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Abstract. This paper aims to show how some standard general results
can be used to uncover the spectral theory of tridiagonal and related
matrices more elegantly and simply than existing approaches. As a typ-
ical example, we apply the theory to the special tridiagonal matrices
in recent papers on orthogonal polynomials arising from Jordan blocks.
Consequently, we find that the polynomials and spectral theory of the
special matrices are expressible in terms of the Chebyshev polynomi-
als of second kind, whose properties yield interesting results. For special
cases, we obtain results in terms of the Fibonacci numbers and Legendre
polynomials.

1 Introduction

In the recent survey [9], we presented important modern applications involv-
ing tridiagonal matrices in applied mathematics, physics, and engineering and
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showed how the solutions/spectral theory could be easily obtained from Loson-
czi’s work [13] of nearly thirty years ago. The latter work seems not only to
have been neglected, but has also been re-cast or re-discovered in alternative
guises since. In fact, many of these papers cite less general work that followed
Losonczi a decade or so later. Interestingly, as described in [10], Losonczi’s
work grew out of the 1928 seminal paper by Egerváry and Szász [5].

In this note we uncover most of the important material in an existing publi-
cation in a simple and more elegant manner. Specifically, we aim to study the
work of Capparelli and Maroscia [2] on orthogonal polynomials arising from
Jordan blocks, which appeared in 2013, more than 20 years after Losonczi’s
paper. Before doing so, however, we need to present a summary of the main
results of [13] in the following section.

2 A general perturbed tridiagonal Toeplitz matrix

The spectral characterization of an n-dimensional tridiagonal Toeplitz matrix
possessing perturbations of the form

Mn(a, b, c, d) =



a c

d 0 c

d
. . .

. . .
. . .

. . . c

d 0 c

d b


n×n

has become the focus of much interest or activity over the past thirty years.
On this issue the interested reader is advised to consult [9], which also provides
an extensive recent list of references to the applications stemming from this
activity.

The first major theoretical study dealing with this type of matrix was Loson-
czi’s 1992 paper [13], which, in turn, was apparently motivated by the Ruther-
ford’s seminal paper [16] (cf. also [6]). From [13, Theorem 2] we find that the
characteristic polynomial of Mn is given by

pn(x) = (
√
cd)n

(
Un

(
x

2
√
cd

)
−

(a+ b)√
cd

Un−1

(
x

2
√
cd

)
+
ab

cd
Un−2

(
x

2
√
cd

))
.

(1)
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The Chebyshev polynomials of the second kind have been studied exten-
sively, e.g. [3], and are known to satisfy the following three-term recurrence
relation:

2xUn(x) = Un+1(x) +Un−1(x) , for all n = 1, 2, . . . , (2)

with the initial values being U0(x) = 1 and U1(x) = 2x. Arguably, the most
commonly-used form for the Chebyshev polynomials is

Un(x) =
sin(n+ 1)θ

sin θ
, 0 6 θ < π,

where x = cos θ and n is a non-negative integer. Other standard representa-
tions are

Un(x) =

(
x+
√
x2 − 1

)n+1
−
(
x−
√
x2 − 1

)n+1
2
√
x2 − 1

(3)

=

n∑
k=0

(−2)k
(
n+ k+ 1

2k+ 1

)
(1− x)k (4)

Furthermore, the generating function of Un(x), i.e., where they appear as the
coefficients of an infinite power series, is given by∞∑

n=0

Un(x) t
n =

1

1− 2xt+ t2
. (5)

For more details about these polynomials and their properties, the reader is
referred to Chapter 22 of [1]. Note also that Losonczi’s paper applies to more
general matrices than the above tridiagonal Toeplitz matrix. Nevertheless,
there is no loss of generality in computing the eigenvalues of Mn and its
characteristic polynomial given by (1) using [13].

As far as the eigenvectors are concerned, if λ is an eigenvalue of Mn,1 assum-
ing that cd 6= 0, then from Section 3 of [13], the eigenvectors corresponding
to λ, which can be represented as u = (u0, u1, . . . , un−1)

T with the superscript
denoting the transpose, are given by

u` = C

(
−

√
c

d

)` (
sin(`+ 1) θ+

a

b
sin `θ

)
, for ` = 0, 1, . . . , n− 1, (6)

provided λ = −2
√
cd cos θ, θ 6= mπ, m ∈ Z, and the arbitrary constant,

C 6= 0. Since it is not required here, we do not present the θ = mπ result.
By presenting the above material, we aim in this note to derive shorter and
thus, more elegant, proofs in the study of singular values of Jordan blocks than
those presented in [2].
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3 Jordan blocks

According to Definition 3.1.1 in [12], a Jordan block Jn(r) is a n × n matrix
composed of zeros everywhere except along the diagonal, which consists of a
single number and the superdiagonal, where each entry or element is equal to
unity. Thus, it has the following form:

Jn(r) =


r 1

r 1
. . .

. . .

r 1

r


n×n

.

The scalar r is generally a complex number, while the determinant of a Jordan
block is rn. However, since we are concerned the singular values of Jn(r), i.e.,
the square root of the eigenvalues of their product with their transpose, r
will be treated here mainly as a real number following [6], although some
interesting results will be obtained when r = i.

Capparelli and Maroscia [2] study the product of the transpose of a Jordan
block with itself, which yields

JTn(r)Jn(r) =


r2 r

r 1+ r2 r

r
. . .

. . .
. . .

. . . r

r 1+ r2


n×n

. (7)

Their primary aim is to determine the singular values of Jn(r), although bounds
for more general cases, where the entries are less uniform, can be found in [6].
Consequently, they focus on the following matrices:

Tn(α, r) =


α r

r 1+ α r

r
. . .

. . .
. . .

. . . r

r 1+ α


n×n

. (8)
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and

Un(α, r) =


α r

r α r

r
. . .

. . .
. . .

. . . r

r α


n×n

. (9)

Since the determinant of the transpose of a square matrix is equal to the
determinant of the square matrix, from the above we see that det Jn(r) =
(det Tn(r2, r))1/2.

In the remainder of this section we shall consider in the next subsection
general results involving α and r for the above tridiagonal matrices, and then
special cases in the following subsection.

3.1 General cases

Our first observation is concerned with the relationship between the deter-
minants of both matrices in addition to the derivation of their generating
functions. These are encapsulated in the following theorem.

Theorem 1 The determinant of the matrix Tn(α, r) is related to the deter-
minant of Un(α, r) according to

det Tn(α, r) = detUn(1+ α, r) − detUn−1(1+ α, r), (10)

while their generating functions are given by

∞∑
n=0

detUn(α, r)tn =
1

1− αt+ r2t2
, (11)

and ∞∑
n=0

det Tn(α, r)tn =
1− t

1− (1+ α)t+ r2t2
. (12)

Proof. From Theorem 2 in [13], or specifically, (1) with x = 1 + α, a = −1,
b = 0, and c = d = r, we arrive at

det Tn(α, r) = rn−1
(
rUn

(
1+ α

2r

)
−Un−1

(
1+ α

2r

))
. (13)
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On the other hand, the determinant of Un(α, r) is found using the same values
except that x = α and a = b = 0. Then we find that

detUn(α, r) = rnUn
( α
2r

)
. (14)

Introducing (14) into (13) yields (10).
If one multiplies (14) by tn and sums from n = 0 to ∞, then one obtains∞∑

n=0

detUn(α, r)tn =

∞∑
n=0

Un

( α
2r

)
(rt)n.

The right-hand side of the above result is simply the generating function for
the Chebyshev polynomials of the second kind. Therefore, putting t and x in
(5) equal to rt and α/2r, respectively, yields (11).

Adopting the same procedure to (14) yields∞∑
n=0

det Tn(α, r)tn =

∞∑
n=0

(
detUn(1+ α, r) − detUn−1(1+ α, r)

)
tn.

The first sum on the right-hand side of the above equation can be replaced by
the right-hand side (rhs) of (11) with α replaced by 1+α, while in the second
sum n needs to be replaced by n+ 1. Then the second sum is identical to (11)
except α is replaced α+ 1 and it is multiplied by t. Combining the results for
both sums yields (12). �

The generating function (11) has been derived in Proposition 1.2 of [2], but
as a result of Theorem 2 from [13], which also appears in the previous section,
the derivation here is much more succinct. If (3) is introduced into (14), then
(1.7) in Proposition 1.3 of [2] follows, which is

detUn(α, r) =
1√

α2 − 4r2

((α+
√
α2 − 4r2

2

)n+1
−
(α−

√
α2 − 4r2

2

)n+1)
.

In this instance, however, the condition accompanying the proposition that
α2 − 4r2 > 0 in [2], becomes redundant. Moreover, by introducing the above
result into (13), one obtains the corresponding form for det Tn(α, r). In ad-
dition, inserting (14) into the recurrence relation given by (2) produces the
following recurrence relation:

α detUn(α, r) = detUn+1(α, r) + r2 detUn−1(α, r).

Finally, introducing (2) into (10) yields a recurrence relation for det Tn(α, r),
which is

2(1+ α) det Tn(α, r) = det Tn+1(α, r) + r2 det Tn−1(α, r).
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3.2 Special cases

By putting α = r2 in (13), we obtain

det Tn(r2, r) = rn−1
(
rUn

(
r

2
+
1

2r

)
−Un−1

(
r

2
+
1

2r

))
.

By noting that det T1(r2, r) = r2 and the recurrence relation (2), one can prove
by induction that

det Tn(r2, r) = r2n.

Hence, we find that det Jn(r) = r
n. Furthermore, if λ denotes the eigenvalues

of Tn(r2, r), then we can modify the above result to obtain the characteristic
equation for the matrix, which is

rUn

(
r2 + 1− λ

2r

)
−Un−1

(
r2 + 1− λ

2r

)
= 0.

The above equation can be solved by using the Solve routine in Mathematica.
For example, when n = 2, one simply types
Solve[(r ChebyshevU[2, (r∧2 + 1 - λ)/(2 r)] - ChebyshevU[2 - 1, (r∧2 + 1 -
λ)/(2 r)]) == 0, λ],
which yields

λ1 = (1+ 2r2 −
√
1+ 4r2)/2, and λ2 = (1+ 2r2 +

√
1+ 4r2)/2.

These results have also been obtained by Capparelli and Maroscia [2].
By following the same procedure for n = 3, we find that

λ1 =
1

3

(
2+ 3r2 −

21/3(1+ 6r2)

p(r)
− 2−1/3p(r)

)
,

λ2 =
1

3

(
2+ 3r2 −

21/3eiπ/3(1+ 6r2)

p(r)
+ 2−1/3e−iπ/3p(r)

)
,

and

λ3 =
1

3

(
2+ 3r2 +

21/3e−iπ/3(1+ 6r2)

p(r)
+ 2−1/3eiπ/3p(r)

)
,

where

p(r) =
(
2− 9r2 + 3

√
3
√
−4r2 − 13r4 − 32r6

)1/3
.

For n = 4, the characteristic polynomial becomes

λ4 − (4r2 + 3)λ3 + (6r4 + 6r2 + 3)λ2 − (4r6 + 3r4 + 2r2 + 1)λ+ r8 = 0,
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while for n = 5, it is given by

λ5 − (5r2 + 4)λ4 + (10r4 + 12r2 + 6)λ3 − (10r6 + 12r4 + 9r2 + 4)λ2

+ (5r8 + 4r6 + 3r4 + 2r2 + 1)λ− r10 = 0.

Although the above equations can be solved for λ using the Solve routine in
Mathematica, the solutions are too cumbersome to display here.

For α = 1 and r = exp(iπ/2) or i, the right-hand side of (11) becomes
the right-hand side of the generating function for the Fibonacci numbers, Fn,
divided by t. As a consequence, we observe that

det Un−1(1, i) = Fn, (15)

while from (13), we arrive at

Fn = exp(i(n− 1)π/2)Un−1 (−i/2) . (16)

See also [7]. This result can also be derived from (5) by setting x = −i/2 and
t = it.

If we put α = 2x and r = 1, then we obtain

∞∑
n=0

detUn(2x, 1)tn =
1

1− 2xt+ t2
=

∞∑
n=0

tn
n∑
j=0

Pj(x)Pn−j(x),

where Pn(x) denotes the Legendre polynomial of degree n and is not be con-
fused with Pn(x) in [2] appearing here shortly. By equating like powers of t,
we obtain

detUn(2x, 1) =
n∑
j=0

Pj(x)Pn−j(x). (17)

Now introducing (14) into the above equation yields

n∑
j=0

Pj(x)Pn−j(x) = Un(x).

Alternatively, with the aid of (16), we arrive at

in
n∑
j=0

Pj(−i/2)Pn−j(−i/2) = Fn,
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which is an interesting relationship between a sum of products of Legendre
polynomials with imaginary arguments and the Fibonacci numbers.

In a similar manner the generating function of det Tn(α, r) is found to be

∞∑
n=0

det Tn(α, r)tn =
1− t

1− (1+ α)t+ r2t2
. (18)

By putting α = 0 and r = i, we observe that the right-hand side of (12) be-
comes the difference of two forms of the generating function for the Fibonacci
numbers, namely

∞∑
n=0

det Tn(0, i)tn =

∞∑
n=0

(Fn+1 − Fn) t
n.

Equating like powers of t yields

det Tn(0, i) = Fn−1,

while from (15), we see that detUn−1(1, i) = det Tn+1(0, i).
If we set α=1− x and r=1 in (18), then we derive the generating function

of the characteristic polynomial of Tn(1, 1), which is denoted by Pn(x) in [2].
That is, Pn(x) = det Tn(1 − x, 1). Note also for the case of Tn(1, 1), which
we discuss in more detail later, the right-hand side of the generating function
reduces to 1/(1− t). By expanding this term as the geometric series for |t| < 1
and equating like powers of t on both sides, one finds that det Tn(1, 1) = 1.
On the other hand, if we replace α by 1 + α in (11) and subtract (12) from
the resulting equation, then we find that

∞∑
n=0

(
detUn(1+ α, r) − det Tn(α, r)

)
tn =

t

1− (1+ α)t+ r2t2
.

Consequently, from the preceding material, we arrive at

detUn(1, i) − det Tn(0, i) = Fn.

Now if we set α= 1 − x and r= 1, then we obtain the generating function of
the other set of polynomials appearing in Section 2 of [2], denoted by Qn(x).
Thus, we arrrive at

Qn(x) = detUn(2− x, 1) − det Tn(1− x, 1) = Un−1(1− x/2).
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Alternatively, this may be expressed as Qn(x)+Pn(x) = detUn(2−x, 1) or the
sum of both polynomials with index n yields the characteristic polynomial of
Un(2, 1). Then using (17), we can express the sum of the polynomials in terms
of shifted Legendre polynomials as

Qn(x) + Pn(x) =

n∑
j=0

Pj(1− x)Pn−j(1− x).

For the case of α = r = 1 in Tn(α, r) or

Tn(1, 1) =


1 1

1 2 1

1
. . .

. . .
. . .

. . . 1

1 2


n×n

we find that the characteristic polynomial reduces to

Pn(x) = Un

(
2− x

2

)
−Un−1

(
2− x

2

)
, (19)

using (1) (the reader is also referred to [8]). If we set x = i+ 2 into the above
recurrence relation, then with the aid of (16) we find that

inPn(i+ 2) = Fn+1 − iFn.

On the other hand, by considering (4) and Pascal’s formula, which is(
n+ k+ 1

2k+ 1

)
−

(
n+ k

2k+ 1

)
=

(
n+ k

2k

)
,

we find that

Pn(x) =

n∑
k=0

(−1)k
(
n+ k

2k

)
xk.

This is proved in Theorem 2.5 of [2]. On the other hand, the polynomials
Qn(x), which are presented after Corollary 2.6, are even simpler to evaluate
since we have already observed that they are equal to Un−1(1 − x/2). Intro-
ducing (4) into this result yields

Qn−1(x) =

n−1∑
k=0

(−1)k
(
n+ k

2k+ 1

)
xk.
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By combining (5) with (19), we obtain the generating function of Pn(x)
appearing in Proposition 2.1 of [2] or

∞∑
n=0

Pn(x)t
n =

1− t

1− (2− x)t+ t2
.

If we put α=1−x and r=1 in (12) and equate like powers of t, then we arrive
at Pn(x) = det Tn(1−x, 1), which was derived earlier. Furthermore, by setting
x = 2, we find that

Pn(2) =

n∑
k=0

(−1)k
(
n+ k

2k

)
2k

= Un(0) −Un−1(0)

=

{
1 if n ≡ 0, 3 (mod 4),

−1 if n ≡ 1, 2 (mod 4).

(20)

Hence it can be seen that

det Tn(−1, 1) =
{

1 if n ≡ 0, 3 (mod 4),

−1 if n ≡ 1, 2 (mod 4).

With regard to the question posed after Corollary 2.6 in [2] concerning whether
there exists a combinatorial interpretation of the above sequence, the answer
is affirmative. To see this, we refer the reader to [17], where it is not only
stated that Sequence A087960 is given by

Pn(2) = (−1)(
n+1
2 ),

but there are also numerous references to applications. In fact, from the site
we observe that Pn(2) represents the coefficient of xn+1 in the power series of
(1+ x)/(1+ x2) − 1 and is given by

Pn(2) = (−1)(
n+1
2 ) = cos

(
nπ/2

)
− sin

(
nπ/2

)
.

A similar sequence, where each term is shifted by incrementing n by one, also
appears as A057077 in [17], again with numerous applications.

It should also be noted that Capparelli and Maroscia were unaware that the
properties of the Pn(x) are well-known in the theory of orthogonal polynomials.
In particular, these polynomials were first studied by Chihara [4], where they
were referred to as co-recursive polynomials. More generally, they are now
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regarded as a particular case of anti-associated polynomials of a certain family
of orthogonal polynomials derived by Ronveaux and van Assche [15].

Finally, we consider the singular values of the Jordan block with r = 1.
As indicated before, the product of the Jordan block with its transpose yields
Tn(r2, r) as per (7). Since the transpose has the same characteristic polynomial
as the Jordan block, the characteristic polynomial of Tn(1, 1) is the square of
the characteristic polynomial of the Jordan block. From (19), Pn(x) represents
the characteristic polynomial for Tn(1, 1), whose eigenvalues are obtained by
setting the right-hand side of (19) to zero. Thus, we require the solutions of

Un

(
2− x

2

)
= Un−1

(
2− x

2

)
.

The above equation is solved simply by replacing 1 − x/2 by cos θ. After
carrying out a little algebra using (2), one arrives at

cos
(
(n+ 1/2)θ

)
sin
(
θ/2
)
= 0,

whose solutions are
θ = (2k+ 1)π/(2n+ 1).

As a consequence, the eigenvalues of Tn(1, 1) are given by

λk = 2− 2 cos

(
(2k+ 1)π

2n+ 1

)
= 4 sin2

(
(2k+ 1)π

4n+ 2

)
, for k = 0, 1, . . . , n− 1.

From (6) or Theorem 3 in [13], the eigenvectors of Tn(1, 1) denoted by u =
(u0, u1, . . . , un−1)

T are simply given by

uk = (−1)kC
(

sin(k+ 1)φ+
1

2
sinkφ

)
,

and

φ = arccos
(

cos
((2k+ 1)π
2n+ 1

)
− 1
)
.

Furthermore, taking the square root of the eigenvalues yields the singular
values of Jn(1). Hence we have arrived at (3.1) in Theorem 3.3 of [2] with little
effort, while Capparelli and Maroscia had to introduce Lemma 3.2. It should
also be mentioned that there was no need to prove this lemma since it is a
well-known result that appears as No. 17.14.4 on p. 250 of Hansen [11] or as
No. I.1.9 on p. 760 of Prudnikov et al. [14], both of which preceded [2] by
several decades.
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4 Conclusion

In this article we have shown how important theory in Losonczi’s article [13]
can be used to uncover the spectral theory of tridiagonal and related matrices.
As an example, we have demonstrated that most of the interesting results in
Capparelli and Maroscia’s work [2] on orthogonal polynomials arising from
Jordan blocks can be obtained in a simple and elegant manner, often requiring
only a few lines. We have achieved this by applying the results in [13] to the
matrix types, Tn(α, r) and Un(α, r), given by (8) and (9), respectively. The first
type of matrix is related to the product of a Jordan block and its tranpose,
which also enabled us to derive the spectral theory of these matrices from
[13]. Furthermore, we were able to show that the orthogonal polynomials,
denoted by Pn(x) and Qn(x) in [2], were expressible in terms of the second
kind of Chebyshev polynomials. In carrying out this work, we also answered
the question after Corollary 2.6 in [2] whether there is a natural combinatorial
interpretation of (20) or (2.9) in [2]. This was shown to be minus one raised
to a specific binomial coefficient. Finally, we found that the spectral theory
for imaginary elements/entries in special cases of Un(α, r) and Tn(α, r), can
be expressed in terms of the Fibonacci numbers and Legendre polynomials.
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