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Abstract. We show that certain known or new inequalities for the
logarithm of circular hyperbolic functions imply bounds for exp(£x?)
proved in [1].

1 Introduction

In the recent paper [1], the following sharp bounds for exp(£x?) are proved
(see Theorem 1, resp. Theorem 2 of [1]).
For x € (0,7t/2) one has

-] a b
+ cosx < exp(—x?) < 1+ cosx (1)
2 2
where a =4, b = 7?/41n2 are best possible; and
c d
2+ cosx < exp(—x?) < 2+ cosx ’ (2)
3 3
with ¢ = m2/41n(3/2), d = 6 best possible;
o g
(1 —i—czoshx) < exp(ed) < (1 —i—czoshx) 3)
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where o =4, B = /4 1n[(1 + cosh(mt/2))/2] are best possible;

2+ coshx\° 2+ coshx\”
< +C308 x> <exp(x2)<< +csos x) ()

with 8 =6 and
y = 2/41n[(2 + cosh(n/2))/3]

are best possible.

We first want to point out that relations (1), (2) and (3) are essentially
known (but not stated explicitely), and that (4) can be deduced in a similar
way, using the Jensen integral inequality.

2 Proofs

First remark that, as

1 X X 1 hx X
% = cos’ 5 and —‘_C% = cosh? Z;
by letting 5 = t, where t € (0,7t/4), to prove (1) it is sufficient to show that

the function

fi(1) = et 6

is strictly decreasing. As

t3f{(t) =—t-tant+2In(1/cost),

this follows by the inequality

1 t
n (cost> <3 tant. (6)

This is proved in [2] (see Corollary 3.8, right side of (1)).
Now, relation (1) with best possible a and b follow by

f1(0+) > f1(t) > f1(m/4).
In a similar manner for (3) it is sufficient to prove that the function

() = 2okt @
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is strictly decreasing. As
t3f3(t) =t - tanht — 21n(cosh t),

this follows by the inequality
t
In(cosht) > 5 - tanh t, (8)

proved in [5] and [2] (see Lemma 2.1 in [5] and Corollary 3.8, left side of (2)
in [2]).

For improvements of (8) and related inequalities, see [9].

Now (3), with best possible & and f follow from

f2(0+) > f2(t) > f2(7t/4).

We note that inequalities (6) and (8) are simple consequences of the Jensen
integral inequality ([3]):

b
J F(x)dx < (b—a) [F(a)—sz(b)]

a (>)

(9)

with inequality < when F(x) is strictly convex, and (>), when F(x) is strictly
concave on [a, b]. Inequality (9) is called also as one of the Hermite-Hadamard
inequalities. By letting the convex function Fy(x) = tanx and [a, b] = [0, t], we
get (6). Similarly, by letting F,(x) = tanhx and [a, b] = [0, t], we get relation

(8)-
Now, let
sinh t
Fi(x) = ————
30 2 +cosht’
remarking that
t h 2
J F3(x)dx =1In (COSH_>
0 3
It is immediate that
F/(x) = 14 2coshx
37 (coshx + 2)2

and
F{(x) - (coshx +2) = 2(sinh x) - (1 — coshx) < 0,

we get that F3(x) is strictly concave. Thus, by (9) we get the inequality

<cosht + 2) t sinh t
In|{ ———

3 >§.cosht+2' (10)
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Similarly, by remarking that

b sinx 3
——dx=In{+——
02+ cosx 2+ cosx

and that the function
sinx

Fa(x) = ————
4(x) 2+ cosx

is strictly concave, we can deduce the inequality

| 3 S t sint
no0——— > - - ————.
2+cost 2 cost+2

(11)

This inequality, with another proof, appears also in [8] (see relation (2.2)).
Now, to prove (2), let

cost+2
f3(t) = —[m ( t;H )} :

It is immediate that
sint

3
3¢/ e Y
e = 2+ cost t+2ln <cost+2> >0

by (11). Thus f3(t) is strictly increasing, and (2) with best possible ¢ and d
follow by f3(0+) < f3(t) < f3(7/2).
Finally, inequality (4) follows in the same manner by considering

fu(t) = [m (‘mhswﬂ /2

and applying inequality (10).

Remarks 1) In [1], the L’Hospital’s rule of monotonicity, as well as the fol-
lowing lemma is used:

sinx 1+ 2cosx
2
x 2+ cosx ’ x € (0,m/2) (12)

and

Sinhx +coshx >2, x>0. (13)
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We note that relation (12), with strong improvements, appears in paper [7]
(see relation (4.7) and Theorem 4.2). We point out also, that (13) is weaker
than the Neumann-Sandor inequality [4]:

sinhx 2+ coshx
. 14
< 3 (14)

Indeed, as
X 3

>
sinhx =~ 2+ coshx’

and letting u = chx, one has

3
u+— > 2.
2+u

Indeed, this is equivalent to u? +2u +3 > 4 + 2u, or u > 1, which is true.
Therefore, one has

X 3
hx > ———— hx > 2. 15
sinhx—'—coS x Z—i—coshx—i_coS x (15)
2) Other inequalities for the logarithm of circular and hyperbolic functions
can be found in papers [2, 5, 6, 8, 9]. For various applications in the theory of
means, see [10].
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