

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 14, 1 (2022) 104-114

DOI: 10.2478/ausm-2022-0007

A power of a meromorphic function sharing a set with its higher order derivative

Himadri Karmakar Department of Mathematics, University of Kalyani, West Bengal - 741235, India. Present Address: St. Xavier's College, Kolkata - 700016, India. email: himadri3940gmail.com Pulak Sahoo Department of Mathematics, University of Kalyani, West Bengal - 741235, India. email: sahoopulak1@gmail.com

Abstract. In this paper, we deduce the form of a nonconstant meromorphic function f when some power of f shares certain set counting multiplicities in the weak sense with the k-th derivative of the power. The results of this paper generalize the results due to Lahiri and Zeng [Afr. Mat. 27 (2016), 941-947].

1 Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions in the complex plane and $a \in \mathbb{C} \cup \{\infty\}$. If the zeros of f - a and g - a coincide both in locations and multiplicities then we say that f and g share the value a CM (counting multiplicities) and if they coincide only in locations (may or may not have the same multiplicities) then we say that f and g share the value a IM (ignoring multiplicities). For a meromorphic function f in the complex plane, we denote by S(r, f) any quantity satisfying $S(r, f) = o\{T(r, f)\}$ for all r outside a possible exceptional set of finite logarithmic measure. Throughout this paper, we adopt the standard notations of Nevanlinna Theory as described in [1] and [8]. We now recall the following definitions.

²⁰¹⁰ Mathematics Subject Classification: 30D35

Key words and phrases: meromorphic functions, WCM sharing, Nevanlinna theory

Definition 1 [3] For $a \in \mathbb{C} \cup \{\infty\}$ we denote by N(r, a; f| = 1) the counting function of simple a-points of f. For a positive integer m we denote by $N(r, a; f| \le m)$ $(N(r, a; f| \ge m))$ the counting function of those a-points of f whose multiplicities are not greater (less) than m where each a-point is counted according to its multiplicity.

 $\overline{N}(\mathbf{r}, \mathbf{a}; \mathbf{f}| \leq \mathbf{m})$ ($\overline{N}(\mathbf{r}, \mathbf{a}; \mathbf{f}| \geq \mathbf{m}$)) are defined analogously, where in counting the **a**-points of **f** we ignore the multiplicities.

Definition 2 [2] Let a be any value in the extended complex plane, and let p be an arbitrary nonnegative integer. We denote by $N_p(\mathbf{r}, \mathbf{a}; \mathbf{f})$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq p$ and p times if m > p. Then

$$N_{p}(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f \ge 2) + \ldots + \overline{N}(r, a; f \ge p).$$

Clearly $N_1(r, a; f) = \overline{N}(r, a; f)$.

In 1983, Mues and Steinmetz [7] proved the following result.

Theorem A Let f be a nonconstant meromorphic function and a, b be two distinct finite complex numbers. If f and f' share a, b CM, then $f = ce^{z}$, where c is a nonzero constant.

In 2004, Lin and Huang [6] proved the following result considering certain power of a meromorphic function.

Theorem B Let f be a nonconstant meromorphic function, $n(\geq 8)$ be an integer and a be a nonzero complex number. If f^n and $(f^n)'$ share the value a CM, then $f = ce^{\frac{z}{n}}$, where c is a nonzero constant.

In 2008, Lei, Fang, Yang and Wang [5] improved Theorem B by relaxing the lower bound of n and proved the result for $n \ge 4$.

For $a \in \mathbb{C} \cup \{\infty\}$, let E(a, f) denote the set of all *a*-points of f where an *a*-point is counted according to its multiplicity and $\overline{E}(a, f)$ denote the set of distinct *a*-points of f. If $S \subset \mathbb{C} \cup \{\infty\}$, then we define $E(S, f) = \bigcup_{a \in S} E(a, f)$. We say that f and g share the set S counting multiplicities (CM) if E(S, f) = E(S, g). Similarly we define $\overline{E}(S, f) = \bigcup_{a \in S} \overline{E}(a, f)$.

Let $a \in \mathbb{C} \cup \{\infty\}$ and $B \subset \mathbb{C} \cup \{\infty\}$. We denote by $\overline{E}_B(a; f, g)$ the set of all those distinct a-points of f which are b-points of g with same multiplicities for some $b \in B$ and $\overline{E}_B(A; f, g) = \bigcup_{a \in A} \overline{E}_B(a; f, g)$ for $A \subset \mathbb{C} \cup \{\infty\}$.

For $S \subset \mathbb{C} \cup \{\infty\}$, we now put $Y = \{\overline{E}(S, f) \cup \overline{E}(S, g)\} \setminus \overline{E}_S(S; f, g)$. We say that f and g share the set S counting multiplicities in the weak sense or WCM if $\overline{N}_Y(r, a; f) = S(r, f)$ and $\overline{N}_Y(r, a; g) = S(r, g)$ for every $a \in S$, where $\overline{N}_Y(r, a; f)$ denotes the reduced counting function of those a-points of f which lie in the set Y (see [4]). Intuitively, sharing WCM is little less than sharing CM by an unimportant error term. We also see that f and g share the set S CM if and only if $Y = \phi$. Further, WCM value sharing is same as "CM" value sharing when $S = \{a\}(p, 226, [8])$.

In 2016, using the concept of WCM value sharing of a set, Lahiri and Zeng [4] proved the following theorems which improve Theorem B.

Theorem C Let f be a nonconstant meromorphic function, m, $n(\geq 4)$ be positive integers and $S = \{a_1, a_2, ..., a_m\} \subset \mathbb{C} \setminus \{0\}$ be a set of distinct numbers. If f^n and $(f^n)'$ share the set S WCM, then $f = ce^{\frac{\omega z}{n}}$, where $c(\neq 0)$, ω are constants and $\omega^m = 1$. Further $f = ce^{\frac{z}{n}}$ if either $\sum_{i=1}^m a_i \neq 0$ or m is prime and $S \neq \{az : z^m = 1\}$, where a is any nonzero number.

Remark 1 [4] If $\sum_{i=1}^{m} a_i = 0$, then ω may not be equal to 1. For example, let $S = \{1, -1, 2, -2\}$ and $f = ce^{\frac{-z}{4}}$, where c is a nonzero constant.

Remark 2 [4] If $S = \{az : z^m = 1\}$, then ω may not be equal to 1 even if m is prime. For, let $S = \{2, 2\omega, 2\omega^2\}$ and $f = ce^{\frac{\omega z}{4}}$, where c is a nonzero constant and ω is an imaginary cube root of unity.

Remark 3 [4] If m is not a prime, then ω may not be equal to 1 even if $S \neq \{az : z^m = 1\}$, where a is any nonzero constant. The example in Remark 1 makes it evident.

Theorem D Let f be a nonconstant meromorphic function, $\mathfrak{m}(\geq 2)$, $\mathfrak{n}(\geq 3)$ be positive integers and $S = \{a_1, a_2, ..., a_m\} \subset \mathbb{C} \setminus \{0\}$ be a set of distinct numbers such that $\sum_{i=1}^{m} a_i = 0$. If f^n and $(f^n)'$ share the set S WCM, then $f = ce^{\frac{\omega z}{n}}$, where $c(\neq 0)$, ω are constants and $\omega^m = 1$.

Regarding Theorems C and D, it is natural to ask the following question which is the motive of this paper.

Question 1 What happens if the function f^n share the set S WCM with its k-th derivative in Theorems C and D?

In this paper, we find possible answer to the above question and prove the following theorems.

Theorem 1 Let f be a nonconstant meromorphic function, m, n, $k(\geq 1)$ be positive integers satisfying $n \geq k+1+\sqrt{k+2}$ and $S = \{a_1, a_2, ..., a_m\} \subset \mathbb{C} \setminus \{0\}$ be a set of distinct complex numbers. If f^n and $(f^n)^{(k)}$ share the set S WCM then either $f = ce^{\frac{\omega k}{n} vz}$, where $c(\neq 0)$, ω and v are constants with $\omega^m = 1$ and $v^k = 1$ or f^n is a linear combination of $e^{\omega \frac{1}{k} v_{1z}}$, $e^{\omega \frac{1}{k} v_{2z}}$, ..., $e^{\omega \frac{1}{k} v_{kz}}$, where v_i 's are the distinct k-th roots of unity. Further, if either $\sum_{i=1}^{m} a_i \neq 0$ or m is prime and $S \neq \{az : z^m = 1\}$, where a is any nonzero number, then $\omega = 1$.

Theorem 2 Let f be a nonconstant meromorphic function, $m(\geq 2)$, n, k be positive integers satisfying $n > \frac{3(k+1)+\sqrt{k^2+10k+17}}{4}$ and $S = \{a_1, a_2, ..., a_m\} \subset \mathbb{C}\setminus\{0\}$ be a set of distinct complex numbers such that $\sum_{i=1}^{m} a_i = 0$. If f^n and $(f^n)^{(k)}$ share the set S WCM, then either $f = ce^{\frac{\omega k}{n}vz}$, where $c(\neq 0)$, ω and v are constants with $\omega^m = 1$ and $v^k = 1$ or f^n is a linear combination of $e^{\omega \frac{k}{k}v_1z}$, $e^{\omega \frac{k}{k}v_2z}$, ..., $e^{\omega \frac{k}{k}v_kz}$, where v_i 's are the distinct k-th roots of unity.

Remark 4 Theorems C and D can be obtained by putting k = 1 in Theorems 1 and 2, as in this case, we obtain v = 1.

2 Lemmas

Let a, a_1, a_2, \ldots, a_m be distinct finite complex numbers. We put $z_i = a - a_i$ for i = 1, 2, ..., m and $\sigma_0 = 1$, $\sigma_1 = \sum_{i=1}^{m} z_i$, $\sigma_2 = \sum_{1 \le i < j \le m} z_i z_j$, \ldots , $\sigma_m = z_1 z_2 \ldots z_m$. We say that a complex number C satisfies the property (A) if $\sigma_i(C^i - 1) = 0$ and a complex number K satisfies the property (B), if $K^i \sigma_{m-i} = \sigma_i \sigma_m$, i = 1, 2, 3, ..., m (see [8], p.482).

Now we state some lemmas which will be needed in the sequel.

Lemma 1 Let f be a nonconstant meromorphic function and $S = \{a_1, a_2, ..., a_m\} \subset \mathbb{C}$ be a set of distinct complex numbers. Further suppose that $N(r, a; f) + N(r, a; f^{(k)}) + N(r, \infty; f) = S(r, f)$ for some $a \in \mathbb{C} \setminus S$. If f and $f^{(k)}$ share the set S WCM, then either $f^{(k)} - a \equiv C(f - a)$ or $(f^{(k)} - a)(f - a) \equiv K$, where C satisfies the property (A) and K satisfies the property (B).

Proof. Clearly $N(r, a; f) = N(r, a; f^{(k)}) = N(r, \infty; f) = S(r, f)$.

If z_0 is a pole of f of order l then z_0 is a pole of $f^{(k)}$ of order l + k. Now, $l + k \leq (k + 1)l$, therefore $N(r, \infty; f^{(k)}) \leq (k + 1)N(r, \infty; f)$, which implies

 $N(r, \infty; f^{(k)}) = S(r, f)$. Thus, using Lemma 3.8 of [8] (p.193) we deduce that

$$\delta(a, f) = \delta(\infty, f) = \delta(a, g) = \delta(\infty, g) = 1,$$

where $g = f^{(k)}$. The rest of the proof can be completed in the line of Theorem 10.26 of [8], (p. 482).

Lemma 2 [8] (Theorem 1.24, p.39) Let f be a nonconstant meromorphic function and k be a positive integer. Then

$$N(r, 0; f^{(k)}) \leq N(r, 0; f) + k\overline{N}(r, \infty; f) + S(r, f).$$

Lemma 3 [9] Let f be a nonconstant meromorphic function and p, k be two positive integers. Then

$$\mathsf{N}_{\mathfrak{p}}(\mathfrak{r}, 0; \mathfrak{f}^{(k)}) \leq k \overline{\mathsf{N}}(\mathfrak{r}, \infty; \mathfrak{f}) + \mathsf{N}_{\mathfrak{p}+k}(\mathfrak{r}, 0; \mathfrak{f}) + \mathsf{S}(\mathfrak{r}, \mathfrak{f}).$$

Lemma 4 Let f be a nonconstant meromorphic function, \mathfrak{m} , k, $\mathfrak{n}(>k+1)$ be positive integers and $S = \{a_1, a_2, ..., a_m\}$ be a set of distinct nonzero complex numbers. If f^n and $(f^n)^{(k)}$ share the set S WCM, then one of the following holds:

- (i) $N(r,0;f) \leq \frac{1}{n-k-1}\overline{N}(r,\infty;f) + S(r,f);$
- (ii) $(f^n)^{(k)} \equiv \omega f^n$, where $\omega^m = 1$.

Proof. Let $g = f^n$. Put

$$\phi = \sum_{i=1}^{m} \frac{g'}{g - a_i} - \sum_{i=1}^{m} \frac{g^{(k+1)}}{g^{(k)} - a_i}.$$
(1)

Now we consider the following cases.

Case 1. Let $\phi \not\equiv 0$. Then $\mathfrak{m}(\mathfrak{r}, \phi) = S(\mathfrak{r}, \mathfrak{g}) = S(\mathfrak{r}, \mathfrak{f})$. If z_0 is a zero of \mathfrak{f} with multiplicity \mathfrak{l} , then z_0 is a zero of ϕ with multiplicity at least $\mathfrak{l}(\mathfrak{n}-k-1)$. Since \mathfrak{g} and $\mathfrak{g}^{(k)}$ share S WCM, from (1) we get $N(\mathfrak{r}, \infty; \phi) \leq \overline{N}(\mathfrak{r}, \infty; \mathfrak{f}) + S(\mathfrak{r}, \mathfrak{f})$. Therefore

$$N(\mathbf{r}, \mathbf{0}; \mathbf{f}) \leq \frac{1}{n-k-1} N(\mathbf{r}, \mathbf{0}; \boldsymbol{\phi})$$
$$\leq \frac{1}{n-k-1} T(\mathbf{r}, \boldsymbol{\phi}) + O(1)$$

$$= \frac{1}{n-k-1}N(r,\infty;\phi) + S(r,f)$$

$$\leq \frac{1}{n-k-1}\overline{N}(r,\infty;f) + S(r,f).$$

Case 2. Let $\phi \equiv 0$. Then

$$\sum_{i=1}^m \frac{g'}{g-a_i} \equiv \sum_{i=1}^m \frac{g^{(k+1)}}{g^{(k)}-a_i}.$$

Integrating,

$$\prod_{i=1}^{m} (g - a_i) \equiv c \prod_{i=1}^{m} (g^{(k)} - a_i), \qquad (2)$$

where c is a nonzero constant.

If N(r, 0; f) = S(r, f), then (i) holds. So we assume that $N(r, 0; f) \neq S(r, f)$. If z_0 is a zero of f with multiplicity l, then z_0 is a zero of g and $g^{(k)}$ of multiplicities nl and nl - k respectively. So from (2) we see that c = 1. Also we have $g^{(nl)}(z_0) \neq 0$. Thus from (2) we obtain

$$g^{m} + \sum_{i=1}^{m} (-a_{i})g^{m-1} + \sum_{1 \le i < j \le m} (a_{i}a_{j})g^{m-2} + \ldots + \sum_{i=1}^{m} (-1)^{m-1} \frac{a_{1}a_{2}...a_{m}}{a_{i}}g$$

$$\equiv (g^{(k)})^{m} + \sum_{i=1}^{m} (-a_{i})(g^{(k)})^{m-1} + \sum_{1 \le i < j \le m} (a_{i}a_{j})(g^{(k)})^{m-2}$$
(3)

$$+ \ldots + \sum_{i=1}^{m} (-1)^{m-1} \frac{a_{1}a_{2}...a_{m}}{a_{i}}g^{(k)}.$$

If $\mathfrak{m} = 1$, then $(\mathfrak{f}^n)^{(k)} = \mathfrak{f}^n$. Let $\mathfrak{m} \ge 2$. We differentiate (3) $\mathfrak{nl} - k$ times and put $z = z_0$ to obtain

$$\sum_{i=1}^{m} (-1)^{m-1} \frac{a_1 a_2 \dots a_m}{a_i} = 0.$$

Hence from (3) we get

$$g^{m} + \sum_{i=1}^{m} (-a_{i})g^{m-1} + \sum_{1 \le i < j \le m} (a_{i}a_{j})g^{m-2} + \dots + \sum_{i=1}^{m} (-1)^{m-2} \frac{a_{1}a_{2}...a_{m}}{a_{i}a_{j}}g^{2}$$

$$\equiv (g^{(k)})^{m} + \sum_{i=1}^{m} (-a_{i})(g^{(k)})^{m-1} + \sum_{1 \le i < j \le m} (a_{i}a_{j})(g^{(k)})^{m-2} \qquad (4)$$

$$+ \dots + \sum_{i=1}^{m} (-1)^{m-2} \frac{a_{1}a_{2}...a_{m}}{a_{i}a_{j}}(g^{(k)})^{2}.$$

Differentiating both sides of (4) 2(nl-k) times and putting $z = z_0$, we get

$$\sum_{1\leq i < j \leq m} \frac{a_1 a_2 \dots a_m}{a_i a_j} = \emptyset.$$

Proceeding similarly, we get

$$\sum_{i=1}^m a_i = \sum_{1 \le i < j \le m} a_i a_j = \ldots = 0.$$

Hence from (3) we get $g^m \equiv (g^{(k)})^m$ and so $(f^n)^{(k)} \equiv \omega f^n$, where $\omega^m = 1$. This proves the lemma.

Lemma 5 Let f be a nonconstant meromorphic function, m, $n(\geq 2)$ be positive integers and $S = \{a_1, a_2, ..., a_m\}$ be a set of distinct nonzero complex numbers. If f^n and $(f^n)^{(k)}$ share the set S WCM, then

$$N(\mathbf{r},\infty;\mathbf{f}) \leq \frac{\mathbf{k}+2}{\mathbf{n}-1}\overline{N}(\mathbf{r},0;\mathbf{f}) + \frac{\mathbf{k}}{\mathbf{n}-1}\overline{N}(\mathbf{r},\infty;\mathbf{f}) + S(\mathbf{r},\mathbf{f}).$$

Proof. Let $g = f^n$. We put

$$\phi = \frac{\mathbf{m}g'}{g} - \sum_{i=1}^{m} \frac{g'}{g - a_i} - \frac{\mathbf{m}g^{(k+1)}}{g^{(k)}} + \sum_{i=1}^{m} \frac{g^{(k+1)}}{g^{(k)} - a_i}.$$
 (5)

Casa 1: Let $\phi \not\equiv 0$. Then $\mathfrak{m}(r, \phi) = S(r, g) = S(r, f)$. We can write (5) as

$$\varphi = \frac{g'}{g \prod_{i=1}^{m} (g - a_i)} \left[\sum_{i=1}^{m} (-a_i) g^{m-1} + P_{m-2}(g) \right]$$

$$-\frac{g^{(k+1)}}{g^{(k)}\prod_{i=1}^{m}(g^{(k)}-a_i)}\bigg[\sum_{i=1}^{m}(-a_i)(g^{(k)})^{m-1}+\mathsf{P}_{m-2}(g^{(k)})\bigg],\quad(6)$$

where $P_{m-2}(z)$ is a polynomial of degree at most m-2 if $m \ge 2$ and $P_{-1}(z) \equiv 0$.

If z_0 is a pole of f with multiplicity l then z_0 is a zero of ϕ with multiplicity at least (n-1)l. Since g and $g^{(k)}$ share the set S WCM, using Lemma 3 we see that

$$\begin{split} N(r,\infty;\varphi) &= \overline{N}(r,\infty;\varphi) &\leq \overline{N}(r,0;f) + \overline{N}(r,0;g^{(k)}) + S(r,f) \\ &\leq \overline{N}(r,0;f) + k\overline{N}(r,\infty;f) + N_{k+1}(r,0;f^n) + S(r,f) \\ &\leq (k+2)\overline{N}(r,0;f) + k\overline{N}(r,\infty;f) + S(r,f). \end{split}$$

Hence we obtain

$$\begin{split} \mathsf{N}(\mathsf{r},\infty;\mathsf{f}) &\leq \frac{1}{\mathsf{n}-1}\mathsf{N}(\mathsf{r},0;\varphi) \\ &\leq \frac{1}{\mathsf{n}-1}\mathsf{T}(\mathsf{r},\varphi) + \mathsf{S}(\mathsf{r},\mathsf{f}) \\ &= \frac{1}{\mathsf{n}-1}\mathsf{N}(\mathsf{r},\infty;\varphi) \\ &\leq \frac{\mathsf{k}+2}{\mathsf{n}-1}\overline{\mathsf{N}}(\mathsf{r},0;\mathsf{f}) + \frac{\mathsf{k}}{\mathsf{n}-1}\overline{\mathsf{N}}(\mathsf{r},\infty;\mathsf{f}) + \mathsf{S}(\mathsf{r},\mathsf{f}). \end{split}$$

Case 2: Let $\phi \equiv 0$. Then integrating (5) we have,

$$g^{\mathfrak{m}} \prod_{i=1}^{\mathfrak{m}} (g^{(k)} - a_i) \equiv c(g^{(k)})^{\mathfrak{m}} \prod_{i=1}^{\mathfrak{m}} (g - a_i),$$
(7)

where $c(\neq 0)$ is a constant.

Now (7) can be rewritten in concise form as

$$\prod_{i=1}^{m} \left(1 - \frac{a_i}{g^{(k)}}\right) = c \prod_{i=1}^{m} \left(1 - \frac{a_i}{g}\right).$$

From the above we note that if f has a pole at $z = z_0$, say, then c = 1. Hence from (7) we get

$$\left(-\sum_{i=1}^{m} a_i \right) g^m (g^{(k)})^{m-1} + g^m Q_{m-2} (g^{(k)})$$

$$= \left(-\sum_{i=1}^{m} a_i \right) (g^{(k)})^m g^{m-1} + (g^{(k)})^m Q_{m-2} (g),$$
(8)

where $Q_{m-2}(z)$ is a polynomial of degree at least m-2 if $m \ge 2$ and $Q_{-1}(z) \equiv 0$.

Let $\sum_{i=1}^{m} a_i \neq 0$. If z_0 is a pole of f with multiplicity l, then z_0 is a pole of multiplicity 2mnl + mk - nl - k of the left hand side of (8) and a pole of multiplicity 2mnl + mk - nl of the right hand side of the same, which can not happen. Now we assume $\sum_{i=1}^{m} a_i = 0$. If z_0 is a pole of f with multiplicity l, then z_0 is a pole of multiplicity 2mnl + mk - 2k - 2nl of the left hand side of (8) and a pole of multiplicity 2mnl + mk - 2nl of the right hand side of the same, which is impossible. Thus f has no pole in both the cases and hence the lemma.

Lemma 6 Let f be a nonconstant meromorphic function, $m(\geq 2)$, n be integers and $S = \{a_1, a_2, ..., a_m\}$ be a set of distinct nonzero complex numbers with $\sum_{i=0}^{m} a_i = 0$. If f^n and $(f^n)^{(k)}$ share the set S WCM, then

$$N(\mathbf{r},\infty;\mathbf{f}) \leq \frac{\mathbf{k}+2}{2\mathbf{n}-1}\overline{N}(\mathbf{r},0;\mathbf{f}) + \frac{\mathbf{k}}{2\mathbf{n}-1}\overline{N}(\mathbf{r},\infty;\mathbf{f}) + S(\mathbf{r},\mathbf{f}).$$

Proof. The lemma can be proved in a similar way as in Lemma 5 noting that if z_0 is a pole of f with multiplicity l, then it is a zero of ϕ with multiplicity at least (2n-1)l.

3 Proof of theorems

Proof. [Proof of Theorem 1] First, we suppose that $(f^n)^{(k)} \not\equiv \omega f^n$ for any constant ω satisfying $\omega^m = 1$. Then using (i) of Lemma 4 and Lemma 5 we have

$$N(\mathbf{r},\infty;\mathbf{f}) \leq \frac{\mathbf{k}+2}{\mathbf{n}-1}\overline{N}(\mathbf{r},0;\mathbf{f}) + \frac{\mathbf{k}}{\mathbf{n}-1}\overline{N}(\mathbf{r},\infty;\mathbf{f}) + \mathbf{S}(\mathbf{r},\mathbf{f})$$

$$\leq \frac{\mathbf{k}+2}{\mathbf{n}-1}N(\mathbf{r},0;\mathbf{f}) + \frac{\mathbf{k}}{\mathbf{n}-1}\overline{N}(\mathbf{r},\infty;\mathbf{f}) + \mathbf{S}(\mathbf{r},\mathbf{f})$$

$$\leq \frac{1}{\mathbf{n}-1}\left(\frac{\mathbf{k}+2}{\mathbf{n}-\mathbf{k}-1} + \mathbf{k}\right)\overline{N}(\mathbf{r},\infty;\mathbf{f}) + \mathbf{S}(\mathbf{r},\mathbf{f}).$$
(9)

Since $n > k + 1 + \sqrt{k+2}$, from (9) it is clear that $N(r, \infty; f) = S(r, f)$, N(r, 0; f) = S(r, f) and hence $N(r, 0; f^{(k)}) = S(r, f)$, by Lemma 2. Now,

$$T(\mathbf{r}, (\mathbf{f}^{n})^{(k)}) = \mathfrak{m}(\mathbf{r}, (\mathbf{f}^{n})^{(k)}) + N(\mathbf{r}, \infty; (\mathbf{f}^{n})^{(k)})$$

$$\leq \mathfrak{m}(\mathbf{r}, \mathbf{f}^{n}) + N(\mathbf{r}, \infty; \mathbf{f}^{n}) + k\overline{N}(\mathbf{r}, \infty; \mathbf{f}) + S(\mathbf{r}) \qquad (10)$$

$$= T(\mathbf{r}, \mathbf{f}^{n}) + S(\mathbf{r}),$$

and

$$\begin{split} \mathsf{T}(\mathbf{r}, \mathbf{f}^{n}) &\leq \mathsf{T}\big(\mathbf{r}, (\mathbf{f}^{n})^{(k)}\big) + \mathsf{T}\bigg(\mathbf{r}, \frac{\mathbf{f}^{n}}{(\mathbf{f}^{n})^{(k)}}\bigg) + \mathsf{S}(\mathbf{r}) \\ &\leq \mathsf{T}\big(\mathbf{r}, (\mathbf{f}^{n})^{(k)}\big) + \mathsf{N}\bigg(\mathbf{r}, \infty; \frac{(\mathbf{f}^{n})^{(k)}}{\mathbf{f}^{n}}\bigg) + \mathsf{S}(\mathbf{r}) \\ &\leq \mathsf{T}\big(\mathbf{r}, (\mathbf{f}^{n})^{(k)}\big) + \mathsf{N}\big(\mathbf{r}, \infty; (\mathbf{f}^{n})^{(k)}\big) + \mathsf{N}(\mathbf{r}, 0; \mathbf{f}^{n}) + \mathsf{S}(\mathbf{r}) \\ &\leq \mathsf{T}\big(\mathbf{r}, (\mathbf{f}^{n})^{(k)}\big) + \mathsf{n}(k+1)\mathsf{N}\big(\mathbf{r}, \infty; \mathbf{f}\big) + \mathsf{n}\mathsf{N}(\mathbf{r}, 0; \mathbf{f}) + \mathsf{S}(\mathbf{r}) \\ &= \mathsf{T}\big(\mathbf{r}, (\mathbf{f}^{n})^{(k)}\big) + \mathsf{S}(\mathbf{r}), \end{split}$$
(11)

where $S(r) = \max\{S(r, f), S(r, f^n), S(r, (f^n)^{(k)})\}.$

From (10) and (11) we obtain $T(r, (f^n)^{(k)}) = T(r, f^n) + S(r) = nT(r, f) + S(r)$ and therefore $S(r, f) = S(r, f^n) = S(r, (f^n)^{(k)})$. Also by Lemma 2 we see that

$$\begin{split} \mathsf{N}(\mathsf{r},\mathsf{0};\mathsf{f}^{n}) + \mathsf{N}\big(\mathsf{r},\mathsf{0};(\mathsf{f}^{n})^{(k)}\big) + \mathsf{N}(\mathsf{r},\infty;\mathsf{f}^{n}) &\leq 2\mathsf{n}\mathsf{N}(\mathsf{r};\mathsf{0};\mathsf{f}) \\ &+ k\overline{\mathsf{N}}(\mathsf{r},\infty;\mathsf{f}) + \mathsf{n}\mathsf{N}(\mathsf{r},\infty;\mathsf{f}) = \mathsf{S}(\mathsf{r},\mathsf{f}). \end{split}$$

So by Lemma 1, we obtain either $(f^n)^{(k)} \equiv Cf^n$ or $(f^n)^{(k)}f^n \equiv K$, where C and K satisfy properties (A) and (B) respectively as given earlier with a = 0.

As $\sigma_m(C^m - 1) = 0$ and $\sigma_m \neq 0$, we get $C = \omega$, where $\omega^m = 1$. Therefore, $(f^n)^{(k)} \equiv \omega f^n$ where ω is a constant satisfying $\omega^m = 1$, a contradiction with our assumption. Therefore $(f^n)^{(k)} f^n \equiv K$, where $K^m = (\sigma_m)^2 \neq 0$. From this it follows that f is an entire function having no zero. Thus we may put $f^n = e^{\alpha}$, where α is a nonconstant entire function. So from above we get $e^{2\alpha}P(\alpha', \ldots, \alpha^{(k)}) \equiv K$, where $P(\alpha', \ldots, \alpha^{(k)})$ is a differential polynomial in $\alpha', \alpha'', \ldots, \alpha^{(k)}$. Since α is an entire function, we have $T(r, \alpha^{(j)}) = S(r, f)$ for $j \in \{1, 2, \ldots, k\}$, and hence $T(r, P) = S(r, f) = S(r, e^{\alpha})$. Thus, we obtain

$$2\mathsf{T}(\mathsf{r}, \mathsf{e}^{\alpha}) = \mathsf{T}(\mathsf{r}, \mathsf{P}) + \mathsf{O}(1) = \mathsf{S}(\mathsf{r}, \mathsf{e}^{\alpha}),$$

a contradiction.

Hence we must have $(f^n)^{(k)} \equiv \omega f^n$ for some constant ω satisfying $\omega^m = 1$. On solving this k-th order differential equation for f, we obtain either $f = ce^{\frac{\omega k}{n}\nu z}$, where $c \neq 0$ and ν are constants with $\nu^k = 1$ or f^n is a linear combination of $e^{\omega k \nu_1 z}$, $e^{\omega k \nu_2 z}$, ..., $e^{\omega k \nu_k z}$, where ν_i 's are the distinct k-th roots of unity. The rest of the proof can be completed in a similar way as done in the last part of the proof of Theorem 1.1 in [4].

Proof. [Proof of Theorem 2] Using Lemma 6 instead of Lemma 5, this theorem can be proved in the line of Theorem 1. Here we omit the details. \Box

References

- W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford (1964).
- [2] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241–253.
- [3] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2001), 83–91.
- [4] I. Lahiri and S. Zeng, A power of a meromorphic function sharing a set with its derivative, Afr. Mat., 27 (2016), 941–947.
- [5] C.L. Lei, M.L. Fang, D.G. Yang and X.Q. Wang, A note on unicity of meromorphic functions, *Acta Math. Sci.*, 28A (2008), 802–807. (in Chinese)
- [6] W. C. Lin and B. Huang, A note on Hayman's problem and the sharing value, Acta Math. Sci. 24A (2004), 449–453. (in Chinese)
- [7] E. Mues and N. Steinmetz, Meromorphe funktionen, die mit ihrer ableitung zwei werte teilen, *Results Math.*, 6 (1983), 48–55.
- [8] C.C. Yang and H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer, Dordrecht (2003).
- [9] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Brück, J. Inequal. Pure Appl. Math., 8 (2007), Art. 18.

Received: November 29, 2021