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Abstract. This paper studies the existence of periodic solutions of a
third order iterative differential equation. The main tool used here is
Krasnoselskii-Burton’s fixed point theorem dealing with a sum of two
mappings, one is a large contraction and the other is compact.

1 Introduction

Delay or iterative differential equations have attracted considerable attention
in mathematics during recent years since these equations have been showed
to be valuable tools in the modeling of many phenomena in various fields
of science, physics, chemistry and engineering, etc. In particular, periodicity,
positivity and stability of solutions for delay or iterative differential equations
has been studied extensively by many authors, see the references [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. For example in [9], the
third-order iterative differential equation

x′′′ (t) + p (t) x′′ (t) + q (t) x′ (t) + r (t) x (t) = x (t)

n∑
k=1

ck (t) x
[k] (t) ,
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has been investigated. By using Krasnoselskii’s fixed point theorem and the
contraction mapping principle, Bouakkaz et al. obtained the existence, unique-
ness and continuous dependence of periodic solution. Inspired and motivated
by the references [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
we study the existence of periodic solutions for the third order iterative dif-
ferential equation

x′′′ (t) + p (t) x′′ (t) + q (t) x′ (t) + r (t)h (x (t)) = x (t)

n∑
k=1

ck (t) x
[k] (t) , (1)

where x[1] (t) = x (t), x[2] (t) = x (x (t)), ..., x[n] (t) = x[n−1] (x (t)), p, q, r and
ck, k = 1, n are continuous real-valued functions. Our purpose here is to use
Krasnoselskii-Burton’s fixed point theorem to prove the existence of periodic
solutions for (1). To prove the existence of periodic solutions, we transform
(1) into an equivalent integral equation and then use Krasnoselskii-Burton’s
fixed point theorem. The obtained integral equation splits in the sum of two
mappings, one is a large contraction and the other is compact.

2 Preliminaries

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t
of period T . Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)| ,

and for N,K > 0, let

PT (N,K) = {x ∈ PT , ‖x‖ ≤ N, |x (t2) − x (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ R} ,

be a closed convex and bounded subset of PT .
Throughout this paper, we assume that

(H1) There exist two differentiable positive T -periodic functions a1, a2 and a
positive real constant ρ such that

a1(t) + ρ = p(t),
a′1(t) + a2(t) + ρa1(t) = q(t),
a′2(t) + ρa2(t) = r(t).
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(H2) p, q, r ∈ PT and ∫ T
0

p (s)ds > ρT and

∫ T
0

q (s)ds > 0.

Now, we consider the equation

x′′′ (t) + p (t) x′′ (t) + q (t) x′ (t) + r (t) x (t) = e (t) , (2)

where e is a continuous T -periodic function. It is easy to see that by
virtue of (H1) and (H2), the above equation can be transformed into the
following system{

y′ (t) + ρy (t) = e (t) ,
x′′ (t) + a1 (t) x

′ (t) + a2 (t) x (t) = y (t) .

Lemma 1 ([5]) If y, e ∈ PT , then y is a solution of the equation

y′ (t) + ρy (t) = e (t) ,

if and only if

y (t) =

∫ t+T
t

G1 (t, s) e (s)ds, (3)

where

G1 (t, s) =
exp (ρ (s− t))

exp (ρT) − 1
. (4)

Corollary 1 ([14]) Green’s function G1 satisfies the following property

m1 ≤ G1 (t, s) ≤M1,

where

m1 =
1

exp (ρT) − 1
, M1 =

exp (ρT)

exp (ρT) − 1
.

Lemma 2 ([13]) Suppose that (H1), (H2) hold and

R1

[
exp

(∫T
0 a1 (v)dv

)
− 1
]

Q1T
≥ 1, (5)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T
t

exp
(∫s
t a1 (v)dv

)
exp

(∫T
0 a1 (v)dv

)
− 1

a2 (s)ds

∣∣∣∣∣∣ ,
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and

Q1 =

(
1+ exp

(∫ T
0

a1 (v)dv

))2
R21.

Then, there are continuous and T -periodic functions a and b such that

b(t) > 0,

∫ T
0

a(v)dv > 0,

and

a(t) + b(t) = a1(t),
d

dt
b(t) + a(t)b(t) = a2(t) for all t ∈ R.

Lemma 3 ([17]) Suppose the conditions of Lemma 2 hold and y ∈ PT . Then
the equation

d2

dt2
x (t) + a1 (t)

d

dt
x (t) + a2 (t) x (t) = y (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x (t) =

∫ t+T
t

G2 (t, s)y (s)ds, (6)

where

G2 (t, s) =

∫s
t exp

[∫v
t b (u)du+

∫s
v a (u)du

]
dv[

exp
(∫T

0 a (v)dv
)
− 1
] [

exp
(∫T

0 b (v)dv
)
− 1
]

+

∫t+T
s exp

[∫v
t b (u)du+

∫s+T
v a (u)du

]
dv[

exp
(∫T

0 a (v)dv
)
− 1
] [

exp
(∫T

0 b (v)dv
)
− 1
] . (7)

Lemma 4 ([13]) Let A =
∫T
0 a1 (v)dv and B = T 2 exp

(
1
T

∫T
0 ln (a2 (v))dv

)
.

If
A2 ≥ 4B, (8)

then

min

{∫ T
0

a (v)dv,

∫ T
0

b (v)dv

}
≥ 1
2

(
A−

√
A2 − 4B

)
:= l,

and

max

{∫ T
0

a (v)dv,

∫ T
0

b (v)dv

}
≤ 1
2

(
A+

√
A2 − 4B

)
:= L.



Periodic solutions 79

Corollary 2 ([14]) Green’s function G2 satisfies the following properties

m2 ≤ G2 (t, s) ≤M2

where

m2 =
T

(eL − 1)
2

and M2 =
T exp

(∫T
0 a1 (v)dv

)
(el − 1)

2
.

Lemma 5 ([8]) For any t1, t2 ∈ R∫ t1+T
t1

|G2 (t2, s) −G2 (t1, s)|ds ≤ µ |t2 − t1| ,

where
µ = Te2Lη

[
Tλ2γ

(
2e2L + 1

)
+ eL + 1

]
,

and

η =
1[

exp
(∫T

0 a (v)dv
)
− 1
] [

exp
(∫T

0 b (v)dv
)
− 1
] ,

λ2 = max
t∈[0,T ]

|b (t)| , γ = exp

(
−

∫ T
0

b (v)dv

)
.

Lemma 6 ([11]) Suppose the conditions of Lemma 2 hold and e ∈ PT . Then
the equation

x′′′ (t) + p (t) x′′ (t) + q (t) x′ (t) + r (t) x (t) = e (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x (t) =

∫ t+T
t

G (t, s) e (s)ds, (9)

where

G (t, s) =

∫ t+T
t

G2 (t, σ)G1 (σ, s)dσ. (10)

Corollary 3 ([14]) Green’s function G satisfies the following property

m ≤ G (t, s) ≤M,

where

m =
T 2

(eL − 1)
2
(exp (ρT) − 1)

and M =
T 2
(
ρT + exp

(∫T
0 a (v)dv

))
(el − 1)

2
(exp (ρT) − 1)

.
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Lemma 7 ([20]) For any ϕ,ψ ∈ PT (L, K),

∥∥∥ϕ[i] −ψ[i]
∥∥∥ ≤ i−1∑

j=0

Kj ‖ϕ−ψ‖ , i = 1, 2, ....

Lemma 8 ([19]) It holds

PT (N,K) = {x ∈ PT , ‖x‖ ≤ N, |x (t2) − x (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} .

Lemma 9 Suppose (H1), (H2) and (5) hold. The function x ∈ PT (N,K) is a
solution of (1) if and only if

x (t) =

∫ t+T
t

r (s)H (x (s))G (t, s)ds+

n∑
i=1

∫ t+T
t

ci (s) x (s) x
[i] (s)G (t, s)ds,

(11)
where

H(x) = x− h(x). (12)

Proof. Let x ∈ PT (N,K) be a solution of (1). Rewrite (1) as

x′′′ (t) + p (t) x′′ (t) + q (t) x′ (t) + r (t) x (t)

= r (t)H (x (t)) + x (t)

n∑
k=1

ck (t) x
[k] (t) .

From Lemma 6, we have

x (t) =

∫ t+T
t

G (t, s)

[
r (s)H (x (s)) + x (s)

n∑
k=1

ck (s) x
[k] (s)

]
ds.

The proof is completed. �

Definition 1 (Large contraction [10]) Let (M, d) be a metric space and
consider B : M→M. Then B is said to be a large contraction if given φ,ϕ ∈M
with φ 6= ϕ then d (Bφ,Bϕ) ≤ d (φ,ϕ) and if for all ε > 0, there exists a
δ ∈ (0, 1) such that

[φ,ϕ ∈M, d (φ,ϕ) ≥ ε]⇒ d (Bφ,Bϕ) ≤ δd (φ,ϕ) .
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Theorem 1 (Krasnoselskii-Burton [10]) Let M be a closed bounded con-
vex nonempty subset of a Banach space (B, ‖.‖). Suppose that A and B map
M into M such that

(i) x, y ∈M, implies Ax+ By ∈M,
(ii) A is compact and continuous,
(iii) B is a large contraction mapping.

Then there exists z ∈M with z = Az+ Bz.

We will use this theorem to show the existence of periodic solutions for (1).

Theorem 2 ([1]) Let ‖.‖ be the supremum norm, M = {ϕ ∈ PT : ‖ϕ‖ ≤ N}

where N is a positive constant. Suppose that h is satisfying the following con-
ditions

(I) h : R→ R is continuous on [−N,N] and differentiable on (−N,N),
(II) the function h is strictly increasing on [−N,N],
(III) supt∈(−N,N) h

′ (t) ≤ 1.
Then the mapping H define by (12) is a large contraction on the set M.

3 Existence of periodic solutions

To apply the Theorem 1 we need to define a Banach space B, a closed bounded
convex subset M of B and construct two mappings; one is a compact and the
other is a large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = PT (N,K)

= {ϕ ∈ PT , ‖ϕ‖ ≤ N, |ϕ (t2) −ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} ,
(13)

with N,K > 0. Define a mapping S : M→ PT by

(Sϕ) (t) =
∫ t+T
t

r (s)H (ϕ (s))G (t, s)ds

+

n∑
i=1

∫ t+T
t

ci (s)ϕ (s)ϕ[i] (s)G (t, s)ds.

Therefore, we express the above mapping as

Sϕ = Aϕ+ Bϕ,
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where A,B : M→ PT are given by

(Aϕ) (t) =
n∑
i=1

∫ t+T
t

ci (s)ϕ (s)ϕ[i] (s)G (t, s)ds, (14)

and

(Bϕ) (t) =
∫ t+T
t

r (s)H (ϕ (s))G (t, s)ds, (15)

where ci in PT , i = 1, n.

Remark 1 The compactness of PT (N,K) results immediately from the appli-
cation of Lemma 8 and Ascoli-Arzela theorem.

We need the next lemma in our next results. This lemma and its proof can
be found in [9].

Lemma 10 For any ϕ,ψ ∈M,

∥∥∥ϕϕ[i] −ψψ[i]
∥∥∥ ≤ N

1+ i−1∑
j=0

Kj

 ‖ϕ−ψ‖ , i = 1, 2, ....

We will show set of preparatory lemmas to use them in the proof of the
main existence results.

Lemma 11 Suppose that (H1), (H2), (5) hold and ci ∈ PT (Nci , Kci), i = 1, n.
If

J

(
TMN2

n∑
i=1

Nci

)
≤ N, (16)

and

J
(
µM1T

2 + 2M1M2T + 2M
)
N2

n∑
i=1

Nci ≤ K, (17)

hold, where J is a positive constant with J ≥ 3. Then the operator A defined
by (14) is continuous and compact on M.

Proof. Let ϕ ∈ M. For having Aϕ ∈ M we show that Aϕ ∈ PT , ‖Aϕ‖ ≤ N
and |(Aϕ) (t2) − (Aϕ) (t1)| ≤ K |t2 − t1|, ∀t1, t2 ∈ [0, T ]. First it is easy to
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show that (Aϕ)(t+T) = (Aϕ)(t). That is, if ϕ ∈ PT then Aϕ is periodic with
period T . By using Corollary 2 and (16), we obtain

|(Aϕ) (t)| ≤
n∑
i=1

∫ t+T
t

|ci (s)| |ϕ (s)|
∣∣∣ϕ[i] (s)

∣∣∣ |G (t, s)|ds

≤ TMN2
n∑
i=1

Nci ≤
N

J
≤ N.

So, we get
‖Aϕ‖ ≤ N.

Second we prove that, for any ϕ ∈ M the function Aϕ is K-Lipschitzian.
Let ϕ ∈M and t1, t2 ∈ [0, T ] with t1 < t2, we have

|(Aϕ) (t2) − (Aϕ) (t1)|

≤

∣∣∣∣∣
n∑
i=1

∫ t2+T
t2

ci (s)ϕ (s)ϕ[i] (s)G (t2, s)ds

−

n∑
i=1

∫ t1+T
t1

ci (s)ϕ (s)ϕ[i] (s)G (t1, s)ds

∣∣∣∣∣
≤

n∑
i=1

∫ t1
t2

|ci (s)| |ϕ (s)|
∣∣∣ϕ[i] (s)

∣∣∣ |G (t2, s)|ds

+

n∑
i=1

∫ t2+T
t1+T

|ci (s)| |ϕ (s)|
∣∣∣ϕ[i] (s)

∣∣∣ |G (t2, s)|ds

+

n∑
i=1

∫ t1+T
t1

|ci (s)| |ϕ (s)|
∣∣∣ϕ[i] (s)

∣∣∣ |G (t2, s) −G (t1, s)|ds.

It follows from Corollaries 2, 2 and Lemma 5 that

|G (t2, s) −G (t1, s)|

=

∣∣∣∣∫ t2+T
t2

G2 (t2, σ)G1 (σ, s)dσ−

∫ t1+T
t1

G2 (t1, σ)G1 (σ, s)dσ

∣∣∣∣
≤
∫ t1
t2

|G2 (t2, σ)| |G1 (σ, s)|dσ+

∫ t2+T
t1+T

|G2 (t2, σ)| |G1 (σ, s)|dσ

+

∫ t1+T
t1

|G1 (σ, s)| |G2 (t2, σ) −G2 (t1, σ)|dσ.
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So
|G (t2, s) −G (t1, s)| ≤ (2M1M2 + µTM1) |t2 − t1| . (18)

Using Corollary 3 and (18), we get

|(Aϕ) (t2) − (Aϕ) (t1)|

≤ 2MN2
(

n∑
i=1

Nci

)
|t2 − t1|+ TN

2 (2M1M2 + µTM1)

(
n∑
i=1

Nci

)
|t2 − t1|

= N2
(
2M+ 2TM1M2 + µT

2M1

)( n∑
i=1

Nci

)
|t2 − t1|

≤ K
J
|t2 − t1| ≤ K |t2 − t1| .

So, we have
|(Aϕ) (t2) − (Aϕ) (t1)| ≤ K |t2 − t1| .

which shows A : M→M.
Now, For ϕ,ψ ∈ M, ci ∈ PT (Nci , Kci), i = 1, n, and from Corollary 3, we

obtain

|(Aϕ) (t) − (Aψ) (t)|

≤
n∑
i=1

∫ t+T
t

|ci (s)| |G (t, s)|
∣∣∣ϕ (s)ϕ[i] (s) −ψ (s)ψ[i] (s)

∣∣∣ds
≤M

n∑
i=1

∫ t+T
t

|ci (s)|
∣∣∣ϕ (s)ϕ[i] (s) −ψ (s)ψ[i] (s)

∣∣∣ds.
Using Lemma 10, we get

|(Aϕ) (t) − (Aψ) (t)| ≤ NMT
n∑
i=1

Nci

1+ i−1∑
j=0

Kj

 ‖ϕ−ψ‖ .

This implies the continuity ofA. We use Remark 1 and the fact that continuous
operators maps compact sets into compact sets we deduce that A is a compact
operator. �

The next result proves the relationship between the mappings H and B in
the sense of large contractions. Assume that

θMT ≤ 1, (19)
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max (|H (−N)| , |H (N)|) ≤ (J− 1)

J
N, (20)

and (
2M+ 2TM1M2 + µT

2M1

)
θN ≤ K, (21)

where θ = max
t∈[0,T ]

|r (t)|.

Lemma 12 Let B be defined by (15). Suppose (H1), (H2), ( (5)), (19)–(21)
and all conditions of Theorem 2 hold. Then B is a large contraction on M.

Proof. Let B be defined by (15). Obviously, Bϕ is continuous and it is easy
to show that (Bϕ)(t + T) = (Bϕ)(t). For having Bϕ ∈ M we will show that
‖Bϕ‖ ≤ N and |(Bϕ) (t2) − (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let ϕ ∈
M, by (19) and (20) we get

|(Bϕ) (t)| ≤
∫ t+T
t

|G (t, s)| |r (s)| |H (ϕ (s))|ds

≤ θMT max {|H (−N)| , |H (N)|} ≤ (J− 1)N

J
≤ N.

Then, for any ϕ ∈M, we have

‖Bϕ‖ ≤ N.

Let t1, t2 ∈ [0, T ] with t1 < t2, for any ϕ ∈M, we have

|(Bϕ) (t2) − (Bϕ) (t1)|

≤
∣∣∣∣∫ t2+T
t2

G (t2, s) r (s)H (ϕ (s))ds−

∫ t1+T
t1

G (t1, s) r (s)H (ϕ (s))ds

∣∣∣∣
≤
∫ t1
t2

|G (t2, s)| |r (s)| |H (ϕ (s))|ds

+

∫ t2+T
t1+T

|G (t2, s)| |r (s)| |H (ϕ (s))|ds

+

∫ t1+T
t1

|G (t2, s) −G (t1, s)| |r (s)| |H (ϕ (s))|ds.

Using Corollary 3 and (18), we have

|(Bϕ) (t2) − (Bϕ) (t1)|
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≤ 2Mθ(J− 1)N
J

|t2 − t1|+ θ
(J− 1)N

J
T (2M1M2 + µTM1) |t2 − t1|

=
(
2M+ 2TM1M2 + µT

2M1

)
θ
(J− 1)N

J
|t2 − t1| .

From (21), we obtain

|(Bϕ) (t2) − (Bϕ) (t1)| ≤
(J− 1)K

J
|t2 − t1|

≤ K |t2 − t1| .

Consequently, we have B : M→M.
It remains to show that B is a large contraction. By Theorem 2 H is large

contraction on M, then for any ϕ,ψ ∈M, with ϕ 6= ψ we have

|(Bϕ) (t) − (Bψ) (t)|

≤
∣∣∣∣∫ t+T
t

G (t, s) r (s) [H (ϕ (s)) −H (ψ (s))]ds

∣∣∣∣
≤ θMT ‖ϕ−ψ‖ ≤ ‖ϕ−ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ ‖ϕ−ψ‖. Now, let ε ∈ (0, 1) be given and let ϕ,ψ ∈ M,
with ‖ϕ−ψ‖ ≥ ε, from the proof of Theorem 2, we have found a δ ∈ (0, 1),
such that

|(Hϕ) (t) − (Hψ) (t)| ≤ δ ‖ϕ−ψ‖ .

Thus,

|(Bϕ) (t) − (Bψ) (t)|

≤
∣∣∣∣∫ t+T
t

G (t, s) r (s) [H (ϕ (s)) −H (ψ (s))]ds

∣∣∣∣
≤ θMTδ ‖ϕ−ψ‖ ≤ δ ‖ϕ−ψ‖ .

The proof is complete. �

Theorem 3 Suppose the hypotheses of Lemmas 11, 12 hold. Let M defined by
(13). Then (1) has a T -periodic solution in M.

Proof. By Lemmas 11, A : M → M is continuous and A(M) is contained in
a compact set. Also, from Lemma 12, the mapping B : M → M is a large
contraction. Next, we show that if ϕ,ψ ∈ M, we have ‖Aϕ+ Bψ‖ ≤ N and
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|(Aϕ+ Bψ) (t2) − (Aϕ+ Bψ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let ϕ,ψ ∈
M. By (16), (19) and (20), we obtain

‖Aϕ+ Bψ‖ ≤ TMN2
n∑
i=1

Nci +
(J− 1)N

J
≤ N
J
+

(J− 1)N

J
= N.

Now, let ϕ,ψ ∈M and t1, t2 ∈ [0, T ]. By (17), (21), we get

|(Aϕ+ Bψ) (t2) − (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2) − (Aϕ) (t1)|+ |(Bψ) (t2) − (Bψ) (t1)|

≤ K
J
|t2 − t1|+

(J− 1)K

J
|t2 − t1|

≤ K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 9
this fixed point is a solution of (1). Hence (1) has a T -periodic solution. �
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