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Abstract. We contribute to the development of equivalence of fixed
point iterative sequences for multivalued mappings in modular function
spaces, by proving the equivalence of convergence of implicit Mann, im-
plicit Ishikawa, implicit Noor, implicit multistep iterative sequences for
multivalued ρ− quasi-contractive-like mapppings in modular function
spaces. An example is provided to support the applicability of the re-
sults. This work is complementary to equivalence results on normed and
metric spaces in the literature.

1 Introduction and preliminaries

The existence and approximation of fixed points for multivalued mappings in
modular function spaces abound in the literature. Some of the notable authors
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whose research work are very important in this study are ([8], [9], [10], [11],
[12], [14], [15] and [16]).

Let Ω be a nonempty set and
∑

be a nontrival σ−algebra of subsets of
Ω. Let P be a δ−ring of subsets of Ω such that E ∩ A ∈ P for any E ∈ P
and A ∈

∑
. Assume there exists an increasing sequence Kn ∈ P such that

Ω =
⋃
Kn. Let IA represent the characteristic function of the set A in Ω.

Let ε represent the linear space of all simple functions with supports from P.

Let M∞ represent the space of all extended measurable functions, that is, all
functions f : Ω→ [−∞,∞] such that there exist a sequence {gn} ⊂ ε, |gn| ≤ |f|

and g(ω)→ f(ω) for all ω ∈ Ω.

Definition 1 [16] Let ρ : M∞ → [0,∞] be a nontrivial, convex and even
function. We say that ρ is a regular convex function pseudomodular if

(1) ρ(0) = 0;

(2) ρ is monotone, that is, |f(ω)| ≤ g|(ω)| for any ω ∈ Ω implies ρ(f) ≤
ρ(g), where f, g ∈M∞;

(3) ρ is orthogonally subadditive, that is, ρ(fIA∪B) ≤ ρ(fIA)+ρ(fIB) for any
A,B ∈

∑
such that A ∩ B 6= φ, f ∈M∞;

(4) ρ has Fatou property, that is, |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies
ρ(fn) ↑ ρ(f), where f ∈M∞;

(5) ρ is order continuous in ε, that is, gn ∈ ε and |gn(ω)| ↓ 0 for all ω ∈ Ω
implies ρ(gn) ↓ 0.

Definition 2 [8]. Let ρ be a regular function pseudomodular;

(a) we say that ρ is a regular convex function modular if ρ(f) = 0 implies
f = 0 ρ -a.e.

(b) we say that ρ is a regular convex function semimodular if ρ(αf) = 0 for
every α > 0 implies f = 0 ρ -a.e.

ρ also satisfies the following properties [10]:

(1) ρ(0) = 0 iff f = 0 ρ -a.e.

(2) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈M.
(3) ρ(αf+βg) ≤ ρ(f)+ρ(g) if α+β = 1, α, β ≥ 0 and f, g ∈M, ρ is called

a convex modular if, in addition, the following property is satisfied:

(4) ρ(αf+ βg) ≤ αρ(f) + βρ(g) if α+ β = 1, α,β ≥ 0 and f, g ∈M.



Fixed point theorems and equivalence results . . . 3

The class of all nonzero regular convex function modulars on Ω is denoted by
<.

Definition 3 [16]. The modular function space Lρ is defined as: Lρ = {f ∈
M : ρ(λf)→ 0 as λ→ 0}.

In general terms, the modular ρ is not subadditive and therefore does not
behave as a norm or a distance. Nevertheless, the modular space Lρ can be
furnished with an F−norm defined thus:

‖f‖ρ = inf

{
α > 0 : ρ

( f
α

)
≤ α
}
.

In the instance ρ is convex modular, ‖f‖ρ = inf{α > 0 : ρ( fα) ≤ 1} defines a
norm on the modular space Lρ. This type of norm is known as the Luxemburg
norm.

Definition 4 [16]. A nonzero regular convex function ρ is said to satisfy the
∆2− condition, if supn≥1 ρ(2fn, Dk) → 0 as k → ∞ whenever {Dk} decreases
to ∅ and supn≥1ρ(fn, Dk) → 0 as k → ∞. If ρ is convex and satisfies ∆2-
condition, then Lρ = Eρ.

Definition 5 [16] Let ρ be a nonzero regular convex function modular defined
on Ω.

(i) Let r > 0, ε > 0. Define D1(r, ε) = {(f, g) : f, g ∈ Lρ, ρ(f), ρ(g) ≤
r, ρ(f − g) ≥ εr}. Suppose, δ1(r, ε) = inf{1 − 1

rρ(
f+g
2 ) : (f, g) ∈ D1(r, ε)},

if D1(r, ε) 6= ∅ and δ1(r, ε) = 1 if D1(r, ε) = ∅. We say that ρ satisfies
(UC1), if for every r > 0, ε > 0, δ1(r, ε) > 0. Observe that for every
r > 0, D1(r, ε) 6= ∅, ε > 0 small enough.

(ii) We say that ρ satisfies (UUC1), if for every s ≥ 0, ε > 0, there exists
η1(s, ε) > 0 depending only on s and ε such that δ1(r, ε) > η1(s, ε) > 0
for any r > s.

(iii) Let r > 0, ε > 0. Define D2(r, ε) = {(f, g) : f, g ∈ Lρ, ρ(f), ρ(g) ≤
r, ρ( f−g2 ) ≥ εr}. Suppose, δ2(r, ε) = inf {1 − 1

rρ(
f+g
2 ) : (f, g) ∈ D2(r, ε)}

if D2(r, ε) 6= ∅ and δ2(r, ε) = 1 if D2(r, ε) = ∅. We say that ρ satisfies
(UC2), if for every r > 0, ε > 0, δ2(r, ε) > 0. Observe that for every
r > 0, D2(r, ε) 6= ∅, ε > 0 small enough.

(iv) We say that ρ satisfies (UUC2), if for every s ≥ 0, ε > 0, there exists
η2(s, ε) > 0 depending only on s and ε such that δ2(r, ε) > η2(s, ε) > 0
for any r > s.
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(v) We say that ρ is strictly convex (SC), if for every f, g ∈ Lp such that

ρ(f) = ρ(g) and ρ( f+g2 ) = ρ(f)+ρ(g)
2 , there holds f = g.

Definition 6 [16]. Let Lρ be a modular space. The sequence {fn} ∈ Lρ is called:

(1) ρ−convergent to f ∈ Lρ, if ρ(fn − f)→ 0 as n→∞;

(2) ρ−Cauchy, if ρ(fn − fm)→ 0 as n,m→∞.

Remark 1 ρ−convergent sequence implies ρ−Cauchy sequence, if and only
if ρ− satisfies the ∆2− condition. However, ρ does not satisfy the triangle
inequality.

Definition 7 [16]. Let Lρ be a modular space. A subset D ⊂ Lρ is called:

(1) ρ−closed, if the ρ−limit of a ρ−convergent sequence of D always belongs
to D;

(2) ρ−a.e. closed, if the ρ−a.e. limit of a ρ−a.e. convergent sequence of D
always belongs to D;

(3) ρ−compact, if every sequence in D has a ρ−convergent subsequence in
D;

(4) ρ−a.e. compact, if every sequence in D has a ρ−a.e. convergent subse-
quence in D;

Definition 8 [16]. Let Lρ be a modular space. A function f ∈ Lρ is called a
fixed point of a multivalued mapping T : Lρ → Pρ(D) if f ∈ Tf . The set of all
fixed points of T is represented by Fρ(T).

The following contractive defintions are useful in stating our definitions in
terms of functions in modular function spaces. In 1972, Zamfirescu [22] proved
a remarkable generalization of the Banach fixed point theorem by employing
the following quasi-contractive mapping:

d(Tx, Ty) ≤ hmax{d(x, y),
1

2
[d(x, Tx) + d(y, Ty)],

1

2
[d(x, Ty) + d(y, Tx)]}, (1)

where 0 ≤ h < 1. In a Normed linear space setting, condition (1) implies

‖Tx− Ty‖ ≤ δ‖x− y‖+ 2δ‖x− Tx‖, (2)

where 0 ≤ δ < 1 and δ = max
{
h, h

2−h

}
.
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In [18], the following contractive definition was used. Let X be a Banach
space, for each x, y ∈ X, there exists δ ∈ [0, 1) and L ≥ 0 such that

‖Tx− Ty‖ ≤ δ‖x− y‖+ L‖x− Tx‖. (3)

In [13], the following contractive definition was employed in proving stability
results. Let X be a Banach space, for each x, y ∈ X, there exist δ ∈ [0, 1) and
a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0 such that

‖Tx− Ty‖ ≤ δ‖x− y‖+ϕ(‖x− Tx‖). (4)

It is important to remark that contractive condition (4) is a generalization of
(3) and (2) for single valued map T.

The modified versions of contractive conditions (2)–(4), is hereby presented
in a modular function space as follows.

Let Lρ be a modular space. A set D ⊂ Lρ is called ρ−proximinal if for each
f ∈ Lρ there exists an element g ∈ D such that ρ(f−g) = distρ(f,D).We repre-
sent the family of nonempty ρ−bounded ρ−proximinal subsets of D by Pρ(D),
the family of nonempty ρ−closed ρ−bounded subsets of D by Cρ(D) and the
family of ρ−compact subsets of D by Kρ(D). Let Hρ(., .) be the ρ−Hausdorff
distance on Cρ(Lρ), that is, Hρ(A,B) = max{supf∈A distρ(f, B), supg∈B
distρ(g,A)},A,B ∈ Cρ(Lρ).

A multivalued map T : D→ Cρ(Lρ) is said to be:

(1) ρ−contraction mapping, if there exists a constant δ ∈ [0, 1) such that

Hρ(Tf, Tg) ≤ δρ(f− g), for all f, g ∈ D. (5)

(2) ρ−Zamfirescu mapping if

Hρ(Tf, Tg) ≤ δρ(f− g) + 2δρ(Tf− f), for all f, g ∈ D. (6)

(3) ρ−quasi- contractive mapping if

Hρ(Tf, Tg) ≤ δρ(f− g) + Lρ(Tf− f), for all f, g ∈ D, L ≥ 0. (7)

(4) ρ−quasi-contractive-like mapping if

Hρ(Tf, Tg) ≤ δρ(f− g) +ϕρ(ρ(Tf− f)), for all f, g ∈ D. (8)

whereϕρ : R
+ → R+ is a ρ−monotone increasing function withϕρ(0) = 0.
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Implicit iterations exist in literature and have been proved to have advantage
over explicit iterations for nonlinear problems as they provide better approxi-
mation of fixed points, and are widely used in many applications, when explicit
iterations are ineficient. Approximation of fixed points in computer oriented
programs using implicit iterations can reduce the computational cost of the
fixed point problems (see [7]). The following implicit iterative sequences in the
framework of modular function spaces are hereby presented:

Let Lρ be a modular space, D ⊂ Lρ and T : D → Pρ(D) be a multivalued
mapping, then the implicit multistep iterative sequence {fn}

∞
n=0 ⊂ D is defined

by: 
f0 ∈ D
fn+1 = (1− αn)f

1
n + αnun+1,

fin = (1− βin)f
i+1
n + βinu

i
n, i = 1, 2, ..., k− 2

fk−1n = (1− βk−1n )fn + β
k−1
n uk−1n , n = 0, 1, 2, ...,

(9)

where un ∈ PTρ(fn), uin ∈ PTρ(fin), uk−1n ∈ PTρ(fk−1n ), the sequences

{αn}
∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1)(i = 1, 2, ..., k− 1) such that

∑∞
n=0 αn =∞.

The implicit Noor iterative sequence {gn}
∞
n=0 ⊂ D is defined by:

g0 ∈ D
gn+1 = (1− αn)g

1
n + αnvn+1,

g1n = (1− β1n)g
2
n + β

1
nv
1
n,

g2n = (1− β2n)gn + β
2
nv
2
n, n = 0, 1, 2, ...,

(10)

where vn+1 ∈ PTρ(gn+1), v1n ∈ PTρ(gn)1, v2n ∈ PTρ(g2n), the sequences

{αn}
∞
n=0, {β

1
n}

∞
n=0, {β

2
n}

∞
n=0 ⊂ (0, 1), such that

∑∞
n=0 αn =∞.

The implicit Ishikawa iterative sequence {hn}
∞
n=0 ⊂ D is defined by:

h0 ∈ D
hn+1 = (1− αn)h

1
n + αnsn+1,

h1n = (1− β1n)hn + β
1
ns
1
n, n = 0, 1, 2, ...,

(11)

where sn+1 ∈ PTρ(hn+1), s1n ∈ PTρ(h1n), the sequences {αn}
∞
n=0, {β

1
n}

∞
n=0 ⊂ (0, 1),

such that
∑∞
n=0 αn =∞.

The implicit Mann iterative sequence {gn}
∞
n=0 ⊂ D is defined by:{

g0 ∈ D
gn+1 = (1− αn)gn + αnvn+1, n = 0, 1, 2, ...,

(12)

where vn+1 ∈ PTρ(gn+1), the sequence {αn}
∞
n=0 ⊂ (0, 1), such that

∑∞
n=0 αn =∞.

The following Lemmas will be needed in proving the main results.
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Lemma 1 [10]. Let T : D → Pρ(D) be a multivalued mapping and PTρ(f) =
{g ∈ Tf : ρ(f− g) = distρ(f, Tf)}. Then the following are equivalent:

(1) f ∈ Fρ(T), that is, f ∈ Tf.
(2) PTρ(f) = {f}, that is, f = g for each g ∈ PTρ(f).
(3) f ∈ F(PTρ(f)), that is, f ∈ PTρ(f). Further Fρ(T) = F(P

T
ρ(f)) where F(PTρ(f))

represent the set of fixed points of PTρ(f).

Lemma 2 [6]. Let δ be a real number satisfying 0 ≤ δ < 1 and {εn}
∞
n=0 a

sequence of positive numbers such that limn→∞εn = 0, then for any sequence
of positive numbers {un}

∞
n=0 satisfying un+1 ≤ δun + εn, n=0,1,2,..., we have

limn→∞un = 0.
Laudable papers have written by notable researchers on the convergence and

the equivalence of convergence of various iterative sequences for single mapping
T on normed and metric spaces. That is, different authors have shown that
the convergence of any of the iterative method to the unique fixed point of
the contractive operator for single map T is equivalent to the convergence of
the other iterative sequences. For a look at some of the fine works in this
direction, see references: [1], [2], [5], [6], [7], [19],[20], [21], and [23]. Some results
also appear for pair of maps, for example, (see [3], [4], and [17] for details).
The new version of equivalence results will now be proved for multivalued
ρ−quasi-contractive-like mappings in modular function spaces in the following
theorems.

2 Main results

Theorem 1 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−quasi-contractive-like
mapping, satisfying the contractive condition

Hρ(Tf, Tg) ≤ δρ(f− g) +ϕρ(ρ(Tf− f)), (13)

for all f, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1) and ϕρ : R+ → R+ is a
ρ−monotone increasing function with ϕρ(0) = 0. Let f0, g0 ∈ D and {fn}, {gn} ⊂
D be defined by the implicit multistep (9) and implicit Mann (12) iterative se-
quence respectively, where the sequences {αn}

∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1) such that∑∞

n=0 αn = ∞, ∑∞
n=0 β

i
n = ∞, for i = 1, 2, ..., k − 1. Then the following are

equivalent:
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(i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;

(ii) the implicit multistep iterative sequence (9) converges strongly to the
fixed point of the multivalued map T.

Proof. Let p ∈ Fρ(T), from Lemma 1, PTρ(p) = {p} and Fρ(T) = F(P
T
ρ).

We prove that (i)⇒ (ii). Assume limn→∞ gn = p.Using ρ−quasi-contractive-
like condition (13), implicit Mann (12) and implicit multistep iterative se-
quences (9), we obtain the following:

ρ(gn+1 − fn+1) = ρ[(1− αn)(gn − f
1
n) + αn(vn+1 − un+1)]. (14)

Using the convexity of ρ in equation (14), we have

ρ(gn+1 − fn+1) = (1− αn)ρ(gn − f
1
n) + αnρ(vn+1 − un+1)

≤ (1− αn)ρ(gn − f
1
n) + αn(Hρ(P

T
ρ(gn+1), P

T
ρ(fn+1))).

(15)

Using (13), let f = fn+1, g = gn+1, then, from (15), we get the following:

Hρ(P
T
ρ(gn+1), P

T
ρ(fn+1)) ≤ δρ(gn+1 − fn+1) + (1+ δ)ϕρ(ρ(gn+1 − p)). (16)

Substituting inequality (16) in inequality (15), we obtain

ρ(gn+1 − fn+1) ≤ (1− αn)ρ(gn − f
1
n) + δαnρ(gn+1 − fn+1) +

(1+ δ)αnϕρ(ρ(gn+1 − p)).

That is,

ρ(gn+1 − fn+1) ≤ (
1− αn
1− δαn

)ρ(gn − f
1
n) + (

(1+ δ)αn
1− δαn

)ϕρ(ρ(gn+1 − p)). (17)

ρ(gn − f
1
n) = ρ(gn − ((1− β1n)f

2
n + β

1
nu

1
n)). (18)

Using the convexity of ρ in equation (18), we have

|!ρ(gn − f
1
n) ≤ (1− β1n)ρ(gn − f

2
n) + β

1
nρ(gn − u

1
n)

≤ (1− β1n)ρ(gn − f
2
n) + β

1
nρ(gn − vn) + β

1
nρ(vn − u

1
n)

≤ (1− β1n)ρ(gn − f
2
n) + β

1
nρ(gn − p)

+ β1nρ(vn − p) + β
1
nρ(vn − u

1
n)

≤ (1− β1n)ρ(gn − f
2
n) + β

1
nρ(gn − p) + β

1
nHρ(P

T
ρ(gn), P

T
ρ(p))

+ β1nHρ(P
T
ρ(gn), P

T
ρ(f

1
n)).

(19)
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Using (13), let f = p, g = gn, and also let f = gn, g = f1n, then, from (19), we
get the following:

ρ(gn − f
1
n) ≤

(
1− β1n
1− δβ1n

)
ρ(gn − f

2
n) +

(
(1+ δ)β1n
1− δβ1n

)
ρ(gn − p)

+

(
(1+ δ)β1n
1− δβ1n

)
ϕρ(ρ(gn − p)).

(20)

Substituting inequality (20) in inequality (17), we obtain

ρ(gn+1 − fn+1) ≤
(
1− αn
1− δαn

)(
1− β1n
1− δβ1n

)
ρ(gn − f

2
n)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)
ρ(gn − p)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)
ϕρ(ρ(gn − p))

+

(
(1+ δ)αn
1− δαn

)
ϕρ(ρ(gn+1 − p)).

(21)

Similarly, an application of (13) and (9) and (12) give the following

ρ(gn − f
2
n) ≤

(
1− β2n
1− δβ2n

)
ρ(gn − f

3
n) +

(
(1+ δ)β2n
1− δβ2n

)
ρ(gn − p)

+

(
(1+ δ)β2n
1− δβ2n

)
ϕρ(ρ(gn − p)).

(22)

ρ(gn − f
3
n) ≤

(
1− β3n
1− δβ3n

)
ρ(gn − f

4
n) +

(
(1+ δ)β3n
1− δβ3n

)ρ(gn − p

)
+

(
(1+ δ)β3n
1− δβ3n

)
ϕρ(ρ(gn − p)).

(23)

...

ρ(gn − f
k−2
n ) ≤

(
1− βk−2n

1− δβk−2n

)
ρ(gn − f

k−1
n ) +

(
(1+ δ)βk−2n

1− δβk−2n

)
ρ(gn − p)

+

(
(1+ δ)βk−2n

1− δβk−2n

)
ϕρ(ρ(gn − p)).

(24)
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ρ(gn − f
k−1
n ) ≤

(
1− βk−1n

1− δβk−1n

)
ρ(gn − fn) +

(
(1+ δ)βk−1n

1− δβk−1n

)
ρ(gn − p)

+

(
(1+ δ)βk−1n

1− δβk−1n

)
ϕρ(ρ(gn − p)).

(25)

Substituting inequalities (25), (24), (23), (22) in inequality (21) inductively
and simplifying, we obtain

ρ(gn+1 − fn+1) ≤
(
1− αn
1− δαn

)(
1− β1n
1− δβ1n

)(
1− β2n
1− δβ2n

)(
1− β3n
1− δβ3n

)
...(

1− βk−2n

1− δβk−2n

)(
1− βk−1n

1− δβk−1n

)
ρ(gn − fn)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)(
(1+ δ)β2n
1− δβ2n

)(
(1+ δ)β3n
1− δβ3n

)
...(

(1+ δ)βk−2n

1− δβk−2n

)(
(1+ δ)βk−1n

1− δβk−1n

)
ρ(gn − p)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)(
(1+ δ)β2n
1− δβ2n

)(
(1+ δ)β3n
1− δβ3n

)
...(

(1+ δ)βk−2n

1− δβk−2n

)(
(1+ δ)βk−1n

1− δβk−1n

)
ϕρ(ρ(gn − p))

+

(
(1+ δ)αn
1− δαn

)ϕρ(ρ(gn+1 − p)

)
.

(26)

Observe that

[
1− αn
1− δαn

]
≤ 1− αn + δαn,[

1− β1n
1− δβ1n

]
≤ 1− β1n + δβ1n,[

1− β2n
1− δβ2n

]
≤ 1− β2n + δβ2n, ...,[

1− βk−2n

1− δβk−2n

]
≤ 1− βk−2n + δβk−2n and[

1− βk−1n

1− δβk−1n

]
≤ 1− βk−1n + δβk−1n .

(27)
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Applying the inequality (27) in inequality (26) and simplifying, we obtain

ρ(gn+1 − fn+1) ≤ (1− αn + δαn)(1− β
1
n + δβ

1
n)(1− β

2
n + δβ

2
n), ...,

(1− βk−2n + δβk−2n )(1− βk−1n + δβk−1n ) + en

≤ [1− (1− δ)αn]ρ(gn − fn) + en,

(28)

where,

en = [1− (1− δ)αn][1− (1− δ)β1n][1− (1− δ)β2n][1− (1− δ)β3n]...

[1− (1− δ)βk−2n ][1− (1− δ)βk−1n ]ρ(gn − p)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)(
(1+ δ)β2n
1− δβ2n

)(
(1+ δ)β3n
1− δβ3n

)
...(

(1+ δ)βk−2n

1− δβk−2n

)(
(1+ δ)βk−1n

1− δβk−1n

)
ϕρ(ρ(gn − p))

+

(
(1+ δ)αn
1− δαn

)ϕρ(ρ(gn+1 − p)

)
.

Using the fact that 0 ≤ δ < 1 and the conditions {αn}
∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1)(i =

1, 2, ..., k− 1) in iterative sequences (9) to (12) in (28), it follows that

lim
n→∞ ρ(gn − fn) = 0.

Since by assumption limn→∞ gn = p, then ρ(fn−p) ≤ ρ(gn−fn)+ρ(gn−p)→
0 as n→∞. That is, limn→∞ fn = p.

Next we show that (ii) → (i). Assume limn→∞ fn = p.
Then using ρ−quasi-contractive-like condition (13), implicit multistep (9)

and implicit Mann iterative sequences (12), we obtain the following:

ρ(fn+1 − gn+1) = ρ[(1− αn)(f
1
n − gn) + αn(un+1 − vn+1)]. (29)

Using the convexity of ρ in (29), we have

ρ(fn+1 − gn+1) = (1− αn)ρ(f
1
n − gn) + αnρ(un+1 − vn+1)

≤ (1− αn)ρ(f
1
n − gn) + αn(Hρ(P

T
ρ(fn+1), P

T
ρ(gn+1))).

(30)

Using (13), let f = fn+1, g = gn+1, then, from (29), we get the following:

Hρ(P
T
ρ(fn+1), P

T
ρ(gn+1)) ≤ δρ(fn+1 − gn+1) + (1+ δ)ϕρ(ρ(fn+1 − p)). (31)
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Substituting inequality (31) in inequality (30), we obtain

ρ(fn+1 − gn+1) ≤ (1− αn)ρ(f
1
n − gn) + δαnρ(fn+1 − gn+1)

+(1+ δ)αnϕρ(ρ(fn+1 − p)).

That is,

ρ(fn+1−gn+1) ≤
(
1− αn
1− δαn

)
ρ(f1n−gn)+

(
(1+ δ)αn
1− δαn

)
ϕρ(ρ(fn+1−p)). (32)

ρ(f1n − gn) ≤
(
1− β1n
1− δβ1n

)
ρ(f2n − gn) +

(
(1+ δ)β1n
1− δβ1n

)
ρ(f1n − p)+(

(1+ δ)β1n
1− δβ1n

)
ϕρ(ρ(f

1
n − p)).

(33)

Substituting inequality (33) in inequality (32), we obtain

ρ(fn+1 − gn+1) ≤
(
1− αn
1− δαn

)(
1− β1n
1− δβ1n

)
ρ(f2n − gn)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)
ρ(f1n − p)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)
ϕρ(ρ(f

1
n − p))

+

(
(1+ δ)αn
1− δαn

)
ϕρ(ρ(fn+1 − p)).

(34)

Similarly, an application of (13) and (9) and (12) give the following

ρ(f2n − gn) ≤
(
1− β2n
1− δβ2n

)
ρ(f3n − gn) +

(
(1+ δ)β2n
1− δβ2n

)
ρ(f2n − p)

+

(
(1+ δ)β2n
1− δβ2n

)
ϕρ(ρ(f

2
n − p)).

(35)

ρ(f3n − gn) ≤
(
1− β3n
1− δβ3n

)
ρ(f4n − gn) +

(
(1+ δ)β3n
1− δβ3n

)
ρ(f3n − p)

+

(
(1+ δ)β3n
1− δβ3n

)
ϕρ(ρ(f

3
n − p)).

(36)

...
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ρ(fk−2n − gn) ≤
(
1− βk−2n

1− δβk−2n

)
ρ(fk−1n − gn) +

(
(1+ δ)βk−2n

1− δβk−2n

)
ρ(fk−2n − p)

+

(
(1+ δ)βk−2n

1− δβk−2n

)
ϕρ(ρ(f

k−2
n − p)).

(37)

ρ(fk−1n − gn) ≤
(
1− βk−1n

1− δβk−1n

)
ρ(fn − gn) +

(
(1+ δ)βk−1n

1− δβk−1n

)
ρ(fk−1n − p)

+

(
(1+ δ)βk−1n

1− δβk−1n

)
ϕρ(ρ(f

k−1
n − p)).

(38)

Substituting inequalities (38), (37), (36), (35) in inequality (32) inductively
and simplifying, we obtain

ρ(fn+1 − gn+1) ≤ [1− (1− δ)αn]ρ(fn − gn) + bn, (39)

where,

bn = [1− (1− δ)αn][1− (1− δ)β1n][1− (1− δ)β2n][1− (1− δ)β3n]...

[1− (1− δ)βk−2n ][1− (1− δ)βk−1n ]ρ(fk−1n − p)

+

(
1− αn
1− δαn

)(
(1+ δ)β1n
1− δβ1n

)(
(1+ δ)β2n
1− δβ2n

)(
(1+ δ)β3n
1− δβ3n

)
...(

(1+ δ)βk−2n

1− δβk−2n

)(
(1+ δ)βk−1n

1− δβk−1n

)
ϕρ(ρ(f

k−1
n − p))

+

(
(1+ δ)αn
1− δαn

)
ϕρ(ρ(fn+1 − p)).

Using the fact that 0 ≤ δ < 1 and the conditions {αn}
∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1)(i =

1, 2, ..., k− 1) in iterative sequences (9) to (12) in (39), it follows that

lim
n→∞ ρ(fn − gn) = 0.

Since by assumption limn→∞ fn = p, then
ρ(gn − p) ≤ ρ(fn − gn) + ρ(fn − p)→ 0 as n→∞.
That is, limn→∞ gn = p. This ends the proof. �

Since the implicit Noor (10), the implicit Ishikawa (11) and the implicit
Mann (12) iterative sequences are special cases of the implicit multistep iter-
ative sequence (9), then Theorem 1 leads to the following corollary:
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Corollary 1 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−quasi-contractive-like
mapping, satisfying contractive-like condition

Hρ(Tf, Tg) ≤ δρ(f− g) +ϕρ(ρ(Tf− f)), (40)

for all g, h, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1) and ϕρ : R+ → R+ is
a ρ−monotone increasing function with ϕρ(0) = 0. Let g0, h0, g0 ∈ D and
{gn}, {hn}, {gn} ⊂ D be defined by the implicit Mann (12), implicit Ishikawa
(11) and implicit Noor iterative sequences (10) respectively, where the se-
quences {αn}

∞
n=0, {β

1
n}

∞
n=0, {β

2
n}

∞
n=0 ⊂ (0, 1) such that

∑∞
n=0 αn =∞,∑∞

n=0 β
i
n =∞, for i = 1, 2. Then the following are equivalent:

a. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Ishikawa iterative sequence (11) converges strongly to the fixed
point of the multivalued map T.

b. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Noor iterative sequence (10) converges strongly to the fixed
point of the multivalued map T.

Proof. The proof of Corollary 1 is similar to that of Theorem 1. �

Corollary 2 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−quasi-contractive-like
mapping, satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g) +ϕρ(ρ(Tf− f)), (41)

for all g, h, g, f ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1) and ϕρ : R+ → R+

is a ρ−monotone increasing function with ϕρ(0) = 0. Let g0, h0, g0, f0 ∈ D
and {gn}, {hn}, {gn}, {fn} ⊂ D be defined by the implicit Mann (12), implicit
Ishikawa (11), implicit Noor (10), implicit multistep (9) iterative sequences re-
spectively, where the sequences {αn}

∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1) such that

∑∞
n=0 αn =∞,∑∞

n=0 β
i
n =∞ for i = 1, 2, ..., k− 1. Then the following are equivalent:

(i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
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(ii) the implicit Ishikawa iterative sequence (11) converges strongly to the
fixed point of the multivalued map T ;

(iii) the implicit Noor iterative sequence (10) converges strongly to the fixed
point of the multivalued map T ;

(iv) the implicit multistep iterative sequence (9) converges strongly to the
fixed point of the multivalued map T.

Theorem 2 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−quasi-contractive map-
ping, satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g) + Jρ(Tf− f), (42)

for all f, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1) and J ≥ 0. Let f0, g0 ∈ D
and {fn}, {gn} ⊂ D be defined by the implicit multistep (9) and implicit Mann
iterative sequences (12) respectively, where the sequences {αn}

∞
n=0, {β

i
n}

∞
n=0 ⊂

(0, 1) such that
∑∞
n=0 αn = ∞,∑∞

n=0 β
i
n = ∞ for i = 1, 2, ..., k − 1. Then the

following are equivalent:

(i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;

(ii) the implicit multistep iterative sequence (9) converges strongly to the
fixed point of the multivalued map T.

Proof. The method of proof of Theorem 2 is similar to that of Theorem 1.
The proof is complete. �

Theorem 2 leads to the following corollary:

Corollary 3 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−quasi-contractive map-
ping, satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g) + Jρ(Tf− f), (43)

for all g, h, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1) and J ≥ 0. Let g0, h0, g0 ∈ D
and {gn}, {hn}, {gn} ⊂ D be defined by the implicit Mann (12), implicit Ishikawa
(11) and implicit Noor (10) iterative sequence respectively, where the sequences
{αn}

∞
n=0, {β

1
n}

∞
n=0, {β

2
n}

∞
n=0 ⊂ (0, 1) such that

∑∞
n=0 αn = ∞,∑∞

n=0 β
i
n = ∞ for
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i = 1, 2. Then the following are equivalent:
a. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Ishikawa iterative sequence (11) converges strongly to the fixed
point of the multivalued map T.

b. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Noor iterative sequence (10) converges strongly to the fixed
point of the multivalued map T.

Theorem 3 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that, PTρ is a ρ−Zamfirescu mapping,
satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g) + 2δρ(Tf− f), (44)

for all f, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1). Let f0, g0 ∈ D and {fn}, {gn} ⊂
D be defined by the implicit multistep (9) and implicit Mann iterative se-
quences (12) respectively, where the sequences {αn}

∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1) such

that
∑∞
n=0 αn = ∞,∑∞

n=0 β
i
n = ∞ for i = 1, 2, ..., k − 1. Then the following

are equivalent:

(i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;

(ii) the implicit multistep iterative sequence (9) converges strongly to the
fixed point of the multivalued map T.

Proof. The method of proof of Theorem 3 is similar to that of Theorem 1.
The proof is complete. �

Theorem 3 leads to the following corollary:

Corollary 4 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−Zamfirescu mapping,
satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g) + 2δρ(Tf− f), (45)

for all g, h, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1). Let g0, h0, g0 ∈ D and
{gn}, {hn}, {gn} ⊂ D be defined by the implicit Mann (12), implicit Ishikawa
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(11) and implicit Noor (10) iterative sequence respectively, where the sequences
{αn}

∞
n=0, {β

1
n}

∞
n=0, {β

2
n}

∞
n=0 ⊂ (0, 1) such that,

∑∞
n=0 αn =∞,∑∞

n=0 β
i
n =∞ for i = 1, 2. Then the following are equivalent:

a. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Ishikawa iterative sequence (11) converges strongly to the fixed
point of the multivalued map T.

b. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Noor iterative sequence (10) converges strongly to the fixed
point of the multivalued map T.

Theorem 4 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−contraction mapping,
satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g), (46)

for all f, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1). Let f0, g0 ∈ D and {fn}, {gn} ⊂
D be defined by the implicit multistep (9) and implicit Mann iterative se-
quences (12) respectively, where the sequences {αn}

∞
n=0, {β

i
n}

∞
n=0 ⊂ (0, 1) such

that
∑∞
n=0 αn = ∞,∑∞

n=0 β
i
n = ∞ for i = 1, 2, ..., k − 1. Then the following

are equivalent:
(i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit multistep iterative sequence (9) converges strongly to the fixed
point of the multivalued map T.

Proof. The method of proof of Theorem 4 is similar to that of Theorem 1.
The proof is complete. �

Theorem 4 leads to the following corollary:

Corollary 5 Let ρ satisfy (UUC1) and ∆2−condition. Let D be a ρ−closed,
ρ−bounded and convex subset of a ρ−complete modular space Lρ and T : D→
Pρ(D) be a multivalued mapping such that PTρ is a ρ−contraction mapping,
satisfying the condition

Hρ(Tf, Tg) ≤ δρ(f− g), (47)
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for all g, h, g ∈ D and Fρ(T) 6= ∅, where δ ∈ [0, 1). Let g0, h0, g0 ∈ D and
{gn}, {hn}, {gn} ⊂ D be defined by the implicit Mann (12), implicit Ishikawa
(11) and implicit Noor (10) iterative sequence respectively, where the sequences
{αn}

∞
n=0, {β

1
n}

∞
n=0, {β

2
n}

∞
n=0 ⊂ (0, 1) such that

∑∞
n=0 αn =∞,∑∞

n=0 β
i
n =∞ for i = 1, 2. Then the following are equivalent:

a. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Ishikawa iterative sequence (11) converges strongly to the fixed
point of the multivalued map T.

b. (i) the implicit Mann iterative sequence (12) converges strongly to the fixed
point of the multivalued map T ;
(ii) the implicit Noor iterative sequence (10) converges strongly to the fixed
point of the multivalued map T.

3 Numerical example

Example 1 [3]. Let M[0, 1] be the collection of all real-valued measurable
functions on [0, 1] and ρ : M[0, 1] → R a convex function modular defined

by ρ(f) =
∫1
0 |f| ∀f ∈M[0, 1]. Let D = {f ∈ Lρ : 0 ≤ f(x) ≤ 2 ∀x ∈ [0, 1]} be a

subset of the modular function space Lρ =M[0, 1] defined by ρ. D is nonempty,
closed, and convex. Define map T : D → Pρ(D) by Tf = {δf}, where δ = 0.9.
T satisfies property (I), has a unique fixed point f = 0 (since 0 ∈ T(0)), and
PTρ is a ρ-contraction, with PTρ(f) = {Tf} ∀f ∈ D. In fact, PTρ is an m-strong
ρ-strong contraction for all m ∈ N, since ρ(g) = mρ( gm).

We present the results of convergence to f = 0 of implicit Mann iterative
sequence (12), implicit Ishikawa iterative sequence (11), implicit Noor itera-
tive sequence (10), and implicit multistep iterative sequence (9) using MAT-
LAB. The parameters used are the following: g0(x) = h0(x) = f0(x) = 0.5x +
0.95 ∀x ∈ [0, 1], αn = 1

4 +
1
n+2 , β

i
n = 1

n+2 for i = 1, 2, ..., k − 1, where k = 11

and n = 1, 2, ..., 130.


