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Abstract. This current work is presented to deal with the model of
double diffusive convection in porous material with variable viscosity,
such that the equations for convective fluid motion in a Brinkman type
are analysed when the viscosity varies with temperature quadratically.
Hence, we carefully find a priori bounds when the coefficients depend
only on the geometry of the problem, initial data, and boundary data,
where this shows the continuous dependence of the solution on changes
in the viscosity. A convergence result is also showen when the variable
viscosity is allowed to tend to a constant viscosity.

1 Introduction

Studies in the exploration of double-diffusive convection topic in a fluid-saturated
porous layer have been an active field for a long time making this topic closely
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related to many other research papers. The various ways of getting the heat
and the mass combined to transfer, can be seen in a lot of real life problems.

In fact, the importance of the continuous dependence on changes in the
boundary conditions, initial conditions, coefficients, or even in the system of
the equations, has been increasingly recognized. This aspect of continuous de-
pendence, or stability, is what we refer to as structural stability, cf. [1], and
in many ways is more important than the classical idea of stability, or contin-
uous dependence on the initial data. Continuous dependence on modeling in
elasticity has been shown to be of considerable importance in a seminal paper,
see [2].

The system of equations which explains the double diffusive convective flow
in a porous medium using a Brinkman model has been proposed in [3].In
addition, [4, 5, 6, 7] have presented nonlinear stability analyses for a model
which does not employ a Brinkman term but instead includes a Forchheimer
term. Moreover, a recent study which includes both Brinkman and Forch-
heimer is suggested in [8]. Brinkman model with a viscosity which depends
linearly on temperature is introduced in [9]. Early studies dealing with struc-
tural stability issues in porous flows (cf. [10], [11]), have recently developed
for porous flow model which has a viscosity depends on concentration [12]. In
this paper we continue the work of Payne et al. [12] who study the continuous
dependence Brinkman and Forchheimer models when the viscosity is linear
function for concentration. However, we study the double diffusive convection
in a Brinkman model when the viscosity is linear function for temperature.

The layout of this paper is constructed as follows. In the next section, we
will present mathematical formulas of the system. In Section 3, we develop
a priori bounds. The goal of Sections 4 and 5 is to demonstrate continuous
dependence on changes in the viscosity coefficients. Finally, the convergence
to the constants viscosity solution will be establish in Sections 6 and 7.

2 Basic equations

The momentum equation for flow in a porous saturated material of Brinkman
type may be taken as

− ∆ui + (1+ αT + βT 2)ui = −
∂p

∂xi
+ giT + IiC, (1)

where, α and β are constants, and ui, T , C and p are velocity, temperature,
concentration and pressure, respectively. gi and Ii are vectors incorporating



Continuous dependence in Brinkman model 127

the gravity field which take |gi| ≤ 1 and |Ii| ≤ 1. The balance of mass equation
is

∂ui
∂xi

= 0. (2)

Furthermore, the temperature and concentration equations, respectively, have
the following forms

∂T

∂t
+ ui

∂T

∂xi
= ∆T,

∂C

∂t
+ ui

∂C

∂xi
= ∆C.

(3)

Let Ω be a bounded domain in R3 with boundary ∂Ω. Thus, Equ. (1)-(3) are
defined on Ω× (0, T ), for T <∞, and the boundary conditions

ui = fi(x, t), on ∂Ω× (0, T ), (4)

and
T(x, t) = h(x, t), C(x, t) = k(x, t), x on ∂Ω, t ∈ (0, T ), (5)

where h and k are prescribed functions and n is the unit outward normal to
∂Ω, and the initial data for the temperature and concentration is given as

T(x, 0) = T0(x), C(x, 0) = C0(x), x ∈ Ω, (6)

where T0 and C0 are prescribed functions.

3 A priori bounds

In this section, we derive bounds for various norms of ui, T and C, in terms
of data. These bounds will be used in the next sections in the continuous
dependence and converges proof. To develop a priori bounds, we introduce
the functions G(x, t), K(x, t), F(x, t) and H(x, t) as solutions to the boundary
value problems

∆G(x, t) = 0, in Ω,

G(x, t) = h(x, t), on ∂Ω,
(7)

∆K(x, t) = 0, in Ω,

K(x, t) = k(x, t), on ∂Ω,
(8)

∆F(x, t) = 0, in Ω,

F(x, t) = h2r−1(x, t), on ∂Ω,
(9)
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and

∆H(x, t) = 0, in Ω,

H(x, t) = k2r−1(x, t), on ∂Ω,
(10)

where r is a positive integer. We commence with deriving a bound for ‖u‖,
and we let bi solve the Stokes flow problem in Ω, namely

∆bi = ρ,i,
∂bi
∂xi

in Ω,

bi = fi, on ∂Ω,

(11)

where ρ is a pressure term. By the triangle inequality,

‖u‖ ≤ ‖u− b‖+ ‖b‖. (12)

Next, we employ (1) and (11) to derive

‖∇(u− b)‖2 +
∫
Ω

(1+ αT + βT 2)(ui − bi)(ui − bi)dx

= −

∫
Ω

(1+ αT + βT 2)(ui − bi)adx

+

∫
Ω

giT(ui − bi)dx+

∫
Ω

IiC(ui − bi)dx.

(13)

The Cauchy-Schwarz inequality together with the arithmetic-geometric mean
and Sobolev inequalities are used on the right-hand side to find

‖∇(u− b)‖2 + 1

2

∫
Ω

(1+ αT + βT 2)(ui − bi)(ui − bi)dx

≤ 3
2

∫
Ω

(1+ αT + βT 2)bibidx+
3

2
(‖T‖2 + ‖C‖2)

≤ 3
2
(‖T‖2 + ‖C‖2) + 3

2
‖b‖2 + 3

2
α‖T‖‖b‖24 +

3

2
β‖T‖2‖b‖2

≤ 3
2
(‖T‖2 + ‖C‖2) + 3

2
(1+ β‖T‖2)‖b‖2 + 3

2
Cα‖T‖(b‖2 + ‖∇b‖2),

(14)

here C is a constant in the Sobolev inequality. As proposed in [14], we can see
that

‖b‖2 ≤ 6d
∮
∂Ω

fifidA+ 4d2
∫
Ω

(bi,j − bj,i)(bi,j − bj,i)dx
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≤ (6d+ 4d2k̄1)

∮
∂Ω

fifidA+ 4d2k̄2

∮
∂Ω

|∇sf |2dA, (15)

where d is the radius of the smallest circumscribed ball for D, k̄1 and k̄2 are
a priori constants given in [14] and ∇s denotes the tangential derivative. Fur-
thermore, we have that

‖∇b‖2 = 1

2

∫
Ω

(bi,j − bj,i)(bi,j − bj,i)dx+

∫
Ω

bi,jbj,idx

=
1

2

∫
Ω

(bi,j − bj,i)(bi,j − bj,i)dx+

∮
∂Ω

(bi,jbj − bj,ibi)dA

=
1

2

∫
Ω

(bi,j − bj,i)(bi,j − bj,i)dx+

∮
∂Ω

nisj(bj∇sbi − bi∇sbj)dA

≤ 1
2
k̄1

∮
∂Ω

fifidA+
1

2
k̄2

∮
∂Ω

|∇sf |2dA+

∮
∂Ω

nisj(fj∇sfi−fi∇sfj)dA,

(16)

where sj denotes a tangential vector.
Let us consider the right-hand sides of (3) and (16) by D21(t) and 2D22(t),
respectively. Observe that D1 and D2 are data terms. Then from (14)-(16),
yields

‖∇(u− b)‖2 + 1

2

∫
Ω

(1+ αT + βT 2)(ui − bi)(ui − bi)dx

≤ 3
2
(‖T‖2 + ‖C‖2) + 3

2
(1+ β‖T‖2)D21 + 3Cα‖T‖D22

≤ 3
2
(‖T‖+ ‖C‖)2 + 3(‖T‖+ ‖C‖)D3 +

3

2
D23 +

3

2
β‖T‖2D23

≤ 3
2

(
(‖T‖+ ‖C‖)D3

)2
+
3

2
β

(
(‖T‖+ ‖C‖)D3

)2
,

(17)

where D3 = D1 if D1 ≥ CαD22, otherwise D3 = CαD42. Then,

‖u− b‖ ≤
√
3(1+ β)(‖T‖+ ‖C‖)D3. (18)

Subsequently, from (12)

‖u‖ ≤
√
3(1+ β)(‖T‖+ ‖C‖)D3 +D1, (19)

and from (19), we conclude

‖u‖2 ≤ 12(1+ β)(‖T‖2 + ‖C‖2)D23 + 2D21. (20)
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Now, adopting the following expressions∫ t
0

∫
Ω

(T −G)

(
∂T

∂s
+ ui

∂T

∂xi
− ∆T

)
dxds = 0, (21)

and ∫ t
0

∫
Ω

(C− K)

(
∂C

∂s
+ ui

∂C

∂xi
− ∆C

)
dxds = 0, (22)

where t is some number such that 0 ≤ t ≤ T . Next, integrating by part in
(21) and employing the boundary condition (7)2, to see that

‖T‖2 + 2
∫ t
0

‖∇T‖2ds ≤ ‖T0‖2 + 2(G, T) + 2
∣∣∣∣(G0, T0)∣∣∣∣+ 2∣∣∣∣ ∫ t

0

(G,s, T)ds

∣∣∣∣
+2

∫ t
0

∫
Ω

GuiT,idxds+ 2

∫ t
0

∮
∂Ω

h

(
∂G

∂n

)
dAds+

∫ t
0

∮
∂Ω

|f|h2dAds,

by using Cauchy-Schwarz and arithmetic-geometric mean inequalities in above
inequality, we have

1

2
‖T‖2 +

∫ t
0

‖∇T‖2ds ≤ 2‖T0‖2 + 2‖G‖2 + ‖G0‖2 +
∫ t
0

‖G,s‖2ds

+G2m

∫ t
0

‖u‖2ds+
∫ t
0

‖T‖2ds+
∫ t
0

∮
∂Ω

h2dAds

+

∫ t
0

∮
∂Ω

(
∂G

∂n

)2
dAds+

∫ t
0

∮
∂Ω

|f|h2dAds,

(23)

with inserting (20) in (23), yields

‖T‖2 + 2
∫ t
0

‖∇T‖2ds ≤ 4‖T0‖2 + 4‖G‖2 + 2‖G0‖2 + 2
∫ t
0

‖G,s‖2ds

+ 2

(
1+ 6G2m[1+ β]D

2
3

) ∫ t
0

‖T‖2ds

+ 2G2m

∫ t
0

(
6[1+ β]‖C‖2D23 +D21

)
ds

+ 2

∫ t
0

∮
∂Ω

(
∂G

∂n

)2
dAds+ 2

∫ t
0

∮
∂Ω

(1+ |f|)h2dAds.

(24)
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Next, we return to the Equ. (22) and realize integral by parts with the aid of
the Cauchy-Schwarz and arithmetic-geometric mean inequalities, to find

1

4
‖C‖2 + 3

4

∫ t
0

‖∇C‖2ds ≤ ‖C0‖2 +
1

2
‖K0‖2 + ‖K‖2 +

1

2

∫ t
0

‖C‖2ds

+ K2m

∫ t
0

‖u‖2ds+ 1

2

∫ t
0

∮
∂Ω

(1+ |f|)k2dAds

+
1

2

∫ t
0

‖K,s‖2ds+
1

2

∫ t
0

∮
∂Ω

(
∂K

∂n

)2
dAds,

(25)

from (20), we derive (25) into

‖C‖2 + 3
∫ t
0

‖∇C‖2ds ≤ 4‖C0‖2 + 2‖K0‖2 + 4‖K‖2

+ 2

(
1+ 12K2m[1+ β]D

2
3

) ∫ t
0

‖C‖2ds

+ 4K2m

∫ t
0

(
6[1+ β]‖T‖2D23 +D21

)
ds+ 2

∫ t
0

∮
∂Ω

(1+ |f|)k2dAds

+ 2

∫ t
0

‖K,s‖2ds+ 2
∫ t
0

∮
∂Ω

(
∂K

∂n

)2
dAds,

(26)

where Gm and Km are the maximum value of G and K, respectively, on ∂Ω×
(0, T ). Next, combining (24) and (26), yields

‖T‖2 + ‖C‖2 + 2
∫ t
0

‖∇T‖2ds+ 3
∫ t
0

‖∇C‖2ds

≤ 2
(
1+ 6G2m[1+ β]D

2
3 + 12K

2
m[1+ β]D

2
3

) ∫ t
0

‖T‖2ds

+ 2

(
1+ 6G2m[1+ β]D

2
3 + 12K

2
m[1+ β]D

2
3

) ∫ t
0

‖C‖2ds+ E(t)

= λ

∫ t
0

(
‖T‖2 + ‖C‖2

)
ds+ E(t),

(27)

where

λ = 2

(
1+ 6G2m[1+ β]D

2
3 + 12K

2
m[1+ β]D

2
3

)
,
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and E(t) is given by

E(t) = 4‖T0‖2 + 2‖G0‖2 + 4‖C0‖2 + 2‖K0‖2 + 4‖G‖2 + 4‖K‖2

+ 2

(
G2m + 2K2m

) ∫ t
0

D21ds+ 2

∫ t
0

‖G,s‖2ds+ 2
∫ t
0

‖K,s‖2ds

+ 2

∫ t
0

∮
∂Ω

(1+ |f|)h2dAds+ 2

∫ t
0

∮
∂Ω

(1+ |f|)k2dAds

+ 2

∫ t
0

∮
∂Ω

(
∂G

∂n

)2
dAds+ 2

∫ t
0

∮
∂Ω

(
∂K

∂n

)2
dAds.

(28)

For a function φ, which satisfies [15]

∆φ = 0, in Ω,

φ =M, on ∂Ω,
(29)

then one may use a Rellich identity, [13], to denote c1 and c2 such that

‖∇φ‖2 + c1
∮
∂Ω

(
∂φ

∂n

)2
dA ≤ c2

∮
∂Ω

|∇sM|2dA, (30)

where ∇s refers to the surface gradient over ∂Ω. Also observe that

2(ψ∇φ,∇φ) + ‖φ‖2 ≤ ψ1
∮
∂Ω

M2dA, (31)

where

ψ1 = max
∂Ω

∣∣∣∣∂ψ∂n
∣∣∣∣,

with solving the boundary value problem,

∆ψ = −1, in Ω,

ψ = 0, on ∂Ω.
(32)

Thus, (31) and (32) lead to bounds for E(t) in terms of data. In fact, one may
show

E(t) ≤ D̃(t), (33)
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so that

D(t) = 4‖T0‖2 + 4‖C0‖2 + 2
(
G2m + 2K2m

) ∫ t
0

D21ds+ 2ψ1

∮
∂Ω

h20dA

+ 2ψ1

∮
∂Ω

k20dA+ 4ψ1

∮
∂Ω

h2dA+ 4ψ1

∮
∂Ω

k2dA

+ 2ψ1

∫ t
0

∮
∂Ω

h2,ηdAdη+ 2ψ1

∫ t
0

∮
∂Ω

k2,ηdAdη

+ 2

∫ t
0

∮
∂Ω

(1+ |f|)h2dAdη+ 2

∫ t
0

∮
∂Ω

(1+ |f|)k2dAdη

+
2c2
c1

∫ t
0

∮
∂Ω

|∇sh|2dAdη+
2c2
c1

∫ t
0

∮
∂Ω

|∇sk|2dAdη.

(34)

From (28) which leads us to

F ′ − λF ≤ D̃(t), (35)

where we have introduced the function F , which is defined by

F(t) =
∫ t
0

(
‖T‖2 + ‖C‖2

)
ds.

Upon assuming

D̃1(t) =

∫ t
0

D̃(s)eλ(t−s)ds, (36)

one integrates (35) to show

F(t) ≤ D̃1(t). (37)

Furthermore, setting D̃2 = λD̃1 + D̃, one uses (3) to find

‖T‖2 + ‖T‖44 + ‖C‖2 ≤ D̃2(t). (38)

Then, (27), (37) and (38) give∫ t
0

‖T‖2ds ≤ D̃1,
∫ t
0

‖C‖2ds ≤ D̃1,

‖T‖2 ≤ D̃2, ‖C‖2 ≤ D̃2,∫ t
0

‖∇T‖2ds ≤ 1
2
D̃2,

∫ t
0

‖∇C‖2ds ≤ 1
3
D̃2.

(39)
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The next step is to derive a bound for supΩ×[0,T ] |T |, from∫ t
0

∫
Ω

(T 2r−1 − F)

(
∂T

∂s
+ ui

∂T

∂xi
− ∆T

)
dxds = 0. (40)

Integrating by parts, we see that∫
Ω

T 2rdx+
2(2r− 1)

r

∫ t
0

∫
Ω

∇T r∇T rdxds =
∫
Ω

T 2r0 dx+ 2r(T, F) − 2r(T0, F0)

−2r

∫ t
0

∫
F

TF,sdxds+ 2r

∫ t
0

∫
Ω

T,iFuidxds

+2r

∫ t
0

∮
∂Ω

h
∂F

∂n
dAds−

∫ t
0

∮
∂Ω

fT 2rdAds

≤
∫
Ω

T 2r0 dx+2r

( ∫ t
0

‖F,s‖2ds
∫ t
0

‖T‖2ds
)1/2

+2r(‖T‖‖F‖+‖T0‖‖F0‖)

+ 4rh2r−1m

( ∫ t
0

[
6[1+ β](‖T‖2 + ‖C‖2)D23 +D21

]
ds

∫ t
0

‖∇T‖2ds
)1/2

+2r

( ∫ t
0

∮
∂Ω

h2dAds

∫ t
0

∮
∂Ω

[
∂F

∂n

]2
dAds

)1/2
+

∫ t
0

∮
∂Ω

|f|h2rdAds. (41)

Using arithmetic-geometric mean inequality and (30), (31) with (39), yield∫
Ω

T 2rdx ≤
∫
Ω

T 2r0 dx+ 2r(

√
D̃2 + ‖T0‖)

(
ψ1

∮
∂Ω

h4r−2dA

)1/2

+2r

(
D̃1ψ1

∫ t
0

∮
∂Ω

[
h2r−1,η

]2
dAdη

)1/2
+rh2r−1m

(
2

∫ t
0

D21dη+24[1+β]D̃1+2D̃2

)

+2r

(
c2
c1

∫ t
0

∮
∂Ω

[
∇ηh

]2
dAdη

∫ t
0

∮
∂Ω

h2dAdη

)1/2
+

∫ t
0

∮
∂Ω

|f|h2rdAdη. (42)

Then, from further application for Cauchy-Schwarz, we get( ∮
∂Ω

h4r−2dA

)1/2
≤ h2r−1m

( ∮
∂Ω

dA

)1/2
=
h2rm
hm

√
[m(∂Ω)], (43)

( ∫ t
0

∮
∂Ω

h4r−4h2,ηdAdη

)1/2
≤ h

2r
m

h2m

( ∫ t
0

∮
∂Ω

h2,ηdAdη

)1/2
, (44)
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and( ∫ t
0

∮
∂Ω

h4r−4
[
∇ηh

]2
dAdη

)1/2
≤ h

2r
m

h2m

( ∫ t
0

∮
∂Ω

[
∇ηh

]2
dAdη

)1/2
, (45)

where m(∂Ω) is the surface measure of ∂Ω. Employing (43)−(45) in (3), lead
to∫
Ω

T 2rdx ≤
∫
Ω

T 2r0 dx+
2rh2rm
hm

(

√
D̃2 + ‖T0‖)

√
ψ1[m(∂Ω)]

+
2r(2r− 1)h2rm

hm

(
D̃1ψ1

∫ t
0

∮
∂Ω

h2,ηdAdη

)1/2
+
2rh2rm
hm

( ∫ t
0

D21dη+ 12[1+ β]D̃1 + D̃2

)
+ h2rm

∫ t
0

∮
∂Ω

|f|dAdη

+
2r(2r− 1)h2rm

h2m

(
c2
c1

∫ t
0

∮
∂Ω

[
∇ηh

]2
dAdη

∫ t
0

∮
∂Ω

h2dAdη

)1/2
.

(46)

After taking the power 1/2r of (46), we obtain

‖T‖2r ≤
(
‖T0‖2r2r + h2rm

5∑
i=1

γi

)1/2r
, (47)

where γi may be obtained from (46), here

hm = max
∂Ω×[0,T ]

|h|.

Taking the limit r→ ∞, yields a priori bound

sup
Ω×[0,T ]

|T | ≤ max{|T0|m, sup
[0,T ]

hm}, (48)

where
|T0|m = max

Ω
|T0|.

Finally, we have to find a bound for supΩ×[0,T ] |C|. Now, form the expression∫ t
0

∫
Ω

(C2r−1 −H)

(
∂C

∂s
+ ui

∂C

∂xi
− ∆C

)
dxds = 0. (49)

Following the same manner in (40)-(48), we have that

sup
Ω×[0,T ]

|C| ≤ max{|C0|m, sup
[0,T ]

km}, (50)

where
|C0|m = max

Ω
|C0|.
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4 Continuous dependence on α

To investigate continuous dependence on the viscosity coefficient α in (1),
we let (ui, T, C1, p) and (vi, S, C2, q) be solutions to (1) − (6) for the same
data functions f, h and T0, but for different viscosity coefficients, α1 and α2,
respectively. Define the difference solution (wi, θ, φ, π) by

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p− q, α = α1 − α2. (51)

Then from (1) − (6), this solution satisfies the boundary-initial-value problem

−4wi+(1+ α2S+βS
2)wi = −α2θui − αTui−β(T + S)θui − π,i + giθ+ Iiφ,

wi,i = 0,

∂θ

∂t
+wi

∂S

∂xi
+ ui

∂θ

∂xi
= ∆T,

∂φ

∂t
+wi

∂C2
∂xi

+ ui
∂φ

∂xi
= ∆C2,

wi = θ = φ = 0 on ∂Ω× [0, T ],
θ(x, 0) = φ(x, 0) = 0, x ∈ Ω.

(52)
Next, we multiply Equ. (52)1 by wi and integrate over Ω.

‖∇w‖2 +
∫
Ω

(1+ α2S+ βS
2)wiwidx = −α

∫
Ω

Tuiwidx− α2

∫
Ω

θuiwidx

− β

∫
Ω

(T + S)θuiwidx+ gi(θ,wi) + Ii(φ,wi)

≤ αTm‖u‖‖w‖+ ‖θ‖‖w‖+ ‖φ‖‖w‖

+

(
α2 + β[Tm + Sm]

)
‖θ‖
( ∫

Ω

uiwiujwjdx

)1/2
,

(53)

where, Tm and Sm are the maximum value of T and S, respectively. The last
term in (53) is bounded as the following, [14], i.e.∫

Ω

uiwiujwjdx ≤
2

π

(
‖∇w‖2

∮
∂Ω

fifidA+ ‖∇u‖2‖w‖‖∇w‖
)

≤ 2

π
‖∇w‖2

( ∮
∂Ω

fifidA+ κ−1/2‖∇u‖2
)
,

(54)

where κ is the Poincaré constant for Ω.
To employ (53) and (54) we need data bounds for ‖u‖ and ‖∇u‖, thus, from
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the triangle inequality

‖∇u‖ ≤ ‖∇(u− b)‖+ ‖∇b‖,

and then from the inequality before (14) and (16) we find

‖∇u‖2 ≤
(√

6(1+ β)D̃2D3 +
√
2D2

)2
. (55)

Hence, return to (53) we conclude that

‖∇w‖2 +
∫
Ω

(1+ α2S+ βS
2)wiwidx

≤ αTmD4‖w‖+ ‖θ‖‖w‖+ ‖φ‖‖w‖+D6‖θ‖‖∇w‖,
(56)

where

D4 =

√
6(1+ β)D̃2D3 +D1, D5 =

√
6(1+ β)D̃2D3 +

√
2D2,

and

D6 =

√
2

π

(
α2 + β[Tm + Sm]

)( ∮
∂Ω

fifidA+ κ−1/2D5

)1/2
.

Thus, from (56), we may derive

‖∇w‖2 + µ∗‖w‖2 ≤
3α2T 2mD

2
4

µ∗
+
3

µ∗
(‖θ‖2 + ‖φ‖2) +D26‖θ‖2

≤
3α2T 2mD

2
4

µ∗
+

(
3

µ∗
+D26)(‖θ‖2 + ‖φ‖2

)
,

(57)

where

0 < µ∗ ≤ 1+ α2S+ βS2.

Moreover, multiplying (52)3 by θ and (52)4 by φ, with integrating over Ω, we
can see that

d

dt
‖θ‖2 ≤ S

2
m

2
‖w‖2, (58)

and
d

dt
‖φ‖2 ≤

C22m
2
‖w‖2. (59)
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Employing (58) and (59) with integrating the result, yields

‖θ‖2 + ‖φ‖2 ≤ 1
2
(S2m + C22m)

∫ t
0

‖w‖2ds

≤ 1

2µ∗
(S2m + C22m)

∫ t
0

(‖∇w‖2 + µ∗‖w‖2)ds,
(60)

where C2m is the maximum value of C2. Next, substituting (60) in (57), we
have

‖∇w‖2 + µ∗‖w‖2 ≤
3α2T 2mD

2
4

µ∗
+ J

∫ t
0

(‖∇w‖2 + µ∗‖w‖2)ds, (61)

here

J =
1

2µ∗
(S2m + C22m)(

3

µ∗
+D26).

By integration (61), we find∫ t
0

(‖∇w‖2+µ∗‖w‖2)ds ≤
3α2T 2mD

2
4

µ∗
t+J

∫ t
0

(t−s)(‖∇w‖2+µ∗‖w‖2)ds, (62)

thus, from (62) we obtain∫ t
0

(t− s)(‖∇w‖2 + µ∗‖w‖2)ds ≤ α2J2(t), (63)

and ∫ t
0

(‖∇w‖2 + µ∗‖w‖2)ds ≤ α2J3(t), (64)

where

J2(t) =
∫ t
0

J1(s)eJ (t−s)ds, J1(t) =
3T 2mD

2
4

µ∗
t and J3(t) = J1 + JJ2.

Finally, inserting (64) in (60) we also find

‖θ‖2 + ‖φ‖2 ≤ 1

2µ∗
α2J3(S2m + C22m). (65)

Inequality (65) yields continuous dependence on the viscosity coefficient α and
it is truly a priori such that the coefficients of α2 depend only on boundary
and initial conditions.
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5 Continuous dependence on β

In this section, we study the continuous dependence on the coefficient β. We
first, let (ui, T, C1, p) and (vi, S, C2, q) be solutions to (1) − (6) for the same
data functions f, h and T0, but for different viscosity coefficients, β1 and β2,
respectively. Hence, define the difference solution (wi, θ, φ, π) as

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p− q, β = β1 − β2. (66)

Thus, from (1) − (6) this solution satisfies the boundary-initial-value problem

−4wi+(1+ αS+β2S
2)wi = −αθui − βS

2ui−β1(T + S)θui − π,i + giθ+ Iiφ,
wi,i = 0,

∂θ

∂t
+wi

∂S

∂xi
+ ui

∂θ

∂xi
= ∆T,

∂φ

∂t
+wi

∂C2
∂xi

+ ui
∂φ

∂xi
= ∆C2,

wi = θ = φ = 0 on ∂Ω× [0, T ],
θ(x, 0) = φ(x, 0) = 0, x ∈ Ω.

(67)
Now, multiply Equ. (67)1 by wi and integrate over Ω, we have

‖∇w‖2+
∫
Ω

(1+αS+β2S
2)wiwidx = −β

∫
Ω

S2uiwidx−β1

∫
Ω

(T +S)θuiwidx

−α

∫
Ω

θuiwidx+ gi(θ,wi) + Ii(φ,wi)

≤ βS2m‖u‖‖w‖+ ‖θ‖‖w‖+ ‖φ‖‖w‖

+

(
α+ β1[Tm + Sm]

)
‖θ‖
( ∫

Ω

uiwiujwjdx

)1/2
. (68)

We are now performing a similar manner starting from (54), to obtain

‖∇w‖2+ν∗‖w‖2 ≤
3β2S4mD

2
4

ν∗
+
1

2ν∗
(S2m+C

2
2m)(

3

ν∗
+D27)

∫ t
0

(‖∇w‖2+ν∗‖w‖2)ds,

(69)
where

0 < ν∗ ≤ 1+ αS+ β2S2
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and

D7 =

√
2

π

(
α+ β1[Tm + Sm]

)( ∮
∂Ω

fifidA+ κ−1/2D5

)1/2
.

By integrating (69), we can find∫ t
0

(‖∇w‖2 + ν∗‖w‖2)ds ≤ β2K1t+K2
∫ t
0

(t− s)(‖∇w‖2 + ν∗‖w‖2)ds, (70)

where

K1 =
3S4mD

2
4

ν∗
and K2 =

1

2ν∗
(S2m + C22m)(

3

ν∗
+D27).

Thus, from (70) we have∫ t
0

(t− s)(‖∇w‖2 + ν∗‖w‖2)ds ≤ β2
∫ t
0

K1teK2(t−s)ds, (71)

and ∫ t
0

(‖∇w‖2 + ν∗‖w‖2)ds ≤ β2
(
K1t+K2

∫ t
0

K1teK2(t−s)ds

)
. (72)

Further, (71) leads to

‖θ‖2 + ‖φ‖2 ≤ 1

2ν∗
β2(S2m + C22m)

(
K1t+K2

∫ t
0

K1teK2(t−s)ds

)
. (73)

Obviously, (73) demonstrates continuous dependence on the viscosity coeffi-
cient β and it is actually a priori such that the coefficients of β2 depend only
on boundary and initial data

6 Convergence to the constant viscosity α

Let now (ui, T, C1, p) and (vi, S, C2, q) be the solutions that satisfy the follow-
ing boundary-initial-value problems:

−∆ui + (1+ αT + βT 2)ui = −
∂p

∂xi
+ giT + IiC1,

ui,i = 0,

∂T

∂t
+ ui

∂T

∂xi
= ∆T,

∂C1
∂t

+ ui
∂C1
∂xi

= ∆C1,

(74)
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in Ω× (0, T ), with

ui = f(x, t), on ∂Ω× (0, T ),
T(x, t) = h(x, t), C1(x, t) = k(x, t), x on ∂Ω, t ∈ (0, T ),

(75)

−∆vi + (1+ βS2)vi = −
∂q

∂xi
+ giS+ IiC2,

vi,i = 0,

∂S

∂t
+ vi

∂S

∂xi
= ∆S,

∂C2
∂t

+ vi
∂C2
∂xi

= ∆C2,

(76)

in Ω× (0, T ), and

vi = f(x, t), on ∂Ω× (0, T ),
S(x, t) = h(x, t), C2(x, t) = k(x, t), x on ∂Ω, t ∈ (0, T ].

(77)

The variableswi, θ, φ and π were introduced in (51) which satisfy the boundary-
initial-value problem

−4wi + (1+ βS2)wi = −π,i + giθ+ Iiφ− αTui − β(T + S)θui,

wi,i = 0,

∂θ

∂t
+wi

∂S

∂xi
+ ui

∂θ

∂xi
= ∆T,

∂φ

∂t
+wi

∂C2
∂xi

+ ui
∂φ

∂xi
= ∆C2,

wi = θ = φ = 0 on ∂Ω× (0, T ),
θ(x, 0) = φ(x, 0) = 0, x ∈ Ω.

(78)

Next, we start with multiplying (78)1 by wi and integrating over Ω, with
employing the Cauchy-Schwarz and arithmetic-geometric-mean inequalities,
to derive

‖∇w‖2 +
∫
Ω

(1+ βS2)wiwidx ≤ αTm‖w‖‖u‖+ ‖θ‖‖w‖+ ‖φ‖‖w‖

+ β(Tm + Sm)‖θ‖
( ∫

Ω

uiwiujwjx

)1/2
,

(79)

Upon using (54) with data bounds for ‖u‖ and ‖∇u‖, yields

‖∇w‖2 + γ∗‖w‖2 ≤ αTmD4‖w‖+ ‖θ‖‖w‖+ ‖φ‖‖w‖+D8‖θ‖‖∇w‖, (80)
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where

0 < γ∗ ≤ 1+ βS2 and D8 =

√
2

π
β(Tm + Sm)

( ∮
∂Ω

fifidA+ κ−1/2D5

)1/2
.

Thus, from (80), after employing arithmetic-geometric mean inequality, we
conclude

‖∇w‖2 + γ∗‖w‖2 ≤
3γ2TmD

2
4

γ∗
+ (

3

γ∗
+D28)(‖θ‖+ ‖φ‖). (81)

Multiply (78)3 and (78)4 by θ and φ, respectively with integrating over Ω, to
derive

‖θ‖2 + ‖φ‖2 ≤ 1

2α∗
(S2m + C22m)

∫ t
0

(‖∇w‖2 + γ∗‖w‖2)ds. (82)

Inserting (82) in (81), gives

‖∇w‖2+‖w‖2 ≤
3α2TmD

2
4

γ∗
+
1

2γ∗
(
3

γ∗
+D28)(S

2
m+C22m)

∫ t
0

(‖∇w‖2+γ∗‖w‖2)ds.

(83)
Finally, integration (83), yields

∫ t
0

(‖∇w‖2 + γ∗‖w‖2)ds ≤
6γ∗α2T 2mD

2
4 exp

(
1
2γ∗ (

3
γ∗ +D28)(S

2
m + C22m)t

)
( 3γ∗ +D28)(S

2
m + C22m)

.

(84)
Evidently, (84) demonstrates a convergence of ui to vi as α → 0, in the
indicated measure. By combining (84) and (83), we also obtain a convergence
of wi in L2(Ω) and H1(Ω) norms , and from (82) we may obtain a convergence
of θ and φ in the L2(Ω) norm.

7 Convergence to the constant viscosity β

Let (ui, T, C1, p) and (vi, S, C2, q) be solutions that satisfy the following boundary-
initial-value problems:

−∆ui + (1+ αT + βT 2)ui = −
∂p

∂xi
+ giT + IiC1,

ui,i = 0,

∂T

∂t
+ ui

∂T

∂xi
= ∆T,

∂C1
∂t

+ ui
∂C1
∂xi

= ∆C1,

(85)
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in Ω× (0, T ), with

ui = f(x, t), on ∂Ω× (0, T ),
T(x, t) = h(x, t), C1(x, t) = k(x, t), x on ∂Ω, t ∈ (0, T ),

(86)

−∆vi + (1+ αS)vi = −
∂q

∂xi
+ giS+ IiC2,

vi,i = 0,

∂S

∂t
+ vi

∂S

∂xi
= ∆S,

∂C2
∂t

+ vi
∂C2
∂xi

= ∆C2,

(87)

in Ω× (0, T ), with

vi = f(x, t), on ∂Ω× (0, T ),
S(x, t) = h(x, t), C2(x, t) = k(x, t), x on ∂Ω, t ∈ (0, T ).

(88)

The variableswi, θ, φ and π were introduced in (51) which satisfy the boundary-
initial-value problem

−4wi + (1+ αS)wi = −π,i + giθ+ Iiφ− βT 2ui − αθui,

wi,i = 0,

∂θ

∂t
+wi

∂S

∂xi
+ ui

∂θ

∂xi
= ∆T,

∂φ

∂t
+wi

∂C2
∂xi

+ ui
∂φ

∂xi
= ∆C2.

wi = θ = φ = 0 on ∂Ω× (0, T ),
θ(x, 0) = φ(x, 0) = 0, x ∈ Ω.

(89)

Now, we multiply (89)1 bywi and integrate overΩ, with the aid of the Cauchy-
Schwarz inequality to obtain

‖∇w‖2 +
∫
Ω

(1+ αS)wiwidx ≤ βT 2m‖w‖‖u‖+ ‖θ‖‖w‖

+ ‖φ‖‖w‖+ α‖θ‖
( ∫

Ω

uiwiujwjx

)1/2
,

(90)

Then, with further employing for (54) and data bounds for ‖u‖ and ‖∇u‖ with
application of the arithmetic-geometric mean inequality to see that

‖∇w‖2 + δ∗‖w‖2 ≤
3β2T 4mD

2
4

δ∗
+ (

3

δ∗
+D29)(‖θ‖2 + ‖φ‖2), (91)
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here

0 < δ∗ ≤ 1+ αS and D9 = α

√
2

π

( ∮
∂Ω

fifidA+ κ−1/2D5

)1/2
.

Since

‖θ‖2 + ‖φ‖2 ≤ 1

2δ∗
(S2m + C22m)

∫ t
0

(‖∇w‖2 + δ∗‖w‖2)ds. (92)

Substituting (92) in (91) we observe that

‖∇w‖2+δ∗‖w‖2 ≤
3β2T 4mD

2
4

δ∗
+
1

2δ∗
(3+D29)(S

2
m+C22m)

∫ t
0

(‖∇w‖2+δ∗‖w‖2)ds.

(93)
Finally, integrating (93), yields

∫ t
0

(‖∇w‖2+δ∗‖w‖2)ds ≤
6δ∗β2T 4mD

2
4 exp

(
1
2δ∗ (

3
δ∗ +D29)(S

2
m + C22m)t

)
( 3δ∗ +D29)(S

2
m + C22m)

. (94)

We can see that in (94), the convergence is demonstrated with ui to vi as
β→ 0, in the indicated measure. By combining (93) and (94), we also obtain
a convergence of wi in L2(Ω) and H1(Ω) norm, and from (91) we may obtain
a convergence of θ and φ in the L2(Ω) norm.

8 Conclusions

In this current paper, the problem of double diffusive convection in a Brinkman
model has been considered when the viscosity varies with temperature. Specif-
ically, in this work we presented a priori bounds with coefficients that depend
only on boundary data, initial data and we demonstrated that the solution
depends continuously on changes in the viscosity coefficients α and β, respec-
tively. Moreover, the convergence result is established on Brinkman model
when the variable viscosity is allowed to approach to a constant viscosity.
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