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Abstract. For given unit vectors x1, · · · , xn of a real Banach space E,
we define

NA(L(nE))(x1, · · · , xn) = {T ∈ L(nE) : |T(x1, · · · , xn)| = ‖T‖ = 1},

where L(nE) denotes the Banach space of all continuous n-linear forms
on E endowed with the norm ‖T‖ = sup‖xk‖=1,1≤k≤n |T(x1, . . . , xn)|.

In this paper, we classify NA(L(2l21))((x1, x2), (y1, y2)) for unit vec-
tors (x1, x2), (y1, y2) ∈ l21, where l21 = R2 with the l1-norm.

1 Introduction

Let n ∈ N, n ≥ 2. We write SE for the unit sphere of a real Banach space E.
We denote by L(nE) the Banach space of all continuous n-linear forms on E
endowed with the norm ‖T‖ = sup‖xk‖=1,1≤k≤n |T(x1, . . . , xn)|. The subspace of
all continuous symmetric n-linear forms on E is denoted by Ls(nE). A mapping
P : E→ R is a continuous n-homogeneous polynomial if there exists T ∈ L(nE)
such that P(x) = T(x, . . . , x) for every x ∈ E. We denote by P(nE) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed
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with the norm ‖P‖ = sup‖x‖=1 |P(x)|. For more details about the theory of
multilinear mappings and polynomials on a Banach space, we refer to [4].

Elements x1, . . . , xn ∈ E is called norming points of T ∈ L(nE) if ‖x1‖ =
· · · = ‖xn‖ = 1 and |T(x1, . . . , xn)| = ‖T‖. In this case, T is called a norm
attaining n-linear form at x1, . . . , xn. Similarly, an element x ∈ E is called a
norming point of P ∈ P(nE) if ‖x‖ = 1 and |P(x)| = ‖P‖. In this case, P is called
a norm attaining n-homogeneous polynomial at x. Let X = L(nE) or Ls(nE).
For x, x1, · · · , xn ∈ SE, we define

NA(X)(x1, · · · , xn) = {T ∈ X : |T(x1, · · · , xn)| = ‖T‖ = 1}

and

NA(P(nE))(x) = {P ∈ P(nE) : |P(x)| = ‖P‖ = 1}.

Notice that

NA(L(nE))(x1, · · · , xn) = NA(L(nE))(±x1, · · · ,±xn),

NA(Ls(nE))(x1, · · · , xn) = NA(Ls(nE))(±xσ(1), · · · ,±xσ(n))

and

NA(P(nE))(x) = NA(P)(nE))(−x)

for all x, x1, · · · , xn ∈ SE and for all permutation σ on {1, . . . , n}.

Let us introduce a brief history of norm attaining multilinear forms and
polynomials on Banach spaces. In 1961 Bishop and Phelps [2] initiated and
showed that the set of norm attaining functionals on a Banach space is dense in
the dual space. Shortly after, attention was paid to possible extensions of this
result to more general settings, specially bounded linear operators between
Banach spaces. The problem of denseness of norm attaining functions has
moved to other types of mappings like multilinear forms or polynomials. The
first result about norm attaining multilinear forms appeared in a joint work
of Aron, Finet and Werner [1], where they showed that the Radon-Nikodym
property is sufficient for the denseness of norm attaining multilinear forms.
Choi and Kim [3] showed that the Radon-Nikodym property is also sufficient
for the denseness of norm attaining polynomials. Jimenez-Sevilla and Paya [5]
studied the denseness of norm attaining multilinear forms and polynomials on
preduals of Lorentz sequence spaces.

It seems to be natural and interesting to study about

NA(L(nE))(x1, · · · , xn), NA(Ls(nE))(x1, · · · , xn) and NA(P(nE))(x)



Norm attaining bilinear forms on the plane with the l1-norm 117

for x, x1, · · · , xn ∈ SE. Kim [6] classified NA(P(2l2p))((x1, x2)) for (x1, x2) ∈ Sl2p
and p = 1, 2,∞, where l2p = R2 with the lp-norm.

In this paper, we classify NA(L(2l21))((x1, x2), (y1, y2)) for (x1, x2), (y1, y2)
∈ Sl21 .

2 Results

Let T((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈ L(2l21) for some
a, b, c, d ∈ R. For simplicity, we denote T = (a, b, c, d).

Theorem 1 Let T = (a, b, c, d) ∈ L(2l21) for some a, b, c, d ∈ R. Then,

‖T‖ = max{|a|, |b|, |c|, |d|}.

Proof. Let M := max{|a|, |b|, |c|, |d|}. Let (xj, yj) ∈ Sl21 for j = 1, 2. It follows
that

|T((x1, y1), (x2, y2))| ≤ |a| |x1x2|+ |b| |y1y2|+ |c| |x1y2|+ |d| |x2y1|

≤ M (|x1x2|+ |y1y2|+ |x1y2|+ |x2y1|)

= M(|x1|+ |y1|)(|x2|+ |y2|) =M

= max{|T(1, 0), (1, 0)|, |T(0, 1), (0, 1)|, |T(1, 0), (0, 1)|,

|T(0, 1), (1, 0)|} ≤ ‖T‖.

Therefore, ‖T‖ =M. �

Notice that if ‖T‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 and |d| ≤ 1.

Lemma 1 Let T = (a, b, c, d) ∈ L(2l21) for some a, b, c, d ∈ R. The following
are equivalent: let (x1, y1), (x2, y2) ∈ Sl21 .

(a) T ∈ NA(L(2l21))((x1, y1), (x2, y2));
(b) T1 := (b, a, d, c) ∈ NA(L(2l21))((y1, x1), (y2, x2));
(c) T2 := (a, b,−c,−d) ∈ NA(L(2l21))((x1,−y2), (x2,−y2));
(d) T3 := (−a,−b,−c,−d) ∈ NA(L(2l21))((−x1,−y1), (x2, y2));
(e) T4 := (a, b, d, c) ∈ NA(L(2l21))((x2, y2), (x1, y1));
(f) T5 := (a,−b,−c, d) ∈ NA(L(2l21))((x1, y1), (x2,−y2)).

The following theorem classifies NA(L(2l21))((x1, x2), (y1, y2)) for unit vec-
tors (x1, x2), (y1, y2) ∈ l21.
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Theorem 2 Let (x1, y1), (x2, y2) ∈ Sl21 . Then the following statements holds:

Case 1. xjyj 6= 0 for all j = 1, 2.

If xjyj > 0 for all j = 1, 2, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, 1, 1, 1)}.

If xjyj < 0 for all j = 1, 2, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, 1,−1,−1)}.

If x1y1 > 0 and x2y2 < 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1,−1,−1, 1)}.

If x1y1 < 0 and x2y2 > 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1,−1, 1,−1)}.

Case 2. x1y1 = 0 and x2y2 6= 0

If x1 = 0 and x2y2 > 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, c, 1) : |a| ≤ 1, |c| ≤ 1}.

If x1 = 0 and x2y2 < 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, c,−1) : |a| ≤ 1, |c| ≤ 1}.

If y1 = 0 and x2y2 > 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, 1, d) : |b| ≤ 1, |d| ≤ 1}.

If y1 = 0 and x2y2 < 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b,−1, d) : |b| ≤ 1, |d| ≤ 1}.

Case 3. x2y2 = 0 and x1y1 6= 0

If x2 = 0 and x1y1 > 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, 1, d) : |a| ≤ 1, |d| ≤ 1}.
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If x2 = 0 and x1y1 < 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1,−1, d) : |a| ≤ 1, |d| ≤ 1}.

If y2 = 0 and x1y1 > 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, c, 1) : |b| ≤ 1, |c| ≤ 1}.

If y2 = 0 and x1y1 < 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, c,−1) : |b| ≤ 1, |c| ≤ 1}.

Case 4. x1y1 = x2y2 = 0

If x1 = x2 = 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, c, d) : |a| ≤ 1, |c| ≤ 1, |d| ≤ 1}.

If x1 = y2 = 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, b, c, 1) : |a| ≤ 1, |b| ≤ 1, |c| ≤ 1}.

If x2 = y1 = 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, b, 1, d) : |a| ≤ 1, |b| ≤ 1, |d| ≤ 1}.

If y1 = y2 = 0, then

NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, c, d) : |b| ≤ 1, |c| ≤ 1, |d| ≤ 1}.

Proof. Let (x1, y1), (x2, y2) ∈ Sl21 . Let T = (a, b, c, d) ∈ NA(L(2l2∞))((x1, y1),

(x2, y2)) for some a, b, c, d ∈ R. By Theorem 1, |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 and
|d| ≤ 1. By Lemma 1, we may assume that a ≥ 0. We consider four cases.

Case 1. xjyj 6= 0 for all j = 1, 2.

Suppose that xjyj > 0 for all j = 1, 2.

Claim. NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, 1, 1, 1)}.
It is obvious that {±(1, 1, 1, 1)} ⊆ NA(L(2l21))((x1, y1), (x2, y2)). It follows

that

1 = |T((x1, y1), (x2, y2))| = |ax1x2 + by1y2 + cx1y2 + dx2y1|

≤ a |x1x2|+ |b| |y1y2|+ |c| |x1y2|+ |d| |x2y1|
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≤ |x1x2|+ |y1y2|+ |x1y2|+ |x2y1|

= (|x1|+ |y1|)(|x2|+ |y2|) = 1,

which shows that a = |b| = |c| = |d| = 1. We will show that b = 1. Assume
that b = −1. Then

1 = |T((x1, y1), (x2, y2))| = |x1x2 − y1y2 + cx1y2 + dx2y1|

= |x1(x2 + cy2) + y1(dx2 − y2)|

≤ |x1| |x2 + cy2|+ |y1| |dx2 − y2|

≤ |x1|+ |y1| = 1,

which shows that
|x2 + cy2| = |dx2 − y2| = 1

because |x1| > 0 and |y1| > 0. Since x2y2 > 0, c = 1, d = −1. Hence,

1 = |T((x1, y1), (x2, y2))| = |x1x2 − y1y2 + x1y2 − x2y1|

= |x1 − y1| |x2 + y2| = |x1 − y1| < 1,

which is a contradiction. Therefore, b = 1. It follows that

1 = |T((x1, y1), (x2, y2))| = |x1x2 + y1y2 + cx1y2 + dx2y1|

≤ |x1| |x2 + cy2|+ |y1| |dx2 + y2|

= |x1|+ |y1| = 1,

which shows that
|x2 + cy2| = |dx2 + y2| = 1

because |x1| > 0 and |y1| > 0. Hence, c = d = 1. Therefore, T = (1, 1, 1, 1),
which concludes NA(L(2l21))((x1, y1), (x2, y2)) ⊆ {±(1, 1, 1, 1)}. Therefore, we
have shown the claim.

Suppose that xjyj < 0 for all j = 1, 2. Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T2 := (a, b,−c,−d) ∈ NA(L(2l21))((x1,−y2), (x2,−y2)).

Since xj(−yj) > 0 for all j = 1, 2, by the above claim,

NA(L(2l21))((x1,−y2), (x2,−y2)) = {±(1, 1, 1, 1)}.
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Hence,
NA(L(2l21))((x1, y2), (x2, y2)) = {±(1, 1,−1,−1)}.

Suppose that x1y1 > 0 and x2y2 < 0. Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T5 := (a,−b,−c, d) ∈ NA(L(2l21))((x1, y2), (x2,−y2)).

Since x1y1 > 0 and x2(−y2) > 0, by the above claim,

NA(L(2l21))((x1, y2), (x2,−y2)) = {±(1, 1, 1, 1)}.

Hence,
NA(L(2l21))((x1, y2), (x2, y2)) = {±(1,−1,−1, 1)}.

Suppose that x1y1 < 0 and x2y2 > 0. Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T2 := (a, b,−c,−d) ∈ NA(L(2l21))((x1,−y2), (x2,−y2)).

Since x1(−y1) > 0 and x2(−y2) < 0, by the above claim,

NA(L(2l21))((x1,−y2), (x2,−y2)) = {±(1,−1,−1, 1)}.

Hence,
NA(L(2l21))((x1, y2), (x2, y2)) = {±(1,−1, 1,−1)}.

Case 2. x1y1 = 0 and x2y2 6= 0

Suppose that x1 = 0 and x2y2 > 0.

Claim. NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, c, 1) : |a| ≤ 1, |c| ≤ 1}.

It is obvious that {±(a, 1, c, 1) : |a| ≤ 1, |c| ≤ 1} ⊆ NA(L(2l21))((x1, y1), (x2, y2)).
Since x1 = 0, |y2| = 1 and

1 = |T((x1, y1), (x2, y2))| = |by1y2 + dx2y1|

≤ |dx2 + by2| ≤ |d| |x2|+ |b| |y2|

≤ |x2|+ |y2| = 1,
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which shows that |dx2 + by2| = 1 = |b| = |d|. Since x2y2 > 0, b = d = 1 or
b = d = −1. Hence, T = ±(a, 1, c, 1) for some |a| ≤ 1, |c| ≤ 1. Therefore, we
have shown the claim.

Suppose that x1 = 0 and x2y2 < 0. Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T2 := (a, b,−c,−d) ∈ NA(L(2l21))((x1,−y2), (x2,−y2)).

Since x1(−y1) = 0 and x2(−y2) < 0, by the above claim,

NA(L(2l21))((x1,−y2), (x2,−y2)) = {±(a, 1, c, 1) : |a| ≤ 1, |c| ≤ 1}.

Hence,

NA(L(2l21))((x1, y2), (x2, y2)) = {±(a, 1, c,−1) : |a| ≤ 1, |c| ≤ 1}.

Suppose that y1 = 0 and x2y2 > 0.
Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T1 := (b, a, d, c) ∈ NA(L(2l21))((y1, x1), (y2, x2)).

By the above claim,

NA(L(2l21))((y1, x1), (y2, x2)) = {±(a, 1, c, 1) : |a| ≤ 1, |c| ≤ 1}.

Hence, NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, 1, d) : |b| ≤ 1, |d| ≤ 1}.
Suppose that y1 = 0 and x2y2 < 0. Lemma 1 implies that

T ∈ NA(L(2l21))((x1, y1), (x2, y2))

if and only if

T2 := (a, b,−c,−d) ∈ NA(L(2l21))((x1,−y2), (x2,−y2)).

Since −y1 = 0 and x2(−y2) > 0, by the above claim,

NA(L(2l21))((x1,−y2), (x2,−y2)) = {±(1, b, 1, d) : |b| ≤ 1, |d| ≤ 1}.
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Hence,

NA(L(2l21))((x1, y2), (x2, y2)) = {±(1, b,−1, d) : |b| ≤ 1, |d| ≤ 1}.

Case 3. x2y2 = 0 and x1y1 6= 0
Lemma 1 implies that T ∈ NA(L(2l21))((x1, y1), (x2, y2)) if and only if T1 :=

(b, a, d, c) ∈ NA(L(2l21))((y1, x1), (y2, x2)). By Case 2, the assertions of Case
3 hold.

Case 4. x1y1 = x2y2 = 0

Suppose that x1 = x2 = 0.

Claim.NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, 1, c, d) : |a| ≤ 1, |c| ≤ 1, |d| ≤ 1}.
It is obvious that

{±(a, 1, c, d) : |a| ≤ 1, |c| ≤ 1, |d| ≤ 1} ⊆ NA(L(2l21))((x1, y1), (x2, y2)).

Since x1 = x2 = 0, |y1| = |y2| = 1 and

1 = |T((x1, y1), (x2, y2))| = |by1y2| = |b|

which shows that |b| = 1. Hence, T = ±(a, 1, c, d) for some |a| ≤ 1, |c| ≤
1, |d| ≤ 1. Therefore, we have shown the claim.

If x1 = y2 = 0, then |y1| = |x2| = 1 and

1 = |T((x1, y1), (x2, y2))| = |dx2y1| = |d|

which shows that |d| = 1. Hence, T = ±(a, b, c, 1) for some |a| ≤ 1, |b| ≤
1, |c| ≤ 1. Hence, NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, b, c, 1) : |a| ≤ 1, |b| ≤
1, |c| ≤ 1}.

If x2 = y1 = 0, then |x1| = |y2| = 1 and

1 = |T((x1, y1), (x2, y2))| = |cx1y2| = |c|

which shows that |c| = 1. Hence, T = ±(a, b, 1, d) for some |a| ≤ 1, |b| ≤
1, |d| ≤ 1. Hence, NA(L(2l21))((x1, y1), (x2, y2)) = {±(a, b, 1, d) : |a| ≤ 1, |b| ≤
1, |d| ≤ 1}.

If y1 = y2 = 0, then |x1| = |x2| = 1 and

1 = |T((x1, y1), (x2, y2))| = |ax1x2| = |a| = a

which shows that a = 1. Hence, T = ±(1, b, c, d) for some |b| ≤ 1, |c| ≤ 1, |d| ≤
1. Hence, NA(L(2l21))((x1, y1), (x2, y2)) = {±(1, b, c, d) : |b| ≤ 1, |c| ≤ 1, |d| ≤
1}. Therefore, we complete the proof. �
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