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Abstract. In this paper, we define a distance d on the setM of bivariate
means. We show that

(
M, d

)
is a bounded complete metric space which

is not compact. Other algebraic and topological properties of
(
M, d

)
are

investigated as well.

1 Introduction

A bivariate mean m, as proposed by Cauchy in [5], is a map from (0,∞) ×
(0,∞) into (0,∞) satisfying the following condition

∀x, y > 0 min(x, y) ≤ m(x, y) ≤ max(x, y). (1)

The two maps (x, y) 7−→ min(x, y) and (x, y) 7−→ max(x, y), will be denoted by
min and max, are trivial means called the lower mean and the upper mean, re-
spectively. The property in (1) is called by Audenaert in [1], the in-betweenness
property of the mean m. Some other standard examples of means are given in
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the following: 
A := A(x, y) =

x+ y

2
G := G(x, y) =

√
xy

H := H(x, y) =
2xy

x+ y

(2)

and are known, in the literature, as the arithmetic mean, geometric mean and
harmonic mean, respectively. These three means are included in the following
families of means, with t ∈ [0, 1],

At := At(x, y) = (1− t)x+ ty,

Gt := Gt(x, y) = x
1−tyt,

Ht := Ht(x, y) =
(
(1− t)x−1 + ty−1

)−1
.

(3)

These are called weighted arithmetic mean, weighted geometric mean and
weighted harmonic mean, respectively. Another example of classical means is
the Heron mean Het defined by, [8], Het = tG+(1−t)A with t ∈ [0, 1]. Clearly,
He0 = A and He1 = G. For further examples of means, we refer the reader to
[4, 3, 9] for instance and the related references cited therein.

Otherwise, it is not hard to check that the following relationship

At(x, y) −Ht(x, y) = t(1− t)
(x− y)2

tx+ (1− t)y
(4)

holds for any x, y > 0 and t ∈ [0, 1].
We define symmetric (resp. homogeneous, monotone) means in the habitual

way. The weighted means (3) are homogeneous, monotone, not symmetric
unless t = 1/2, case for which they coincide with A,G and H, respectively. In
the literature, see [9] for instance, we can find a lot of symmetric, homogeneous
monotone means. For example, the following

L(x, y) :=
x− y

log(x/y)
, x 6= y; with L(x, x) = x (5)

is known as the logarithmic mean of x > 0 and y > 0.
As example of mean which is not monotone, we can mention the contra-

harmonic mean defined for all x, y > 0 by, C(x, y) =
x2 + y2

x+ y
. It is well known

that the following inequalities, [9]

H(x, y) ≤ G(x, y) ≤ L(x, y) ≤ A(x, y) ≤ C(x, y) (6)
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hold for any x, y > 0.
The mean C is a particular case of the so-called Lehmer power mean defined

for p ∈ R by

Lp(x, y) =
xp + yp

xp−1 + yp−1
.

It is easy to see that L1 = A, L0 = H and L2 = C. We can also check that the
equality

Lp(x, y) −A(x, y) =
(x− y)(xp−1 − yp−1)

2(xp−1 + yp−1)
(7)

holds for any x, y > 0 and p ∈ R.
The set of all (bivariate) means will be denoted by M. We also denote by
Ms, resp. Mh, the set of all symmetric means, resp. homogeneous means. As
pointed out in [2], the sets M, Ms and Mh are convex.

In Section 2 below, we will define a metric d on the setM and we study its
algebraic properties as well as some examples for computations of d(m1,m2)
when m1,m2 ∈M. Afterwards, Section 3 is devoted to investigate some topo-
logical properties of the metric space

(
M, d

)
.

2 Metric topology on M
Let m1,m2 ∈ M. From (1), we immediately deduce that, for all x, y > 0, we
have

|m1(x, y) −m2(x, y)| ≤ max(x, y) − min(x, y) = |x− y|. (8)

We can then put the following definition.

Definition 1 Let m1,m2 ∈M. For all x, y > 0, we define

T
(
m1,m2

)
(x, y) =


m1(x, y) −m2(x, y)

x− y
if x 6= y,

0 if x = y

(9)

Following (8), T
(
m1,m2

)
is a map from (0,∞)× (0,∞) into [−1, 1], i.e.

∀x, y > 0 |T
(
m1,m2

)
(x, y)| ≤ 1. (10)

Further, if m1 and m2 are both symmetric and homogenous then we have,

T
(
m1,m2

)
(x, y) = T

(
m1,m2

)
(y, x) and
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T
(
m1,m2

)
(tx, ty) = T

(
m1,m2

)
(x, y),

for all x, y > 0 and t > 0.
Now, we are in a position to state the following definition.

Definition 2 For m1,m2 ∈M, we set

d(m1,m2) = sup
x,y>0

∣∣T (m1,m2

)
(x, y)

∣∣. (11)

It is clear that if m1,m2 ∈Mh then we have

d(m1,m2) = sup
0<x

|T
(
m1,m2

)
(x, 1)|. (12)

Proposition 1 (M, d) is a bounded metric space.

Proof. It is easy to check that for all m1,m2,m3 ∈M the next properties are
satisfied:

� d(m1,m2) = d(m2,m1).

� d(m1,m2) = 0⇐⇒ m1 = m2.

� d(m1,m3) ≤ d(m1,m2) + d(m2,m3).

These confirm that d establishes a distance onM. Otherwise, from inequality
(10), we immediately deduce that (M, d) is bounded. �

Remark 1 i) In the particular case of symmetric means defined on a sym-
metric domain in R, Farhi gave in [7] the following formula

d(m1,m2) = sup
0<x,y

(
1

efm1
(x,y) + 1

−
1

efm2
(x,y) + 1

)
(13)

where for a mean m ∈Ms, fm(x, y) is defined for all 0 < x, y byfm(x, y) = log

(
−
x−m(x, y)

y−m(x, y)

)
, for x 6= y

fm(x, x) = 0

(14)

which can be useful in a computational point of view as well as the relation
(12) as we will see later.
ii) If the means m1 and m2 are symmetric then the distance d(m1,m2) can be
also defined by the next formula

d(m1,m2) = sup
0<x<y

∣∣T (m1,m2

)
(x, y)

∣∣.
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Now we will state some important examples where distances between some
special means are determined with respect to the metric d.

Example 1 Simple computations lead to the following:

(i) d(At1 , At2) = |t1 − t2|, ∀t1, t2 ∈ [0, 1]. In particular, d(A,At) = |t− 1/2|,
∀t ∈ [0, 1].

(ii) d(A,H) = d(A,G) = d(A,C) = 1/2.

(iii) d(H,C) = d(min, C) = 1, d(G,C) = 1.

(iv) d(A,Het) = t/2 with t ∈ [0, 1]. In particular d
(
A, A+G2

)
= 1/4, since

He1/2 =
A+G
2 .

Remark 2 One can check that, if m,m1 and m2 are three means such that
m ≤ m1 ≤ m2, (resp. m1 ≤ m2 ≤ m), then we have

d(m,m1) ≤ d(m,m2), (resp. d(m,m1) ≥ d(m,m2)).

This, with the arithmetic-geometric-harmonic mean inequality, namely H ≤
G ≤ A, yields the following:
• If m ∈M is such that m ≤ H then d(m,H) ≤ d(m,G) ≤ d(m,A).
• If m ∈M is such that m ≥ A then d(m,A) ≤ d(m,G) ≤ d(m,H).

We now state the following proposition which contains more examples giv-
ing the computation of d(m1,m2) when m1 and m2 are among the previous
standard bivariate means.

Proposition 2 The following equalities hold,

(i) For any m ∈M we have d(m,A) ≤ 1/2.

(ii) d
(
At, Ht

)
= max(t, 1− t) for any t ∈ (0, 1).

(iii) d
(
At, Gt

)
= max(t, 1− t) for all t ∈ (0, 1).

(iv) d
(
Lp, A

)
= 1/2 for any real number p 6= 1.

(v) d(A, L) = 1/2.
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Proof. (i) Let m ∈M and x, y > 0. We have

|m(x, y) −A(x, y)| ≤ max
(
x−A(x, y), y−A(x, y)

)
= max

(x− y
2

,
y− x

2

)
,

(15)
which yields d(m,A) ≤ 1/2.

Since the means At, Gt,Ht,Lp and L are homogenous, then it suffices to use
the formulae (12) for establishing the equalities (ii)-(v).

(ii) Let x > 0. According to (4) with y = 1, we obtain∣∣T (At, Ht)(x, 1)∣∣ = t(1− t) |1− x|

1− t+ tx
.

Studying the variations of the function φ : x 7−→ |1− x|

1− t+ tx
, defined for x ∈

(0,∞), we conclude that it decreases on (0, 1] and increases on [1,∞). Then
we have

sup
x∈(0,∞)

φ(x) = max
(
φ(0+), lim

x→∞φ(x)
)
= max

(
1

t
,
1

1− t

)
.

It follows that

d
(
At, Ht

)
= sup

0<x

∣∣T (At, Ht)(x, 1)∣∣ = max(t, 1− t).

(iii) Now, we have for any x ∈ (0,∞) with x 6= 1∣∣T (At, Gt)(x, 1)∣∣ = ∣∣∣∣(1− t)x+ t− x1−t1− x

∣∣∣∣ .
If for x ∈ (0, 1) we set ut(x) =

(1− t)x+ t− x1−t

1− x
then simple computation

leads to

u ′
t(x) =

1− (1− t)x−t − tx1−t

(1− x)2
=

vt(x)

(1− x)2
,

where

vt(x) = 1− (1− t)x−t − tx1−t and v ′t(x) = t(1− t)x
−t(x−1 − 1) ≥ 0.

It follows that vt is a strictly increasing function on (0, 1) and so vt(x) ≤
vt(1

−) = 0 for any x ∈ (0, 1). We then deduce that ut is a strictly decreasing
function on (0, 1). Hence,

sup
0<x<1

∣∣T (At, Gt)(x, 1)∣∣ = ut(0) = t.



Mean-metric topology 153

With similar computations we can prove that,

sup
x>1

∣∣T (At, Gt)(x, 1)∣∣ = 1− t.
So we get d

(
At, Gt

)
= max(t, 1− t).

(iv) Let x ∈ (0,∞). By virtue of (7) we have

T (Lp, A)(x, 1) :=
|xp−1 − 1|

2(xp−1 + 1)
.

The case p = 1 is trivial, since L1 = A and so d(L1, A) = 0. Assume that
p 6= 1. Setting xp−1 = z and using elementary techniques of real analysis, we
find d

(
Lp, A

)
= 1/2.

(v) As previously, with the help of (5) and (6), we have for any x ∈ (0, 1)
(after a simple reduction)

T (L,A)(x, 1) := (x+ 1) log(x) − 2(x− 1)

2|1− x| log(x)
.

We first show that

∀x ∈ (0, 1)
(x+ 1) log(x) − 2(x− 1)

2(1− x) log(x)
≤ 1/2. (16)

After simple manipulations, (16) is reduced to the following one

∀x ∈ (0, 1) x log(x) − x+ 1 ≥ 0,

which is so easy to show by similar way as previously.
For x > 1 the inequality,

(x+ 1) log(x) − 2(x− 1)

2(x− 1) log(x)
≤ 1/2. (17)

is equivalent to

log(x) − x+ 1 ≤ 0,

which can be simply confirmed.
The results (16) and (21) enable us to write for all x > 0 that,

(x+ 1) log(x) − 2(x− 1)

2|1− x| log(x)
≤ 1
2
. (18)
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Now, by l’Hopital’s rule we can check that

lim
x→1 (x+ 1) log(x) − 2(x− 1)

(1− x) log(x)
= 1.

This, when combined with (18), yields the desired result. �

Remark 3 According to the preceding proposition, the relationship d(Lp, A) =
1/2 shows that the map p 7−→ d(Lp, A) is discontinuous at p = 1, since L1 = A
and so d(L1, A) = 0.

Proposition 3 The distance between two harmonic weighted means Ht1 and
Ht2 is given by

d
(
Ht1 , Ht2

)
=

|t1 − t2|θ(t1, t2)

2(1− t1)(1− t2) + (t1 + t2 − 2t1t2)θ(t1, t2)
,

where we set

θ(t1, t2) :=

√
(1− t1)(1− t2)

t1t2
.

Proof. We also use (12). For x ∈ (0,∞), simple computation leads to

∣∣T (Ht1 , Ht2)(x, 1)∣∣ = |t1 − t2|x

(1− t1 + t1x)(1− t2 + t2x)
.

Let us set

∀x ∈ (0,∞) g(x) :=
x

(1− t1 + t1x)(1− t2 + t2x)
.

By computing the derivative of g we easily obtain

∀x ∈ (0,∞) g
′
(x) =

−t1t2x
2 + (1− t1)(1− t2)

(1− t1 + t1x)2(1− t2 + t2x)2
.

We then deduce that g attains its maximum point at θ(t1, t2). Computing
g
(
θ(t1, t2)

)
we find the desired result after simple reductions. The proof is

completed. �

Another result of interest is recited in the following.
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Proposition 4 The map (m1,m2) 7−→ d(m1,m2) is jointly convex and sep-
arately convex. That is, the two following inequalities

d
(
(1− t)m1 + tm3, (1− t)m2 + tm4

)
≤ (1− t)d(m1,m2) + td(m3,m4) (19)

d
(
(1− t)m1 + tm3,m2

)
≤ (1− t)d(m1,m2) + td(m3,m2) (20)

hold for any m1,m2,m3,m4 ∈M and t ∈ [0, 1].

Proof. Let m1,m2,m3,m4 ∈ M and t ∈ [0, 1]. For the sake of simplicity, we
set

δ := d
(
(1− t)m1 + tm3, (1− t)m2 + tm4

)
.

Then we have

δ = sup
0<x,y

∣∣∣∣∣
(
(1− t)m1 + tm3

)
(x, y) −

(
(1− t)m2 + tm4

)
(x, y)

x− y

∣∣∣∣∣
= sup
0<x,y

∣∣∣∣∣(1− t)
(
m1(x, y) −m2(x, y)

)
+ t
(
m3(x, y) −m4(x, y)

)
x− y

∣∣∣∣∣
≤ sup
0<x,y

∣∣∣∣∣(1− t)
(
m1(x, y) −m2(x, y)

)
x− y

∣∣∣∣∣+ sup
0<x,y

∣∣∣∣∣t
(
m3(x, y) −m4(x, y)

)
x− y

∣∣∣∣∣
= (1− t)d(m1,m2) + td(m3,m4)

Every jointly convex map is separately convex. That is, (20) follows from (19)
when we take m4 = m2. The proof is finished. �

Remark 4 (i) According to Example 1, (iii) the relation d
(
A, A+G2

)
= 1/4

shows that the convexity of the map (m1,m2) 7−→ d(m1,m2) is not strict.
(ii) From the preceding proposition we immediately deduce that, every ball
(closed or open) of (M, d) is convex.

Corollary 1 The next inequalities hold

(i) d(A, λAt + (1− λ)Lp) ≤ λ|t− 1/2|+
1− λ

2
, for t, λ ∈ [0, 1] and p ∈ R.

(ii) d(A, λAt + (1− λ)Heα) ≤ λ|t− 1/2|+
α(1− λ)

2
, for t, λ, α ∈ [0, 1].

(iii) d(A, λLp + (1− λ)Heα) ≤
λ

2
+
α(1− λ)

2
, for t, λ, α ∈ [0, 1] and p ∈ R.

Proof. According to (20), with the help of Example 1 and Proposition 2,
we easily obtain the desired inequalities. The details are simple and therefore
omitted here for the reader. �
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3 Topological properties of (M, d)

We preserve the same notations as in the previous sections.

Proposition 5 (M, d) coincides with its closed ball of center A, the arith-
metic mean, and radius 1/2.

Proof. According to (15) we have d(m,A) ≤ 1/2 for any m ∈ M. Inversely,
assume that m is a binary map satisfying (15). This is equivalent to

|m(x, y) −A(x, y)| ≤ |x− y|

2
(21)

and so,

min(x, y) :=
x+ y− |x− y|

2
≤ m(x, y) ≤ x+ y+ |x− y|

2
:= max(x, y).

The desired result follows and the proof is finished. �

Remark 5 In a geometrical point of view, the inequality (21) implies that
every mean m(x, y) lies on the sphere centered at the arithmetic mean and
with radius equal to the half of the euclidian distance between x and y. So,
according to the definition given by Dinh et al [6], every bivariate mean satisfies
the in-sphere property.

An important topological property for (M, d) is quoted in the following the-
orem.

Theorem 1 The metric space (M, d) is complete.

Proof. Let (mp) be a Cauchy sequence in (M, d). Let a, b > 0 with a 6= b be
fixed. For a given ε > 0 there is ηε ∈ N such that,

p, q ≥ ηε =⇒ d(mp,mq) ≤
ε

|a− b|

or equivalently

p, q ≥ ηε =⇒ sup
0<x,y

∣∣∣∣mp(x, y) −mq(x, y)

x− y

∣∣∣∣ ≤ ε

|a− b|
.

We then deduce that

p, q ≥ ηε =⇒ ∣∣∣∣mp(a, b) −mq(a, b)

a− b

∣∣∣∣ ≤ ε

|a− b|
.
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This latter inequality holds for each a, b > 0 with a 6= b. It follows that, for
any x, y > 0 there exists an integer Nε such that we get

p, q ≥ Nε =⇒ |mp(x, y) −mq(x, y)| ≤ ε,

which means that (mp(x, y))p is a Cauchy sequence in R. By completeness of
R, for the standard metric, the sequence

(
mn(x, y)

)
n

is convergent in R and
we put limp↑∞mp(x, y) = m(x, y) for any x, y > 0.

Since min(x, y) ≤ mn(x, y) ≤ max(x, y) we then deduce, when p ↑ ∞, that
min(x, y) ≤ m(x, y) ≤ max(x, y). So we can confirm that m ∈ M and it
remains to prove that (mp)p converges to m in (M, d).

Since (mp(x, y))p is a Cauchy sequence in R then, for any x, y > 0 with
x 6= y,

(
mp(x, y)/(x− y)

)
p

is also a Cauchy sequence in R. This means that,

∀ε > 0 ∃Nε ∈ N ∀p, q ≥ Nε ∀x, y > 0, x 6= y
∣∣∣∣mp(x, y) −mq(x, y)

x− y

∣∣∣∣ ≤ ε.
By letting q to ∞ in this latter inequality we obtain,∣∣∣∣mp(x, y) −m(x, y)

x− y

∣∣∣∣ ≤ ε for all x, y > 0, x 6= y

and so d(mp,m) ≤ ε which gives the convergence of (mp)p to m in (M, d). �

In the aim to give more topological properties for (M, d), we need the
following lemma.

Lemma 1 For every p ≥ 1, we have the following
d
(
Lp,max

)
= 1.

Proof. The means Lp and max are homogenous so we can use the formulae
(12). It is easy to check that

∀x ∈ (0, 1) T (Lp,max)(x, 1) =
xp−1

1+ xp−1
. (22)

For p = 1, there is nothing to prove. For p 6= 1, we set z = xp−1 and the
right hand-side of (22) remains a simple homographic function in z which is
so monotone for z ∈ (0,+∞). For both cases p > 1 or p < 1, the variable
z describes the interval (0,+∞). Passing to the supremum over z in (22) we
obtain the desired result, by simple arguments of real analysis. �

Now, we are in a position to state the following result.
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Theorem 2 The space (M, d) is not compact.

Proof. Since (M, d) is a metric space, it suffices to show that there exists a
sequence which have no convergent subsequence.
Let’s at first recall that if a sequence (mp) converges in (M, d) to a mean m
then we have lim

p→+∞mp(x, y) = m(x, y) for any x, y > 0.

On one hand, by Lemma 1, we have d(Lp,max) = 1 for all integer p > 1, and
so the sequence (Lp)p>1 does not converge to max in (M, d).
On the other hand, it is not hard to see that lim

p→+∞Lp(a, b) = max(a, b), see

[2] for instance. This shows that we can not extract a convergent subsequence
from the bounded sequence (Lp)p>1. The proof of the theorem is completed.�

Proposition 6 Ms and Mh are closed in (M, d).

Proof. We show thatMs is closed. For this, let (mn)n be a sequence of sym-
metric means converging to a meanm in (M, d). As already mentioned before,
for any x, y > 0, the two sequences

(
mn(x, y)

)
n

and
(
mn(y, x)

)
n

converge in
R to m(x, y) and m(y, x), respectively. Since mn(x, y) = mn(y, x) then by
letting n ↑ ∞ we obtain m(x, y) = m(y, x) and so m ∈Ms.
In a similar way, we prove the closeness of Mh. �

Another topological property of
(
M, d

)
is recited in the following result.

Theorem 3 The metric space
(
M, d

)
is path-wise connected and so, it is

connected.

Proof. Let m1,m2 ∈M and consider the map f : [0, 1] −→M such that,

∀t ∈ [0, 1] f(t) = (1− t)m1 + tm2.

Since M is convex then f is well defined. We will show that f is a path (i.e.
continuous function) with endpoints m1 and m2. Indeed, for all t1, t2 ∈ [0, 1]
we have

d
(
f(t1), f(t2)

)
= sup
0<x,y

∣∣∣∣f(t1)(x, y) − f(t2)(x, y)x− y

∣∣∣∣
= sup
0<x,y

∣∣∣∣(t1 − t2)(m1(x, y) −m2(x, y))

x− y

∣∣∣∣
= |t1 − t2|d(m1,m2)

≤ |t1 − t2|
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We then infer that f is uniformly continuous on [0, 1] and so, it is continuous.
Moreover, f(0) = m1 and f(1) = m2. In summary, f is a path with endpoints
m1 and m2. The proof is finished. �
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