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Abstract. We show that certain known or new inequalities for the
logarithm of circular hyperbolic functions imply bounds for exp(±x2)
proved in [1].

1 Introduction

In the recent paper [1], the following sharp bounds for exp(±x2) are proved
(see Theorem 1, resp. Theorem 2 of [1]).

For x ∈ (0, π/2) one has(
1+ cos x

2

)a
< exp(−x2) <

(
1+ cos x

2

)b
(1)

where a = 4, b = π2/4 ln 2 are best possible; and(
2+ cos x

3

)c
< exp(−x2) <

(
2+ cos x

3

)d
, (2)

with c = π2/4 ln(3/2), d = 6 best possible;(
1+ cosh x

2

)α
< exp(x2) <

(
1+ cosh x

2

)β
(3)
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where α = 4, β = π2/4 ln[(1+ cosh(π/2))/2] are best possible;(
2+ cosh x

3

)θ
< exp(x2) <

(
2+ cosh x

3

)γ
(4)

with θ = 6 and

γ = π2/4 ln[(2+ cosh(π/2))/3]

are best possible.
We first want to point out that relations (1), (2) and (3) are essentially

known (but not stated explicitely), and that (4) can be deduced in a similar
way, using the Jensen integral inequality.

2 Proofs

First remark that, as

1+ cos x

2
= cos2

x

2
and

1+ cosh x

2
= cosh2

x

2
;

by letting x
2 = t, where t ∈ (0, π/4), to prove (1) it is sufficient to show that

the function

f1(t) =
ln(cos t)

t2
(5)

is strictly decreasing. As

t3f ′1(t) = −t · tan t+ 2 ln(1/ cos t),

this follows by the inequality

ln

(
1

cos t

)
<
t

2
· tan t. (6)

This is proved in [2] (see Corollary 3.8, right side of (1)).
Now, relation (1) with best possible a and b follow by

f1(0+) > f1(t) > f1(π/4).

In a similar manner for (3) it is sufficient to prove that the function

f2(t) =
ln(cosh t)

t2
(7)
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is strictly decreasing. As

t3f
′
2(t) = t · tanh t− 2 ln(cosh t),

this follows by the inequality

ln(cosh t) >
t

2
· tanh t, (8)

proved in [5] and [2] (see Lemma 2.1 in [5] and Corollary 3.8, left side of (2)
in [2]).

For improvements of (8) and related inequalities, see [9].
Now (3), with best possible α and β follow from

f2(0+) > f2(t) > f2(π/4).

We note that inequalities (6) and (8) are simple consequences of the Jensen
integral inequality ([3]):∫b

a

F(x)dx <
(>)

(b− a)

[
F(a) + F(b)

2

]
(9)

with inequality < when F(x) is strictly convex, and (>), when F(x) is strictly
concave on [a, b]. Inequality (9) is called also as one of the Hermite-Hadamard
inequalities. By letting the convex function F1(x) = tan x and [a, b] = [0, t], we
get (6). Similarly, by letting F2(x) = tanh x and [a, b] = [0, t], we get relation
(8).

Now, let

F3(x) =
sinh t

2+ cosh t
,

remarking that ∫ t
0

F3(x)dx = ln

(
cosh x+ 2

3

)
.

It is immediate that

F ′3(x) =
1+ 2 cosh x

(cosh x+ 2)2

and
F ′′3 (x) · (cosh x+ 2) = 2(sinh x) · (1− cosh x) < 0,

we get that F3(x) is strictly concave. Thus, by (9) we get the inequality

ln

(
cosh t+ 2

3

)
>
t

2
· sinh t

cosh t+ 2
. (10)
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Similarly, by remarking that∫ t
0

sin x

2+ cos x
dx = ln

(
3

2+ cos x

)
and that the function

F4(x) =
sin x

2+ cos x

is strictly concave, we can deduce the inequality

ln
3

2+ cos t
>
t

2
· sin t

cos t+ 2
. (11)

This inequality, with another proof, appears also in [8] (see relation (2.2)).
Now, to prove (2), let

f3(t) =

[
ln
(
cos t+2
3

)]
t2

.

It is immediate that

t3f ′3(t) = −
sin t

2+ cos t
· t+ 2 ln

(
3

cos t+ 2

)
> 0

by (11). Thus f3(t) is strictly increasing, and (2) with best possible c and d
follow by f3(0+) < f3(t) < f3(π/2).

Finally, inequality (4) follows in the same manner by considering

f4(t) =

[
ln

(
cosh t+ 2

3

)]
/t2,

and applying inequality (10).

Remarks 1) In [1], the L’Hospital’s rule of monotonicity, as well as the fol-
lowing lemma is used:

sin x

x
>
1+ 2 cos x

2+ cos x
, x ∈ (0, π/2) (12)

and
x

sinh x
+ cosh x > 2, x > 0. (13)
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We note that relation (12), with strong improvements, appears in paper [7]
(see relation (4.7) and Theorem 4.2). We point out also, that (13) is weaker
than the Neumann-Sándor inequality [4]:

sinh x

x
<
2+ cosh x

3
. (14)

Indeed, as
x

sinh x
>

3

2+ cosh x
,

and letting u = chx, one has

u+
3

2+ u
> 2.

Indeed, this is equivalent to u2 + 2u + 3 > 4 + 2u, or u > 1, which is true.
Therefore, one has

x

sinh x
+ cosh x >

3

2+ cosh x
+ cosh x > 2. (15)

2) Other inequalities for the logarithm of circular and hyperbolic functions
can be found in papers [2, 5, 6, 8, 9]. For various applications in the theory of
means, see [10].
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