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Abstract. In this paper, we deduce the form of a nonconstant mero-
morphic function f when some power of f shares certain set counting
multiplicities in the weak sense with the k-th derivative of the power.
The results of this paper generalize the results due to Lahiri and Zeng
[Afr. Mat. 27 (2016), 941-947].

1 Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions in the complex plane
and a ∈ C ∪ {∞}. If the zeros of f − a and g − a coincide both in locations
and multiplicities then we say that f and g share the value a CM (counting
multiplicities) and if they coincide only in locations (may or may not have the
same multiplicities) then we say that f and g share the value a IM (ignoring
multiplicities). For a meromorphic function f in the complex plane, we denote
by S(r, f) any quantity satisfying S(r, f) = o{T(r, f)} for all r outside a possible
exceptional set of finite logarithmic measure. Throughout this paper, we adopt
the standard notations of Nevanlinna Theory as described in [1] and [8]. We
now recall the following definitions.

2010 Mathematics Subject Classification: 30D35
Key words and phrases: meromorphic functions, WCM sharing, Nevanlinna theory

104



A power of a meromorphic function... 105

Definition 1 [3] For a ∈ C ∪ {∞} we denote by N(r, a; f| = 1) the count-
ing function of simple a-points of f. For a positive integer m we denote by
N(r, a; f| ≤ m) (N(r, a; f| ≥ m)) the counting function of those a-points of f
whose multiplicities are not greater (less) than m where each a-point is counted
according to its multiplicity.
N(r, a; f| ≤ m) (N(r, a; f| ≥ m)) are defined analogously, where in counting

the a-points of f we ignore the multiplicities.

Definition 2 [2] Let a be any value in the extended complex plane, and let
p be an arbitrary nonnegative integer. We denote by Np(r, a; f) the counting
function of a-points of f, where an a-point of multiplicity m is counted m
times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + . . . +N(r, a; f |≥ p).

Clearly N1(r, a; f) = N(r, a; f).

In 1983, Mues and Steinmetz [7] proved the following result.

Theorem A Let f be a nonconstant meromorphic function and a, b be two
distinct finite complex numbers. If f and f ′ share a, b CM, then f = cez, where
c is a nonzero constant.

In 2004, Lin and Huang [6] proved the following result considering certain
power of a meromorphic function.

Theorem B Let f be a nonconstant meromorphic function, n(≥ 8) be an
integer and a be a nonzero complex number. If fn and (fn) ′ share the value a
CM, then f = ce

z
n , where c is a nonzero constant.

In 2008, Lei, Fang, Yang and Wang [5] improved Theorem B by relaxing the
lower bound of n and proved the result for n ≥ 4.

For a ∈ C∪{∞}, let E(a, f) denote the set of all a-points of f where an a-point
is counted according to its multiplicity and E(a, f) denote the set of distinct
a-points of f. If S ⊂ C ∪ {∞}, then we define E(S, f) = ∪a∈SE(a, f). We say
that f and g share the set S counting multiplicities (CM) if E(S, f) = E(S, g).
Similarly we define E(S, f) = ∪a∈SE(a, f).

Let a ∈ C ∪ {∞} and B ⊂ C ∪ {∞}. We denote by EB(a; f, g) the set of all
those distinct a-points of f which are b-points of g with same multiplicities
for some b ∈ B and EB(A; f, g) = ∪a∈AEB(a; f, g) for A ⊂ C ∪ {∞}.
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For S ⊂ C∪ {∞}, we now put Y = {E(S, f)∪E(S, g)}\ES(S; f, g). We say that
f and g share the set S counting multiplicities in the weak sense or WCM if
NY(r, a; f) = S(r, f) and NY(r, a;g) = S(r, g) for every a ∈ S, where NY(r, a; f)
denotes the reduced counting function of those a-points of f which lie in the
set Y (see [4]). Intuitively, sharing WCM is little less than sharing CM by an
unimportant error term. We also see that f and g share the set S CM if and
only if Y = φ. Further, WCM value sharing is same as “CM” value sharing
when S = {a}(p. 226, [8]).

In 2016, using the concept of WCM value sharing of a set, Lahiri and Zeng
[4] proved the following theorems which improve Theorem B.

Theorem C Let f be a nonconstant meromorphic function, m, n(≥ 4) be
positive integers and S = {a1, a2, ..., am} ⊂ C\{0} be a set of distinct numbers.
If fn and (fn) ′ share the set S WCM, then f = ce

ωz
n , where c( 6= 0), ω are

constants and ωm = 1. Further f = ce
z
n if either

∑m
i=1 ai 6= 0 or m is prime

and S 6= {az : zm = 1}, where a is any nonzero number.

Remark 1 [4] If
∑m
i=1 ai = 0, then ω may not be equal to 1. For example,

let S = {1,−1, 2,−2} and f = ce
−z
4 , where c is a nonzero constant.

Remark 2 [4] If S = {az : zm = 1}, then ω may not be equal to 1 even if m is
prime. For, let S = {2, 2ω, 2ω2} and f = ce

ωz
4 , where c is a nonzero constant

and ω is an imaginary cube root of unity.

Remark 3 [4] If m is not a prime, then ω may not be equal to 1 even if
S 6= {az : zm = 1}, where a is any nonzero constant. The example in Remark
1 makes it evident.

Theorem D Let f be a nonconstant meromorphic function, m(≥ 2), n(≥ 3)
be positive integers and S = {a1, a2, ..., am} ⊂ C\{0} be a set of distinct numbers
such that

∑m
i=1 ai = 0. If fn and (fn) ′ share the set S WCM, then f = ce

ωz
n ,

where c( 6= 0), ω are constants and ωm = 1.
Regarding Theorems C and D, it is natural to ask the following question

which is the motive of this paper.

Question 1 What happens if the function fn share the set S WCM with its
k-th derivative in Theorems C and D?

In this paper, we find possible answer to the above question and prove the
following theorems.
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Theorem 1 Let f be a nonconstant meromorphic function, m, n, k(≥ 1) be
positive integers satisfying n ≥ k+1+

√
k+ 2 and S = {a1, a2, ..., am} ⊂ C\{0}

be a set of distinct complex numbers. If fn and (fn)(k) share the set S WCM

then either f = ce
ω

1
k

n
νz, where c( 6= 0), ω and ν are constants with ωm = 1

and νk = 1 or fn is a linear combination of eω
1
k ν1z, eω

1
k ν2z, . . . , eω

1
k νkz,

where νi’s are the distinct k-th roots of unity. Further, if either
∑m
i=1 ai 6= 0

or m is prime and S 6= {az : zm = 1}, where a is any nonzero number, then
ω = 1.

Theorem 2 Let f be a nonconstant meromorphic function, m(≥ 2), n, k be

positive integers satisfying n > 3(k+1)+
√
k2+10k+17
4 and S = {a1, a2, ..., am} ⊂

C\{0} be a set of distinct complex numbers such that
∑m
i=1 ai = 0. If fn and

(fn)(k) share the set S WCM, then either f = ce
ω

1
k

n
νz, where c( 6= 0), ω and

ν are constants with ωm = 1 and νk = 1 or fn is a linear combination of

eω
1
k ν1z, eω

1
k ν2z, . . . , eω

1
k νkz, where νi’s are the distinct k-th roots of unity.

Remark 4 Theorems C and D can be obtained by putting k = 1 in Theorems
1 and 2, as in this case, we obtain ν = 1.

2 Lemmas

Let a, a1, a2, . . . , am be distinct finite complex numbers. We put zi = a−ai
for i = 1, 2, ...,m and σ0 = 1, σ1 =

∑m
i=1 zi, σ2 =

∑
1≤i<j≤m zizj, . . .,

σm = z1z2 . . .zm. We say that a complex number C satisfies the property
(A) if σi(C

i − 1) = 0 and a complex number K satisfies the property (B), if
Kiσm−i = σiσm, i = 1, 2, 3, ...,m (see [8], p.482).

Now we state some lemmas which will be needed in the sequel.

Lemma 1 Let f be a nonconstant meromorphic function and S = {a1, a2, . . . ,

am} ⊂ C be a set of distinct complex numbers. Further suppose that N(r, a; f)+
N(r, a; f(k)) + N(r,∞; f) = S(r, f) for some a ∈ C\S. If f and f(k) share the
set S WCM, then either f(k) − a ≡ C(f− a) or (f(k) − a)(f− a) ≡ K, where C
satisfies the property (A) and K satisfies the property (B).

Proof. Clearly N(r, a; f) = N(r, a; f(k)) = N(r,∞; f) = S(r, f).
If z0 is a pole of f of order l then z0 is a pole of f(k) of order l + k. Now,

l + k ≤ (k + 1)l, therefore N(r,∞; f(k)) ≤ (k + 1)N(r,∞; f), which implies
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N(r,∞; f(k)) = S(r, f). Thus, using Lemma 3.8 of [8] (p.193) we deduce that

δ(a, f) = δ(∞, f) = δ(a, g) = δ(∞, g) = 1,
where g = f(k). The rest of the proof can be completed in the line of Theorem
10.26 of [8], (p. 482). �

Lemma 2 [8](Theorem 1.24, p.39) Let f be a nonconstant meromorphic func-
tion and k be a positive integer. Then

N(r, 0; f(k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3 [9] Let f be a nonconstant meromorphic function and p, k be two
positive integers. Then

Np(r, 0; f
(k)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 4 Let f be a nonconstant meromorphic function, m, k, n(> k+1) be
positive integers and S = {a1, a2, ..., am} be a set of distinct nonzero complex
numbers. If fn and (fn)(k) share the set S WCM, then one of the following
holds:

(i) N(r, 0; f) ≤ 1
n−k−1N(r,∞; f) + S(r, f);

(ii) (fn)(k) ≡ ωfn, where ωm = 1.

Proof. Let g = fn. Put

φ =

m∑
i=1

g ′

g− ai
−

m∑
i=1

g(k+1)

g(k) − ai
. (1)

Now we consider the following cases.
Case 1. Let φ 6≡ 0. Then m(r, φ) = S(r, g) = S(r, f). If z0 is a zero of f with

multiplicity l, then z0 is a zero of φ with multiplicity at least l(n−k−1). Since
g and g(k) share S WCM, from (1) we get N(r,∞;φ) ≤ N(r,∞; f) + S(r, f).
Therefore

N(r, 0; f) ≤ 1

n− k− 1
N(r, 0;φ)

≤ 1

n− k− 1
T(r, φ) +O(1)
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=
1

n− k− 1
N(r,∞;φ) + S(r, f)

≤ 1

n− k− 1
N(r,∞; f) + S(r, f).

Case 2. Let φ ≡ 0. Then

m∑
i=1

g ′

g− ai
≡

m∑
i=1

g(k+1)

g(k) − ai
.

Integrating,

m∏
i=1

(g− ai) ≡ c
m∏
i=1

(g(k) − ai), (2)

where c is a nonzero constant.
If N(r, 0; f) = S(r, f), then (i) holds. So we assume that N(r, 0; f) 6= S(r, f).

If z0 is a zero of f with multiplicity l, then z0 is a zero of g and g(k) of
multiplicities nl and nl − k respectively. So from (2) we see that c = 1. Also
we have g(nl)(z0) 6= 0. Thus from (2) we obtain

gm +

m∑
i=1

(−ai)g
m−1 +

∑
1≤i<j≤m

(aiaj)g
m−2 + . . .+

m∑
i=1

(−1)m−1a1a2...am

ai
g

≡ (g(k))m +

m∑
i=1

(−ai)(g
(k))m−1 +

∑
1≤i<j≤m

(aiaj)(g
(k))m−2

+ . . .+

m∑
i=1

(−1)m−1a1a2...am

ai
g(k).

(3)

If m = 1, then (fn)(k) = fn. Let m ≥ 2. We differentiate (3) nl− k times and
put z = z0 to obtain

m∑
i=1

(−1)m−1a1a2...am

ai
= 0.
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Hence from (3) we get

gm +

m∑
i=1

(−ai)g
m−1 +

∑
1≤i<j≤m

(aiaj)g
m−2 + . . .+

m∑
i=1

(−1)m−2a1a2...am

aiaj
g2

≡ (g(k))m +

m∑
i=1

(−ai)(g
(k))m−1 +

∑
1≤i<j≤m

(aiaj)(g
(k))m−2

+ . . .+

m∑
i=1

(−1)m−2a1a2...am

aiaj
(g(k))2.

(4)

Differentiating both sides of (4) 2(nl− k) times and putting z = z0, we get∑
1≤i<j≤m

a1a2...am

aiaj
= 0.

Proceeding similarly, we get

m∑
i=1

ai =
∑

1≤i<j≤m
aiaj = . . . = 0.

Hence from (3) we get gm ≡ (g(k))m and so (fn)(k) ≡ ωfn, where ωm = 1.
This proves the lemma. �

Lemma 5 Let f be a nonconstant meromorphic function, m, n(≥ 2) be pos-
itive integers and S = {a1, a2, ..., am} be a set of distinct nonzero complex
numbers. If fn and (fn)(k) share the set S WCM, then

N(r,∞; f) ≤ k+ 2

n− 1
N(r, 0; f) +

k

n− 1
N(r,∞; f) + S(r, f).

Proof. Let g = fn. We put

φ =
mg ′

g
−

m∑
i=1

g ′

g− ai
−
mg(k+1)

g(k)
+

m∑
i=1

g(k+1)

g(k) − ai
. (5)

Casa 1 : Let φ 6≡ 0. Then m(r, φ) = S(r, g) = S(r, f). We can write (5) as

φ =
g ′

g
∏m
i=1(g− ai)

[ m∑
i=1

(−ai)g
m−1 + Pm−2(g)

]



A power of a meromorphic function... 111

−
g(k+1)

g(k)
∏m
i=1(g

(k) − ai)

[ m∑
i=1

(−ai)(g
(k))m−1 + Pm−2(g

(k))

]
, (6)

where Pm−2(z) is a polynomial of degree at mostm−2 ifm ≥ 2 and P−1(z) ≡ 0.
If z0 is a pole of f with multiplicity l then z0 is a zero of φ with multiplicity

at least (n − 1)l. Since g and g(k) share the set S WCM, using Lemma 3 we
see that

N(r,∞;φ) = N(r,∞;φ) ≤ N(r, 0; f) +N(r, 0;g(k)) + S(r, f)

≤ N(r, 0; f) + kN(r,∞; f) +Nk+1(r, 0; f
n) + S(r, f)

≤ (k+ 2)N(r, 0; f) + kN(r,∞; f) + S(r, f).

Hence we obtain

N(r,∞; f) ≤ 1

n− 1
N(r, 0;φ)

≤ 1

n− 1
T(r, φ) + S(r, f)

=
1

n− 1
N(r,∞;φ)

≤ k+ 2

n− 1
N(r, 0; f) +

k

n− 1
N(r,∞; f) + S(r, f).

Case 2 : Let φ ≡ 0. Then integrating (5) we have,

gm
m∏
i=1

(g(k) − ai) ≡ c(g(k))m
m∏
i=1

(g− ai), (7)

where c(6= 0) is a constant.

Now (7) can be rewritten in concise form as

m∏
i=1

(
1−

ai

g(k)

)
= c

m∏
i=1

(
1−

ai
g

)
.

From the above we note that if f has a pole at z = z0, say, then c = 1. Hence
from (7) we get(

−

m∑
i=1

ai

)
gm

(
g(k)

)m−1
+ gmQm−2

(
g(k)

)
=

(
−

m∑
i=1

ai

)(
g(k)

)m
gm−1 +

(
g(k)

)m
Qm−2(g),

(8)
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where Qm−2(z) is a polynomial of degree at least m − 2 if m ≥ 2 and
Q−1(z) ≡ 0.

Let
∑m
i=1 ai 6= 0. If z0 is a pole of f with multiplicity l, then z0 is a pole

of multiplicity 2mnl +mk − nl − k of the left hand side of (8) and a pole of
multiplicity 2mnl+mk−nl of the right hand side of the same, which can not
happen. Now we assume

∑m
i=1 ai = 0. If z0 is a pole of f with multiplicity l,

then z0 is a pole of multiplicity 2mnl+mk− 2k− 2nl of the left hand side of
(8) and a pole of multiplicity 2mnl +mk − 2nl of the right hand side of the
same, which is impossible. Thus f has no pole in both the cases and hence the
lemma. �

Lemma 6 Let f be a nonconstant meromorphic function, m(≥ 2), n be inte-
gers and S = {a1, a2, ..., am} be a set of distinct nonzero complex numbers with∑m
i=0 ai = 0. If fn and (fn)(k) share the set S WCM, then

N(r,∞; f) ≤ k+ 2

2n− 1
N(r, 0; f) +

k

2n− 1
N(r,∞; f) + S(r, f).

Proof. The lemma can be proved in a similar way as in Lemma 5 noting that
if z0 is a pole of f with multiplicity l, then it is a zero of φ with multiplicity
at least (2n− 1)l. �

3 Proof of theorems

Proof. [Proof of Theorem 1] First, we suppose that (fn)(k) 6≡ ωfn for any
constant ω satisfying ωm = 1. Then using (i) of Lemma 4 and Lemma 5 we
have

N(r,∞; f) ≤ k+ 2

n− 1
N(r, 0; f) +

k

n− 1
N(r,∞; f) + S(r, f)

≤ k+ 2

n− 1
N(r, 0; f) +

k

n− 1
N(r,∞; f) + S(r, f)

≤ 1

n− 1

(
k+ 2

n− k− 1
+ k

)
N(r,∞; f) + S(r, f).

(9)

Since n > k + 1 +
√
k+ 2, from (9) it is clear that N(r,∞; f) = S(r, f),

N(r, 0; f) = S(r, f) and hence N(r, 0; f(k)) = S(r, f), by Lemma 2.
Now,

T
(
r, (fn)(k)

)
= m

(
r, (fn)(k)

)
+N

(
r,∞; (fn)(k)

)
≤ m(r, fn) +N(r,∞; fn) + kN(r,∞; f) + S(r)

= T(r, fn) + S(r),

(10)
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and

T(r, fn) ≤ T
(
r, (fn)(k)

)
+ T

(
r,

fn

(fn)(k)

)
+ S(r)

≤ T
(
r, (fn)(k)

)
+N

(
r,∞;

(fn)(k)

fn

)
+ S(r)

≤ T
(
r, (fn)(k)

)
+N

(
r,∞; (fn)(k)

)
+N(r, 0; fn) + S(r)

≤ T
(
r, (fn)(k)

)
+ n(k+ 1)N

(
r,∞; f

)
+ nN(r, 0; f) + S(r)

= T
(
r, (fn)(k)

)
+ S(r),

(11)

where S(r) = max{S(r, f), S(r, fn), S
(
r, (fn)(k)

)
}.

From (10) and (11) we obtain T
(
r, (fn)(k)

)
= T(r, fn)+S(r) = nT(r, f)+S(r)

and therefore S(r, f) = S(r, fn) = S
(
r, (fn)(k)

)
. Also by Lemma 2 we see that

N(r, 0; fn) +N
(
r, 0; (fn)(k)

)
+N(r,∞; fn) ≤ 2nN(r; 0; f)

+kN(r,∞; f) + nN(r,∞; f) = S(r, f).

So by Lemma 1, we obtain either (fn)(k) ≡ Cfn or (fn)(k)fn ≡ K, where C and
K satisfy properties (A) and (B) respectively as given earlier with a = 0.

As σm(C
m − 1) = 0 and σm 6= 0, we get C = ω, where ωm = 1. Therefore,

(fn)(k) ≡ ωfn where ω is a constant satisfying ωm = 1, a contradiction
with our assumption. Therefore (fn)(k)fn ≡ K, where Km = (σm)

2 6= 0. From
this it follows that f is an entire function having no zero. Thus we may put
fn = eα, where α is a nonconstant entire function. So from above we get
e2αP(α ′, . . . , α(k)) ≡ K, where P(α ′, . . . , α(k)) is a differential polynomial in
α ′, α ′′, . . . , α(k). Since α is an entire function, we have T(r, α(j)) = S(r, f)
for j ∈ {1, 2, . . . , k}, and hence T(r, P) = S(r, f) = S(r, eα). Thus, we obtain

2T(r, eα) = T(r, P) +O(1) = S(r, eα),

a contradiction.
Hence we must have (fn)(k) ≡ ωfn for some constant ω satisfying ωm = 1.

On solving this k-th order differential equation for f, we obtain either f =

ce
ω

1
k

n
νz, where c( 6= 0) and ν are constants with νk = 1 or fn is a linear

combination of eω
1
k ν1z, eω

1
k ν2z, . . . , eω

1
k νkz, where νi’s are the distinct k-th

roots of unity. The rest of the proof can be completed in a similar way as done
in the last part of the proof of Theorem 1.1 in [4]. �

Proof. [Proof of Theorem 2] Using Lemma 6 instead of Lemma 5, this theorem
can be proved in the line of Theorem 1. Here we omit the details. �
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