2lx) M>3)  (2)

for some real constants a, b, p and q.
The generating function of the Horadam polynomials h,(x) (see [15]) is

given by

a+ (b—ap)xz

1—pxz—qz? ~

(3)

M(x, z) == ihn(x)z“—] =
n=I1

Here, and in what follows, the argument x € R is independent of the argument
z € C; that is, x # R(z).

Note that for particular values of a, b, p and q, the Horadam polynomial
hn(x) leads to various polynomials, among those, we list a few cases here (see,
[14, 15] for more details):

1. For a =b =p = q =1, we have the Fibonacci polynomials F,(x).
2. For a=2 and b =p = q = 1, we obtain the Lucas polynomials L, (x).
3. Fora=q=1and b =p =2, we get the Pell polynomials P, (x).

4. For a = b =p =2 and q = 1, we attain the Pell-Lucas polynomials
Qn(x).

5. Fora=b =1, p=2 and q = —1, we have the Chebyshev polynomials
Tn(x) of the first kind

6. Fora=1, b=p =2and q = —1, we obtain the Chebyshev polynomials
Un(x) of the second kind.

Abirami et al. [1] considered bi- Mocanu - convex functions and bi-u— star-
like functions to discuss initial coefficient estimations of Taylor-Macularin se-
ries which is associated with Horadam polynomials, Abirami et al. [2] discussed
coefficient estimates for the classes of A—bi-pseudo-starlike and bi-Bazilevic¢
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functions using Horadam polynomial, Alamoush [3, 4] defined subclasses of
bi-starlike and bi-convex functions involving the Poisson distribution series
involving Horadam polynomials and a class of bi-univalent functions associ-
ated with Horadam polynomials respectively and obtained initial coefficient
estimates, Altinkaya and Yalgn [7, 8] obtained coefficient estimates for Pascu-
type bi-univalent functions and for the class of linear combinations of bi-
univalent functions by means of (p, q)-Lucas polynomials respectively, Aouf
et al. [10] discussed initial coefficient estimates for general class of pascu-type
bi-univalent functions of complex order defined by q—Salagean operator and
associated with Chebyshev polynomials, Awolere and Oladipo [11] found ini-
tial coefficients of bi-univalent functions defined by sigmoid functions involv-
ing pseudo-starlikeness associated with Chebyshev polynomials, Naeem et al.
[18] considered a general class of bi-Bazilevi¢ type functions associated with
Faber polynomial to discuss n-th coefficients estimates, Magesh and Bulut [19]
discussed Chebyshev polynomial coefficient estimates for a class of analytic
bi-univalent functions related to pseudo-starlike functions, Orhan et al. [21]
discussed initial estimates and Fekete-Szego bounds for bi-Bazilevi¢ functions
related to shell-like curves, Sakar and Aydogan [23] obtained initial bounds for
the class of generalized Salagean type bi-a— convex functions of complex order
associated with the Horadam polynomials, Singh et al. [24] found coefficient
estimates for bi-a-convex functions defined by generalized Salagean operator
related to shell-like curves connected with Fibonacci numbers, Srivastava et
al. [25] introduced a technique by defining a new class bi-univalent functions
associated with the Horadam polynomials to discuss the coefficient estimates,
Srivastava et al. [27] gave a direction to study the Faber polynomial coeffi-
cient estimates for bi-univalent functions defined by the Tremblay fractional
derivative operator, Srivastava et al. [29] obtained general coefficient |an| for
a general class analytic and bi-univalent functions defined by using differen-
tial subordination and a certain fractional derivative operator associated with
Faber polynomial, Wanas and Alina [30] discussed applications of Horadam
polynomials on Bazilevi¢ bi-univalent functions by means of subordination and
found initial bounds. Motivated in these lines, estimates on initial coefficients
of the Taylor-Maclaurin series expansion (1) and Fekete-Szeg6 inequalities for
certain classes of bi-univalent functions defined by means of Horadam polyno-
mials are obtained. The classes introduced in this paper are motivated by the
corresponding classes investigated in [16, 20].
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2 Coefficient estimates and Fekete-Szeg6 inequali-
ties

A function f € A of the form (1) belongs to the class G5 (o, x) for 0 < a <1
and z, w € A, if the following conditions are satisfied:

o <1 + zf”(z)) +(1—o)f'(z) <T(x, z) +1—a
f'(z)

and for g(w) = f~'(w)

o (1 + wg”(w)) + (1 —a)g' (w) <TI(x, w) +1—aq,
g'(w)

where the real constant a is as in (2).

Remark 1 The classes Xx(x) and Hz(x) are defined by G5 (1, x) = Kz(x)
and introduced by [1] and G5 (0, x) := Hz(x) introduced by [4] respectively.

For functions in the class G5 («, x), the following coefficient estimates and
Fekete-Szegs inequality are obtained.

o0
Theorem 1 Let f(z) =z 4+ ) anz™ be in the class G5 (x, x). Then

n=2

bx|+/|b b b2x2
|(12| < | X| | X| , and |(13| < | X‘ X
V13— o) b2xZ — 4 (pxZb + qa)| 3(c+1) 4
and for veR
[bx] , |(3—a) b*x*—4 (px*b + qa)|
, 3a+3 hv=lls b2 (3o + 3)
‘03—\/02‘ <
bx* [v—1| Fv—1> |3 — a)b2x* —4 (px?b + qa)|

[(3—0a) b2x2—4 (px2b + qa)| b2x2 (3o + 3)

Proof. Let f € G5(«, x) be given by the Taylor-Maclaurin expansion (1).
Then, there are analytic functions r and s such that

r(0)=0; s(0)=0, Ir(z)]<1 and Is(w)<1 (Vz,weA),

and we can write
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and
wg" (w) . / _ -
o (1 + ow) ) + (1 —a)g'(w) =TI(x, s(w)) +1—a. (5)
Equivalently,
zf"(z) . /
o (1 + l2) + (1 —a)f'(2) (©)
=1+ hy(x) — a+ ha(x)r(z) + ha(x)[r(2)]* + --
and

=14+ hi(x) — a+hy(x)s(w) + ha(x)[s(W)* + - .

From (6) and (7) and in view of (3), we obtain
zf"(z) /
oc<1 ) > + (1= a)f'(2)
=1+ hy(x)112 + [ha(x)12 + h3(x)19]22

and

Wg”(“’)) . '
oc(1+ o) + (1T —a)g'(w)

=1+ hy(x)s1w + [ha(x)sz + hs(x)sflw?

If

o0 e}

r(z) = Z Thz" and s(w) = Z spw',

n=1 n=I

then it is well known that
[rnl <1 and Isn] <1 (n € N).
Thus upon comparing the corresponding coefficients in (8) and (9), we have
2a2 = hz(x)ﬁ (10)

3(oc+1)a3—4a%oc:h2(x)rz+h3(x)f% (11)

—2a; = hy(x)sy (12)
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and
2(x+3)a3—3(ec+ 1) az = hy(x)s2 + hz(x)s?. (13)

From (10) and (12), we can easily see that

T = —S81, provided hy(x) =bx #0 (14)
and
8a3 = (2(x)’(n?+s1?)
1
= () (r?+s?). (15)

If we add (11) to (13), we get
2633-0) = (a+s)ha(x)+hs () (2 +17) (16)
By substituting (15) in (16), we obtain

(r2 4 82) (ha (x))?

17
2 (3—a) (hy (x))* —8h3 (x) {an

aj =

and by taking h;(x) = bx and h3(x) = bpx? 4 qa in (17), it further yields

Ibx| \/Tox| (1)

V1B =) b2x2 —4 (px?b + qa)|

la|

By subtracting (13) from (11) we get

6 (+1) (as - azz) = (r2—s2)ha (x) + (le - 812) hs (x).
In view of (14) , we obtain

(12 —s2) hy (x) 2
6at1) 4

Then in view of (15), (19) becomes

0 = (Tm=shald) 1
(T P 8

asz =

Applying (2), we deduce that
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From (19), for v € R, we write

a3 —vaj = hz?()o(:j_;)sﬁ +(1—v)d. (20)

By substituting (17) in (20), we have

az —va; =

, ha(x) (rz—sz)+< (1 =) (r2452) (h2 (x))° )
2

6(c+1) (3= o) (ha (x))* — 8hs (x) (21)
1 1
= el { (Wi 0 gt ) o (M M=o sl
where
1—v) [hy(x)]?
Aaly ) = oIV
2 (3—a) (hy (x))" —8hs (x)
Hence, in view of (2) we conclude that
[ha(x)] 1
— 0 <A < —
3o+ 1) 0 < aly, Xl < e
‘a3 — va%’ <
1
2[ha ()1 (vy X1 5IA (v X)| > m
and in view of (2), it evidently completes the proof of Theorem 1. O

Taking o« = 1 in Theorem 1, we have following corollary.

Corollary 1 Let f(z) =z+ Y anz" be in the class Kz(x). Then

n=2
bx| \/|b b b2x?2
laz| < [0x] /16 , and laz| < M-Fix
V/12b2x2 — 4 (px2b + qa)| 6 4

and for v e R

b2x? —2 (px’b
M iflv—1|§} X (pX +qa)|
6 3bZx?
el ¢
[bx[” [v —1] i v —1]> }bzxz—Z(pxzb—i—qa)!
12b2x2 — 4 (px?b + qa)| - 3b2x? )
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Taking o = 0 in Theorem 1, we have following corollary.

o0
Corollary 2 Let f(z) =z+ ) anz™ be in the class Hs(x). Then

n=2

b b 2,2
lasl < OAVIv g gy 20X
V/13b2x2 — 4 (px2b + qa))| 3 4
and for veR
L i lv—1) < B4 (b + qa)
3 - 3b2x?
‘Clg—\/(l%‘ <
[ox]* [v — 1] Fhv—1]> 3622 — 4 (px?b + qa)|
13b2x2 — 4 (px2b + qa)| - 3b2x? '

Next, a function f € A of the form (1) belongs to the class Lx(x) and
z, w € A, if the following conditions are satisfied:

zf"(z)
f'(z)
zf'(z)
f(z)

1+
<TM(x, z)+1—a

and for g(w) = f~1(w)

Wg”(W)
g'(w)

wg'(w)

g(w)

1+
<TI(x, w)+1—aq,

where the real constant a is as in (2).
For functions in the class Ly(x), the following coefficient estimates and
Fekete-Szegs inequality are obtained.

o0
Theorem 2 Let f(z) =z+ Y anz™ be in the class Lx(x). Then
n=2
bx|+/|b b
gl < XV ey < P2

~ VIpx®b + qal’ 4
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and for v e R

[bx| , ‘bpx2 + aq‘

T (L
‘ag —va%) <

|bx\3|v—1| if MERTES ‘bpxz—i-aq‘

lbpx? + aq| T 4b?

Proof. Let f € L5(x) be given by the Taylor-Maclaurin expansion (1). Then,
there are analytic functions r and s such that

r(0)=0; s(0)=0, Ir(z)l<1 and [swW)<1 (Vz,weA),

and we can write

14 zf" (z)
f'(z)
T(Z) =T(x, r(z))+1—a (22)
f(z)
and .
)
W =TI(x, s(w))+1—a. (23)
g(w)
Equivalently,
14 Z;’E(Z))
T(.z)Z =1+ hi(x) —a+h(r(z) + () r(2)] + - (24)
f(z)
and
] —"_ ngll(w)
va/(V\t\))) =T+ hi(x) —a+hy(x)s(w) + hg(x)[s(w)]z R (25)
g(w)
From (24) and (25) and in view of (3), we obtain
14 Z:/’E(Z))
T(Z)Z =1+ hy(x)mz+ [ha(x)ry + h3(x)r%]zz + ... (26)

f(z)
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and
14 wg’(/(V)V)
ooy = abdsw b sy +hsb)siind )
g(w)
If

o0 [e o]
T(z) = Z mz"  and  s(w) = Z Snw'™,
n=1 n=1

then it is well known that
[rnl <1 and Isnl <1 (n e N).

Thus upon comparing the corresponding coefficients in (26) and (27), we have

az = hy(x)ry (28)
4 (613 - a%) = ha(x)12 + h3(x)] (29)
—az = hy(x)s; (30)
and
4 (a% - a3> =hy(x)s2 + hg(x)s%. (31)
From (28) and (30), we can easily see that
T = —81, provided hy(x) =bx #0 (32)
and
20 = () (n?+sr?)
1
2 ! 2(..2 2
= 5 (ha() (n?+s%) . (33)
If we add (29) to (31), we get
0 = (r2+s2)ha(x)+hs(x) (mz + 512) . (34)

By substituting (33) in (34), we obtain

(r2+52) (ha (x))?
2h3 (x)

o =- (35)
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and by taking h;(x) = bx and h3(x) = bpx? 4+ qa in (35), it further yields

) < XV
~ Vb +qal

By subtracting (31) from (29) we get
—8 (Clz2 - Cls) =(r2—s2) ha (x) + (ﬁz - S1z> hs (x)

In view of (32) , we obtain

1
a3 = 3 (12— s2) ha (%) + @z’

8
Then in view of (33), (37) becomes
R 1 2(. 2, .2
i = gm—s) )+ ) (n?+s?).
Applying (2), we deduce that
b
las] < M + b2,

4
From (37), for v € R, we write

1
a3 —vaj = gha(¥) (2 —s2) + (1 =) al.

By substituting (35) in (38), we have

8

_ 3
a3 —vad = Thy(x) (12 — 52) + (” ot el )

a0 { (Aatvy %) g ) ra (el = g )2}

where
(v—1) (ha(x))*
A —
Hence, in view of (2) we conclude that
[ha (x)] 1
4 ) 0 < |/\2(V) X)| < g

‘0.3—'\/(1%‘ < :
2[hy () A2(v, XI5 IA2(v, x)| > 3

and in view of (2), it evidently completes the proof of Theorem 2.

(36)

(37)
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