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Abstract. In this article, we are going to look at the requirements
regarding a monotone function f ∈ R → R≥0, and regarding the sets of
natural numbers (Ai)

∞
i=1 ⊆ dmn(f), which requirements are sufficient for

the asymptotic ∑
n∈AN
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑
n∈AN

f(n)

to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n)
denotes the largest prime factor of n, and ρ is the Dickman function.

1 Introduction

In his article [3], Croot gave a sufficient condition to express sums of non-
negative functions over smooth natural numbers, using the Dickman function
ρ. The result can be summarized as∑

1≤n≤N
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑

1≤n≤N
f(n) (1)

where f is a non-negative function defined over N, θ ∈ (0, 1) is a constant, and
P(n) denotes the largest prime factor of n, with the convention that P(1) = 1.
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The Dickman function can be taken as the limit

ρ(1/θ) = lim
N→∞ Ψ(N,Nθ)

N
(2)

which limit exists if θ > 0, see the article of Dickman [4]. Here Ψ(x, y) is
the count of y-smooth positive integers smaller than-, or equal to x. For a
recollection about the behavior of the function ρ, and about smooth integers,
see article [6], and chapter III.5 in [7].

The method of Croot is specialized for the problem tackled by him, and it
is difficult to apply in more general situations. We are going to look at when
we can say that the asymptotic equality (1) holds, based on properties of the
examined function, which properties are easier to check.

Based on the properties of the function Ψ, it is easy to see that the idea
works for functions f(n) := c, with any real constant c, as the equalities

∑
1≤n≤N
P(n)≤Nθ

c = cΨ(N,Nθ) =
Ψ(N,Nθ)

N

∑
1≤n≤N

c

hold. We are expecting a similar result for more general functions. Concern-
ing the basic properties of the examined functions, we expect them to be
non-negative, monotone changing functions, which are not the constant zero
function. As we are going to apply Abel’s identity to handle certain sums,
a heavier requirement arises, namely that the examined functions should be
continuously differentiable.

A sufficient condition for (1) to hold is — informally — that f shouldn’t
change too fast. To introduce the concept in iterations, first we say that f(x)
should be in o(xα) ∩ ω(x−α) for every α > 0, so f should be changing with
at most the speed of the polylogarithmic functions or their reciprocals. As a
second iteration, because we will bound the derivative of f, we will actually
need a bit stronger requirement, namely that f′(x) should be in o(xα−1) while
f(x) ∈ ω(x−α) for every α > 0. (We need this, because differentiation doesn’t
preserve inequalities.) As a third, and final iteration, we can actually lighten
these requirements a bit. Let

L1 := {f ∈ R → R : ∀α > 0, f′(x) ∈ O(xα−1)∧ f(x) ∈ ω(x−α)}

and

L2 := {f ∈ R → R : ∀α > 0, f′(x) ∈ o(xα−1)∧ f(x) ∈ Ω(x−α)}
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then let L := L1 ∪ L2. We will show that f ∈ L is a sufficient condition for (1)
to hold. It’s worth mentioning, that we cannot lighten both conditions at the
same time. (Regarding the asymptotic notation, we refer to section 3.1 of [2],
and to section 4.1.1 of [5]. Take note that we use these notations in the sense
that they express a bound on the absolute value of the examined function.)

As a final generalization, instead of looking at the sum going from some
initial positive value up until N, we will sum the examined function over some
sets (Ai)

∞
i=1 ⊆ dmn(f). The only requirement concerning these sets is that they

should be “dense” among the natural numbers, i. e. |AN| ∼ N should hold.

Proposition 1 Let θ ∈ (0, 1), m ∈ N, and let f : [m,+∞) → R≥0 be a
monotone, continuously differentiable function which is in L. Take the sets
(Ai)

∞
i=1 ⊆ {m, . . . ,N}, where N > m is an integer, which sets satisfy |AN| ∼ N.

Then ∑
n∈AN
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑
n∈AN

f(n).

2 Proof of the proposition

First, we separately prove a lemma, which we are going to use after the appli-
cation of Abel’s identity, to bound the remaining integral term.

Lemma 1 Let m ∈ N, and let f : [m,+∞) → R≥0 be a monotone, continu-
ously differentiable function which is in L. Then

1

f(x)

∫x
m

btc|f′(t)|dt ∈ o(x).

Proof.

� Assume that f ∈ L1, and take an arbitrary real α > 0. Then because
f′(x) ∈ O(xα−1), there exists a real c > 0, and a real xc, such that for
every real x > xc, we have that |f′(x)| ≤ cxα−1 holds. So the inequality

1

f(x)

∫x
m

btc|f′(t)|dt < c

f(x)

∫x
m

tα dt (3)

holds when x > max(m,xc). Because f(x) ∈ ω(x−α), for every real
ε > 0, there exists a real xε, such that for every real x > xε, we have
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that |f(x)| > εx−α holds. By this, when x > max(m,xc, xε), the right
hand side of inequality (3) is smaller than

c

εx−α

∫x
m

tα dt <
c

ε(α+ 1)
x2α+1 → c

ε
x

as α goes to zero. So for every real δ = c/ε > 0, there exists a real
xδ = max(m,xc, xε), such that for every real x > xδ, we have the left
hand side of (3) is smaller than δx.

� Assume that f ∈ L2, and take an arbitrary real α > 0. Then because
f(x) ∈ Ω(x−α), there exists a real c > 0, and a real xc, such that for
every real x > xc, we have that |f(x)| ≥ cx−α holds. So the inequality

1

f(x)

∫x
m

btc|f′(t)|dt ≤ 1

cx−α

∫x
m

btc|f′(t)|dt (4)

holds when x > max(m,xc). Because f′(x) ∈ o(xα−1), for every real
ε > 0, there exists a real xε, such that for every real x > xε, we have
that |f′(x)| < εxα−1 holds. By this, when x > max(m,xc, xε), the right
hand side of inequality (4) is smaller than

ε

cx−α

∫x
m

tα dt <
ε

c(α+ 1)
x2α+1 → ε

c
x

as α goes to zero. So for every real δ = ε/c > 0, there exists a real
xδ = max(m,xc, xε), such that for every real x > xδ, we have the left
hand side of (4) is smaller than δx.

�

Now we are going to give an asymptotic for the sum of our examined function
over the sets AN by using Abel’s identity.

Lemma 2 Let m ∈ N, and let f : [m,+∞) → R≥0 be a monotone, continu-
ously differentiable function which is in L. Take the sets (Ai)

∞
i=1 ⊆ {m, . . . ,N},

where N > m is an integer, which sets satisfy |AN| ∼ N. Then∑
n∈AN

f(n) ∼ Nf(N).

Proof. First, we split the examined sum as∑
n∈AN

f(n) =
∑

m≤n≤N
f(n) −

∑
n∈{m,...,N}\AN

f(n). (5)



On sums of monotone functions over smooth numbers 277

Because f has a continuous derivative on the interval [m,+∞), we can apply
Abel’s identity, see theorem 4.2 in section 4.3 of the book of Apostol [1], to
get the equality

∑
m<n≤N

f(n) = Nf(N) −mf(m) −

∫N
m

btcf′(t)dt. (6)

� Assume that f is monotone increasing. Then∑
n∈{m,...,N}\AN

f(n) ≤ f(N)(N−m+ 1− |AN|).

Using this inequality, and equality (6), we get that the left hand side of
equality (5) is greater than-, or equal to

f(N)

(
(1−m)

f(m)

f(N)
−

1

f(N)

∫N
m

btcf′(t)dt+m− 1+ |AN|

)
which, by lemma 1, is greater than-, or equal to f(N) (|AN|+ o(N)). By
this, we have that the limit

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≥ lim
N→+∞

(
|AN|

N
+ oN(1)

)
= 1

because |AN| ∼ N. Regarding the upper bound of the limit, we have

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≤ lim
N→+∞

f(N)
∑
n∈AN 1

Nf(N)
= lim
N→+∞ |AN|

N
= 1

because f is monotone increasing, and |AN| ∼ N.

� Assume that f is monotone decreasing. Then∑
n∈{m,...,N}\AN

f(n) ≥ f(N)(N−m+ 1− |AN|).

Using this inequality, and equality (6), we get that the left hand side of
equality (5) is less than-, or equal to

f(N)

(
(1−m)

f(m)

f(N)
+

1

f(N)

∫N
m

btc|f′(t)|dt+m− 1+ |AN|

)
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where we could switch the sign of the integral, because f is monotone
decreasing, so f′ is non-positive on [m,N]. By lemma 1, this is less than-,
or equal to f(N)(|AN|+ o(N)). Based on this, using the same reasoning
as in the case when f was monotone increasing, we can show that

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≤ 1

holds. Regarding the lower bound of the limit, we have

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≥ lim
N→+∞

f(N)
∑
n∈AN 1

Nf(N)
= lim
N→+∞ |AN|

N
= 1

because f is monotone decreasing, and |AN| ∼ N.

�

Proof. (Proposition 1) Fix a smoothness θ ∈ (0, 1), and assume that we
have a function f, and sets AN satisfying the requirements mentioned in the
proposition. We will show that the limit

lim
N→+∞

∑
n∈AN
P(n)≤Nθ

f(n)

ρ(1/θ)
∑
n∈AN f(n)

(7)

is equal to one, separately when f is monotone increasing, and when f is
monotone decreasing. Assuming that N is big enough, we can guarantee that
AN is not empty, thus the sums in the numerator and the denominator are
not zero.

� Assume that f is monotone increasing. Then the limit (7) is less than-,
or equal to

lim
N→+∞ f(N)Ψ(N,Nθ)

ρ(1/θ)
∑
n∈AN f(n)

because f is monotone increasing, and AN ⊆ {m, . . . ,N}. Using lemma
2, this is equal to

1

ρ(1/θ)
lim

N→+∞ Ψ(N,Nθ)

N(1+ oN(1))
= 1

based on the limit (2). Regarding the lower bound of the limit, first we
note that ∑

n∈AN
P(n)≤Nθ

f(n) =
∑
n∈An

f(n) −
∑
n∈AN
P(n)>Nθ

f(n) (8)
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where ∑
n∈AN
P(n)>Nθ

f(n) ≤ f(N)
∑
n∈AN
P(n)>Nθ

1 ≤ f(N)(N− Ψ(N,Nθ))

because f is monotone increasing, and AN ⊆ {m, . . . ,N}. By these, we
have that the limit (7) is greater than-, or equal to

lim
N→+∞

∑
n∈AN f(n) − f(N)(N− Ψ(N,Nθ))

ρ(1/θ)
∑
n∈AN f(n)

where, by using lemma 2, we get

1

ρ(1/θ)

(
1− lim

N→+∞ 1

1+ oN(1)
+ lim
N→+∞ Ψ(N,Nθ)

N(1+ oN(1))

)
= 1

based on the limit (2).

� Assume that f is monotone decreasing. Because∑
n∈AN
P(n)≤Nθ

1 =
∑

1≤n≤N
P(n)≤Nθ

1−
∑

n∈{1,...,N}\AN
P(n)≤Nθ

1 ≥ Ψ(N,Nθ) −N+ |AN|

we have that the limit (7) is greater than-, or equal to

lim
N→+∞ f(N)(Ψ(N,Nθ) −N+ |AN|)

ρ(1/θ)
∑
n∈AN f(n)

because f is monotone decreasing. Here, by using lemma 2, we get

1

ρ(1/θ)
lim

N→+∞
(

Ψ(N,Nθ)

N(1+ oN(1))
−

1

1+ oN(1)
+

|AN|

N(1+ oN(1))

)
= 1

based on |AN| ∼ N, and on the limit (2). Regarding the upper bound of
the limit, because∑

n∈AN
P(n)>Nθ

1 =
∑

1≤n≤N
P(n)>Nθ

1−
∑

n∈{1,...,N}\AN
P(n)>Nθ

1 ≥ |AN|− Ψ(N,N
θ)

we have that the limit (7) is less than-, or equal to

lim
N→+∞

∑
n∈AN f(n) − f(N)(|AN|− Ψ(N,N

θ))

ρ(1/θ)
∑
n∈AN f(n)
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based on equality (8). Here, by using lemma 2, we get

1

ρ(1/θ)

(
1− lim

N→+∞ |AN|

N(1+ oN(1))
+ lim
N→+∞ Ψ(N,Nθ)

N(1+ oN(1))

)
= 1

based on |AN| ∼ N, and on the limit (2).

�
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