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Abstract. In this paper, semisimple semigroups, duo semigroups, right
(left) zero semigroups, right (left) simple semigroups, semilattice of left
(right) simple semigroups, semilattice of left (right) groups and semilat-
tice of groups are characterized in terms of soft intersection semigroups,
soft intersection ideals of semigroups. Moreover, soft normal semigroups
are defined and some characterizations of semigroups with soft normality
are given.

1 Introduction

In 1999, the concept of soft sets was introduced by Molodtsov [31] for model-
ing vagueness and uncertainty. Many complex problems of social science and
science involve uncertainties. To be able to deal with these uncertainties and
incomplete information, some theories have been proposed such as the theory
of probability, as is well known, the most successful theoretical approaches
are undoubtedly fuzzy set [1] and interval mathematics [2] . Despite all these
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developments, Molodtsov [3] pointed out that each of these theories have in-
herent limitations in insufficient parameterization tools, and he introduced
the soft set theory for modeling vagueness and uncertainty. Since the soft set
theory is very convenient and easy to apply in practice, researches focused on
soft sets that have been growing rapidly, and which has some potential ap-
plications in many different fields; such as extended theories [4], combination
forecast [5], data mining [6], medical diagnosis [7] and decision making [8] .
Meanwhile, many related concepts with soft sets, especially soft set opera-
tions, have recently undergone tremendous studies. Maji et al. [30] presented
some definitions on soft sets and based on the analysis of several operations
on soft sets Ali et al. [12] introduced several operations of soft sets and Sezgin
and Atagün [36] and Ali et al. [13] studied on soft set operations as well. Soft
set theory have found its wide-ranging applications in the mean of algebraic
structures such as groups [11, 37], semirings [18], rings [9], BCK/BCI-algebras
[24, 25, 26], BL-algebras [42], near-rings [35] and soft substructures and union
soft substructures [14, 38], hemirings [29, 43] and so on [18, 19, 21].

In [20], Feng et al. applied soft relations to semigroups. In [39], Sezer et
al. made a new approach to the classical semigroup theory via soft set theory
with the concept of soft intersection semigroups. They defined soft intersection
semigroups, soft intersection left (right, two-sided) ideals and bi-ideals and
soft semiprime ideals of semigroups and obtained their basic properties. As
a following study of [39], Sezer et al. [40] defined soft intersection interior
ideals, quasi-ideals, generalized bi-ideals and investigate the interrelations of
them. Moreover, they characterized regular, intra-regular, completely regular,
weakly regular and quasi-regular semigroups by the properties of these ideals
in [39, 40].

In this paper, certain classes of semigroups, such as semisimple semigroups,
duo semigroups, right (left) zero semigroups, right (left) simple semigroups,
semilattice of left (right) simple semigroups, semilattice of left (right) groups
and semilattice of groups in terms of soft intersection ideals, bi-ideals, inte-
rior ideals, quasi-ideals, generalized bi-ideals are characterized. Moreover, soft
normal semigroups are defined and discussed on the relation of this concept
with semigroups.

2 Preliminaries

In this section, some notions relevant to semigroups and soft sets are recalled. A
semigroup S is a nonempty set with an associative binary operation. Through-
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out this paper, S denotes a semigroup. A nonempty subset A of S is called a
right ideal of S if AS ⊆ A and is called a left ideal of S if SA ⊆ A. By two-
sided ideal (or simply ideal), we mean a subset of S, which is both a left and
right ideal of S. A subsemigroup X of S is called a bi-ideal of S if XSX ⊆ X.

A nonempty subset A of S is called an interior ideal of S if SAS ⊆ A. A
nonempty subset Q of S is called a quasi-ideal of S if QS ∩ SQ ⊆ Q.

We denote by L[a](R[a], J[a], B[a]Q[a], I[a]), the principal left (right, two-
sided, bi-ideal, quasi-ideal, interior ideal) of a semigroup S generated by a ∈ S,
that is,

L[a] = {a} ∪ Sa,

R[a] = {a} ∪ aS,

J[a] = {a} ∪ Sa ∪ aS ∪ SaS

Q[a] = {a} ∪ (aS ∩ Sa)
I[a] = {a} ∪ {a2} ∪ SaS.

A semigroup S is called regular if for every element a of S, there exists an
element x in S such that a = axa or equivalently a ∈ aSa. An element
a of S is called a completely regular if there exists an element x ∈ S such
that a = axa and ax = xa. A semigroup S is called completely regular if
every element of S is completely regular. A semigroup S is called left (right)
regular if for each element a of S, there exists an element x ∈ S such that
a = xa2 (a = a2x). A semigroup is called left (right) regular if for each
element a of S, there exists an element x ∈ S such that

a = xa2 (a = a2x).

A semilattice is a structure S = (S, .), where “.” is an infix binary operation,
called the semilattice operation, such that ‘‘." is associative, commutative and
idempotent. For all undefined concepts and notions about semigroups, see
[22, 33].

Definition 1 [15, 31] A soft set fA over U is a set defined by

fA : E→ P(U) such thatfA(x) = ∅ if x /∈ A.

Here fA is also called an approximate function. A soft set over U can be rep-
resented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)}.

Definition 2 [15] Let fA, fB ∈ S(U). Then, fA is called a soft subset of fB and
denoted by fA⊆̃fB, if fA(x) ⊆ fB(x) for all x ∈ E.
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Definition 3 [15] Let fA, fB ∈ S(U). Union of fA and fB, denoted by fA∪̃fB,
is defined as fA∪̃fB = fA∪̃B, where fA∪̃B(x) = fA(x) ∪ fB(x) for all x ∈ E.
Intersection of fA and fB, denoted by fA∩̃fB, is defined as fA∩̃fB = fA∩̃B,
where fA∩̃B(x) = fA(x) ∩ fB(x) for all x ∈ E.

Definition 4 [39] Let S be a semigroup and fS and gS be soft sets over the
common universe U. Then, soft intersection product fS ◦ gS is defined by

(fS ◦ gS)(x) =
{ ⋃

x=yz{fS(y) ∩ gS(z)}, if ∃y, z ∈ S such that x = yz,

∅, otherwise

for all x ∈ S.

Definition 5 [39] Let X be a subset of S. We denote by SX the soft charac-
teristic function of X and define as

SX(x) =
{

U, if x ∈ X,

∅, if x /∈ X

Definition 6 [39] Let S be a semigroup and fS be a soft set over U. Then, fS
is called a soft intersection semigroup of S, if

fS(xy) ⊇ fS(x) ∩ fS(y)

for all x, y ∈ S.

Definition 7 [39] A soft set over U is called a soft intersection left (right)
ideal of S over U if

fS(ab) ⊇ fS(b) (fS(ab) ⊇ fS(a))

for all a, b ∈ S. A soft set over U is called a soft intersection two-sided ideal
(soft intersection ideal) of S if it is both soft intersection left and soft inter-
section right ideal of S over U.

Definition 8 [39] A soft intersection semigroup fS over U is called a soft
intersection bi-ideal of S over U if

fS(xyz) ⊇ fS(x) ∩ fS(z)

for all x, y, z ∈ S.
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Definition 9 [40] A soft set over U is called a soft intersection interior of S
over U if fS(xyz) ⊇ fS(y), soft intersection generalized bi-ideal of S over U if
fS(xyz) ⊇ fS(x) ∩ fS(z) for all x, y, z ∈ S.

For the sake of brevity, soft intersection semigroup, soft intersection right (left,
two-sided, interior, generalized bi-) ideal are abbreviated by SI-semigroup, SI-
right (left, two-sided, quasi, generalized bi-) ideal, respectively.

It is easy to see that if fS(x) = U for all x ∈ S, then fS is an SI-semigroup
(right ideal, left ideal, ideal, bi-ideal, interior ideal, quasi-ideal, generalized
bi-ideal) of S over U. We denote such a kind of SI-semigroup (right ideal, left
ideal, ideal, bi-ideal) by S̃ [39].

Definition 10 [40] A soft set over U is called a soft intersection quasi-ideal
of S over U if

(fS ◦ S̃)∩̃(S̃ ◦ fS)⊆̃fS.

Definition 11 [39] A soft set fS over U is called soft semiprime if for all
a ∈ S,

fS(a) ⊇ fS(
2).

Theorem 1 [39, 40] Let X be a nonempty subset of a semigroup S. Then,
X is a subsemigroup (left, right, two-sided ideal, bi-ideal, interior ideal, quasi-
ideal, generalized bi-ideal) of S if and only if SX is an SI-semigroup (left, right,
two-sided ideal, bi-ideal, interior ideal, quasi-ideal, generalized bi-ideal) of S.

Proposition 1 [39, 40] Let fS be a soft set over U. Then,

i) fS is an SI-semigroup over U if and only if fS ◦ fS⊆̃fS.

ii) fS is an SI-left (right) ideal of S over U if and only if S̃◦fS⊆̃fS (fS◦S̃⊆̃fS).

iii) fS is an SI-bi-ideal of S over U if and only if fS ◦ fS⊆̃fS and fS ◦ S̃◦ fS⊆̃fS.

iv) fS is an SI-interior ideal of S over U if and only if S̃ ◦ fS ◦ S̃⊆̃fS.

v) fS is an SI-generalized bi-ideal of S over U if and only if fS ◦ S̃ ◦ fS⊆̃fS.

Theorem 2 [39] Every SI-left (right, two sided) ideal of a semigroup S over
U is an SI-bi-ideal of S over U.

Proposition 2 [40] For a semigroup S, the following conditions are equiva-
lent:
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1) Every SI-ideal of a semigroup S over U is an SI-interior ideal of S over U.

2) Every SI-quasi ideal of S is an SI-semigroup of S.

3) Every one-sided SI-ideal of S is an SI-quasi-ideal of S.

4) Every SI-quasi-ideal of S is an SI-bi-ideal of S.

Theorem 3 [39] For a semigroup S the following conditions are equivalent:

1) S is regular.

2) fS ◦ gS = fS∩̃gS for every SI-right ideal fS of S over U and SI-left ideal gS
of S over U.

Theorem 4 [39] For a semigroup S the following conditions are equivalent:

1) S is regular.

2) For every SI-quasi-ideal of S, fS = fS ◦ S̃ ◦ fS.

Theorem 5 [40] Let fS be a soft set over U, where S is a regular semigroup.
Then, the following conditions are equivalent:

1) fS is an SI-ideal of S over U.

2) fS is an SI-interior ideal of S over U.

Theorem 6 [39] For a left regular semigroup S, the following conditions are
equivalent:

1) Every left ideal of S is a two-sided ideal of S.

2) Every SI-left ideal of S is an SI-ideal of S.

For more on soft intersection semigroups and ideals, we refer [39, 40].

3 Semisimple semigroups

In this section, semisimple semigroups with respect to SI-ideals of semigroups
are characterized. A semigroup S is called semisimple if J2 = J holds for every
ideal J of S, that is, every ideal of S is idempotent.
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Proposition 3 [41] For a semigroup S, the following conditions are equiva-
lent:

1) S is semisimple.

2) a ∈ (SaS)(SaS) for every element a of S, that is, there exist elements
x, y, z ∈ S such that a = xayaz.

Proposition 4 Every SI-interior ideal of a semisimple semigroup S is an SI-
ideal of S.

Proof. Let fS be an SI-interior ideal of S. Let a and b be any elements of S.
Then, since S is semisimple, there exist elements x, y, z ∈ S such that

a = xayaz.

Thus,

fS(ab) = fS((xayaz)b) = fS(xay)a(zb)) ⊇ fS(a)

Hence, fS is an SI-right ideal of S. Similarly, one can prove that fS is an SI-left
ideal of S. Thus, fS is an SI-ideal of S. �

Now a characterization of a semisimple semigroup by SI-ideals is given.

Theorem 7 For a semigroup S, the following conditions are equivalent:

1) S is semisimple.

2) fS◦fS = fS for every SI-ideal fS of S. (That is, every SI-ideal is idempotent).

3) fS ◦ fS = fS for every SI-interior fS of S. (That is, every SI-interior ideal
is idempotent).

4) fS∩̃gS = fS ◦ gS for every SI-ideals fS and gS of S.

5) fS∩̃gS = fS ◦ gS for every SI-ideal fS and every SI-interior ideal gS of S.

6) fS∩̃gS = fS ◦ gS for every SI-interior ideal fS and every SI-ideal gS of S.

7) fS∩̃gS = fS ◦ gS for every SI-interior ideals fS and gS of S.

8) The set of all SI-ideals of a semisimple semigroup S is a semilattice under
the soft intersection product, that is, fS ◦ (gS ◦hS) = fS ◦ (gS ◦hS), fS ◦gS =
gS ◦ fS and fS ◦ fS = fS for all SI-ideals fS and gS of S.
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9) The set of all SI-interior ideals of a semisimple semigroup S is a semilattice
under the soft intersection product.

Proof. First assume that (1) holds. Let fS and gS be any SI-interior ideals of
S. Since, S̃ itself is an SI-interior ideal of S and since fS is an SI-ideal of S by
Proposition 4:

fS ◦ gS⊆̃fS ◦ S̃⊆̃fS and fS ◦ gS⊆̃S̃ ◦ gS⊆̃gS.

Thus, fS ◦ gS⊆̃fS∩̃gS.
Now, let a be any element of S. Since there exist elements x, y, z,w ∈ S such

that
a = (xay)(zaw),

(fS ◦ gS)(a) 6= ∅.

And since fS and gS are SI-interior ideals of S,

(fS ◦ gS)(a) =
⋃

a=pq

(fS(p) ∩ gS(q))

⊇ fS(xay) ∩ gS(zaw)

⊇ fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

and so fS ◦ gS⊇̃fS∩̃gS. Hence,

fS ◦ gS = fS∩̃gS.

So, (1) implies (7). (7) implies (6), (6) implies (4), (7) implies (5), (5) implies
(4), (4) implies (2), (7) implies (3), (3) implies (2) and (7) implies (9), (9)
implies (8), (8) implies (2).

Assume that (2) holds. Let a be any element of S. Since the soft character-
istic function SJ[a] of the principal ideal J[a] of S is an SI-ideal of S,

SJ[a]J[a](a) = (SJ[a] ◦ SJ[a])(a) = SJ[a](a) = U

and so,

a ∈ J[a]J[a] = ({a} ∪ aS ∪ Sa ∪ SaS)({a} ∪ aS ∪ Sa ∪ SaS) =
{a2} ∪ a2S ∪ aSa ∪ aSaS ∪ aSa ∪ aSaS ∪ aSSa ∪ aSSaS ∪ Sa2 ∪ Sa2S ∪

SaSa ∪ SaSaS ∪ SaSa ∪ SaSaS ∪ SaSSa ∪ SaSSaS ⊆ (SaS)(SaS)

Hence, S is semisimple and so, (2) implies (1). �



174 A. Sezgin, M. Orbay

4 Regular duo semigroups

In this section, a left (right) duo semigroup in terms of SI-ideals is charach-
terized. A semigroup S is called left (right) duo if every left (right) ideal of S
is a two-sided ideal of S. A semigroup S is duo if it is both left and right duo.

Definition 12 A semigroup S is called soft left (right) duo if every SI-left
(right) ideal of S is an SI-ideal of S and is called soft duo, if it is both soft left
and soft right duo.

Theorem 8 For a regular semigroup S, the following conditions are equiva-
lent:

1) S is left (right) duo.

2) S is soft left (right) duo.

Proof. First assume that S is left duo. Let fS be any SI-left ideal of S and a

and b be any elements of S. It is known that Sa is a left-ideal of S. And so,
by hypothesis, it is a two-sided ideal of S. Since S is regular,

ab ∈ (aSa)b ⊆ (Sa)S ⊆ Sa

This implies that there exists an element x ∈ S such that

ab = xa.

Thus, since fS is an SI-left ideal of S,

fS(ab) = fS(xa) ⊇ fS(a)

This means that fS is an SI-right ideal of S and so fS is an SI-ideal of S. Thus,
S is soft left duo and (1) implies (2).

Conversely, assume that S is soft left duo. Let A be any left ideal of S. Then,
the soft characteristic function SA of A is an SI-left ideal of S. By assumption,
SA is an SI-ideal of S and so A is a two-sided ideal of S. Thus, S is left duo
and (2) implies (1). The right dual of the proof can be seen similarly. So, the
proof is completed. �

Theorem 9 For a regular semigroup S, the following conditions are equiva-
lent:

1) S is duo.
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2) S is soft duo.

Every SI-right (left) ideal of S is an SI-bi-ideal of S ([39]). Moreover, we have
the following:

Theorem 10 Let S be a regular duo semigroup. Then, every SI-bi-ideal of S
is an SI-ideal of S.

Proof. Let fS be any SI-bi-ideal of S and a, b be any elements of S. It is known
that Sa is a left ideal of S. Since S is a duo semigroup, Sa is a right ideal of
S. And since S is regular,

ab ∈ (aSa)b ⊆ a((Sa)S) ⊆ aSa

This implies that there exists an element x ∈ S such that

ab = axa.

Then, since fS is an SI-bi-ideal of S,

fS(ab) = fS(axa) ⊇ fS(a) ∩ fS(a) = fS(a).

This means that fS is an SI-right ideal of S. It can be seen in a similar way
that fS is an SI-left ideal of S. Therefore, fS is an SI-ideal of S. This completes
the proof. �

Theorem 11 [17, 32] For a semigroup S, the following conditions are equiv-
alent:

1) S is a regular duo semigroup.

2) A ∩ B = AB for every left ideal A and every right ideal B of S.

3) Q2 = Q for every quasi-ideal of S. (That is, every quasi-ideal is idempo-
tent.)

4) EQE = E ∩Q ∩ E for every ideal E and every quasi-ideal Q of S.

Theorem 12 For a semigroup S, the following conditions are equivalent:

1) S is a regular duo semigroup.

2) S is a regular soft duo semigroup.
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3) fS ◦ gS = fS∩̃gS for all SI-bi-ideals fS and gS of S.

4) fS ◦ gS = fS∩̃gS for all SI-bi-ideal fS and for all SI-quasi-ideal gS of S.

5) fS ◦ gS = fS∩̃gS for all SI-bi-ideal fS and and for all SI-right ideal gS of S

6) fS ◦ gS = fS∩̃gS for all SI-quasi-ideal fS and for all SI-bi-ideal gS of S.

7) fS ◦ gS = fS∩̃gS for all SI-quasi-ideals fS and gS of S.

8) fS ◦ gS = fS∩̃gS for all SI-quasi-ideal fS and for all SI-right ideal gS of S.

9) fS ◦ gS = fS∩̃gS for all SI-left ideal fS and for all SI-bi-ideal gS of S.

10) fS ◦ gS = fS∩̃gS for all SI-left ideal fS and for all SI-right ideal gS of S.

11) fS ◦ gS = fS∩̃gS and hS ◦ kS = hS∩̃kS for all SI-right ideals fS and gS of S
and for all SI-left ideal hS and kS of S.

12) Every SI-quasi-ideal of S is idempotent.

Proof. The equivalence of (1) and (2) follows from Theorem 9. Assume that
(2) holds. Let fS and gS be any SI-bi-ideals of S. Then, by Theorem 10, fS
is an SI-right ideal of S and gS is an SI-left ideal of S. Since S is regular, it
follows by Theorem 3 that

fS ◦ gS = fS∩̃gS

Thus, (2) implies (3). It is clear that (3) implies (4), (4) implies (5), (5) implies
(8), (8) implies (11), (11) implies (3), (3) implies (6), (6) implies (7), (7) implies
(8) and (6) implies (9), (9) implies (10), (10) implies (11).

Assume that (11) holds. Let A and B be any left ideal and right ideal of S,
respectively. Let a be any element of A ∩ B. Then, a ∈ A and b ∈ B and so,

SA(a) = SB(a) = U.

Since SA and SB is an SI-left ideal and SI-right ideal of S, respectively, by
assumption

SAB(a) = (SA ◦ SB)(a) = (SA∩̃SB)(a) = SA(a) ∩ SB(a) = U,

so a ∈ AB. Thus, A∩B ⊆ AB. For the converse inclusion, let a be any element
of AB. Thus,

SA∩B(a) = (SA∩̃SB)(a) = (SA ◦ SB)(a) = SAB(a) = U



Semigroups analyzed by soft ideals 177

This implies that a ∈ A ∩ B and that AB ⊆ A ∩ B. Thus, AB = A ∩ B. It
follows by Theorem 11 that S is a regular duo semigroup. Thus (11) implies
(1). It is clear that (7) implies (12) by taking gS = fS.

Conversely, assume that (12) holds. Let Q be any quasi-ideal of S and a be
any element of Q. Then, SQ is an SI-quasi-ideal of S. Then,

SQ2(a) = (SQ ◦ SQ)(a) = SQ(a) = U

Thus, a ∈ Q2 and Q ⊆ Q2. Since the converse inclusion always holds, Q = Q2.
It follows by Theorem 11 that S is a regular duo semigroup and that (12)
implies (1). This completes the proof. �

Theorem 13 For a semigroup S, the following conditions are equivalent:

1) S is a regular duo semigroup.

2) fS ◦ gS ◦ fS = fS∩̃gS for every SI-ideal fS and every SI-bi-ideal gS of S.

3) fS ◦ gS ◦ fS = fS∩̃gS for every SI-ideal fS and every SI-quasi-ideal gS of S.

Proof. First assume that (1) holds. Let fS and gS be any SI-bi-ideal and any
SI-ideal of S, respectively. Then,

fS ◦ gS ◦ fS⊆̃(fS ◦ S̃) ◦ S̃ = fS ◦ (S̃ ◦ S̃)⊆̃fS ◦ S̃⊆̃fS

On the other hand, since S is regular and duo, fS is an SI-ideal of S by Theorem
10. Hence,

fS ◦ gS ◦ fS⊆̃(S̃ ◦ gS) ◦ S̃⊆̃gS ◦ S̃⊆̃gS
and so

fS ◦ gS ◦ fS⊆̃fS∩̃gS
In order to show the converse inclusion, let a be any element of S. Then, since
S is regular, there exists an element x in S such that

a = axa = (axa)xa

Thus,

(fS ◦ gS ◦ fS)(a) = [fS ◦ (gS ◦ fS)](a)
=

⋃
a=pq

[fS(a) ∩ (gS ◦ fS)(q)]
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⊇ fS(ax) ∩ (gS ◦ fS)(axa)
= fS(ax) ∩ {

⋃
axa=bc

[gS(b) ◦ fS(c)]}

⊇ fS(ax) ∩ (gS(a) ∩ fS(xa))

⊇ fS(a) ∩ (gS(a) ∩ fS(a))

= fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

and so fS ◦ gS ◦ fS⊇̃fS∩̃gS Thus,

fS ◦ gS ◦ fS = fS∩̃gS.

Hence, (1) implies (2). It is clear that (2) implies (3).
Assume that (3) holds. Let E and Q any two-sided ideal and quasi-ideal of

S, respectively and a be any element of E ∩Q. Then,

SE(a) = SQ(a) = U.

Since SE and SQ is an SI-ideal and an SI-quasi-ideal of S, respectively,

SEQE(a) = (SE ◦ SQ ◦ SE)(a) = (SE∩̃SQ)(a) = SE(a) ∩ SQ(a) = U

and so a ∈ EQE. Thus, E∩Q ⊆ EQE. For the converse inclusion, let a be any
element of EQE. Thus,

SE∩Q(a) = (SE∩̃SQ)(a) = (SE ◦ SQ ◦ SE)(a) = SEQE(a) = U

and so a ∈ EQE. Thus, EQE ⊆ E ∩ Q and so EQE = E ∩ Q. It follows from
Proposition 11 that S is regular duo. Hence, (3) implies (1). This completes
the proof. �

5 Right (left) zero semigroup

In this section, right (left) zero semigroups are charachterized in terms of SI-
ideals of S. A semigroup S is called right (left) zero if xy = y (xy = x) for all
x, y ∈ S.

Proposition 5 For a semigroup S, the following conditions are equivalent:

1) The set of all idempotent elements of S forms a left (right) zero subsemi-
group of S.
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2) For every SI-left (right) ideal fS of S, fS(e) = fS(f) for all idempotent
elements e and f of S.

Proof. First assume that the set IS of all idempotent elements of S is a left
zero subsemigroup of S. Let e, f ∈ IS and fS be an SI-left ideal of S. Then,
since

ef = e and fe = f

fS(e) = fS(ef) ⊇ fS(f) = fS(fe) ⊇ fS(e)

and so
fS(e) = fS(f).

Thus, (1) implies (2).
Conversely, assume that (2) holds. Since S is regular, it is obvious that

IS 6= ∅. Moreover, the soft characteristic function SL[f] of the left ideal L[f] of
S is an SI-left ideal of S. Thus, by assumptio,n

SL[f](e) = SL[f](f) = U

and so e ∈ L[f] = Sf. (Here note that, if S is a regular semigroup, L[a] = Sa

for every a ∈ S ([17]). Thus, for some x ∈ S,

e = xf = x(ff) = (xf)f = ef

This means that IS is a left zero semigroup. Thus (2) implies (1). The case when
S is right zero, the proof can be seen similarly. This completes the proof. �

Corollary 1 For an idempotent semigroup S, the following conditions are
equivalent:

1) S is left (right) zero.

2) For every SI-left (right) ideal fS of S, fS(e) = fS(f) for all elements e, f ∈ S.

Proposition 6 Let S be a group. Then, every SI-bi-ideal of S is a constant
function.

Proof. Let S be a group with identity e and fS be any SI-bi-ideal of S and a

be any element of S. Then,

fS(a) = fS(eae) ⊇ fS(e) ∩ fS(e) = fS(e) = fS(ee) = fS((aa
−1)(a−1a)) =

fS(a(a
−1a−1)a) ⊇ fS(a) ∩ fS(a) = fS(a)
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and so fS(e) = fS(a). This implies that fS is a constant function. �

Proposition 7 For a regular semigroup S, the following conditions are equiv-
alent:

1) S is a group.

2) For every SI-bi-ideal fS of S, fS(e) = fS(f) for all idempotent elements
e, f ∈ S.

Proof. Assume that (1) holds. Let fS be any SI-bi-ideal of S. Then, it follows
from Proposition 6 that fS is a constant function. This implies that

fS(e) = fS(f)

for all idempotent elements e, f ∈ S. Thus (1) implies (2).
Conversely, assume that (2) holds. Let e and f be any idempotent elements

of S. As is well-known, if S is a regular semigroup, B[x], the principal ideal of S
generated by x ∈ S is B[x] = xSx ([17]). Moreover, since the soft characteristic
function SB[f] of the bi-ideal B[f] of S is an SI-bi-ideal of S and since f ∈ B[f],

SB[f](e) = SB[f](f) = U

and so e ∈ B[f] = fsf, which means that e = fxf for some x ∈ S. One can
similarly obtain that f = eye for some y ∈ S. Thus,

e = fxf = fx(ff) = (fxf)f = ef = e(eye) = (ee)ye = eye = f

Since S is regular, IS 6= ∅ and S contains exactly one idempotent. Thus, it
follows from ([17], p.33) that S is a group. Thus (2) implies (1). This completes
the proof. �

6 Right (left) simple semigroups

In this section, soft simple semigroup is defined and the relation of soft simple
semigroup with simple semigroup is given. A semigroup S is called left (right)
simple if it contains no proper left (right) ideal of S and is called simple if it
contains no proper ideal.

Definition 13 A semigroup S is called soft left (right) simple if every SI-
left (right) ideal of S is a constant function and is called soft simple if every
SI-ideal of S is a constant function.
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Theorem 14 For a semigroup S, the following conditions are equivalent:

1) S is left (right) simple.

2) S is soft left (right) simple.

Proof. First assume that S is left simple. Let fS be any SI-left ideal of S and
a and b be any element of S. Then, it follows from ([17], p. 6) that there exist
elements x, y ∈ S such that b = xa and a = yb. Hence, since S is an SI-left
ideal of S,

fS(a) = fS(yb) ⊇ fS(b) = fS(xa) ⊇ fS(a)

and so fS(a) = fS(b). Since a and b be any elements of S, this means that fS
is a constant function. Thus, it is obtained that S is soft left simple and (1)
implies (2).

Conversely, assume that (2) holds. Let A be any left ideal of S. Then, SA is
an SI-left ideal of S. By assumption, SA is a constant function. Let x be any
element of S. Then, since A 6= ∅,

SA(x) = U

and so x ∈ A. This implies that S ⊆ A, and so S = A. Hence, S is left simple
and (2) implies (1). In the case, when S is soft right simple, the proof follows
similarly. �

Theorem 15 For a semigroup S, the following conditions are equivalent:

1) S is simple.

2) S is soft simple.

As is well-known, a semigroup S is a group if it is left and right simple. From
this, the following theorem:

Proposition 8 For a semigroup S, the following conditions are equivalent:

1) S is a group.

2) S is both soft left and soft right simple.

Proposition 9 Let S be a left simple semigroup. Then, every SI-bi-ideal of S
is an SI-right ideal of S.
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Proof. Let fS be an SI-bi-ideal of S and a and b be any elements of S. Then,
since S is left simple, there exists an element x in S such that

b = xa.

Then, since fS is an SI-bi-ideal of S,

fS(ab) = fS(a(xa)) = fS(a) ∩ fS(a) = fS(a)

which means that fS is an SI-right ideal of S. This completes the proof. �

7 Semilattices of left (right) simple semigroups

In this section, a semigroup that is a semilattice of left (right) simple semi-
groups is characterized by SI-ideals. A semigroup S is a semilattice of left
simple semigroups if it is the set-theoretical union of the family of left simple
semigroups Si (i ∈M) such that,

S =
⋃
i∈M

Si

such that the products SiSj and SjSi are both contained in the same Sk (k ∈
M).

Theorem 16 [17, 34] For a semigroup S, the following conditions are equiv-
alent:

1) S is a semilattice of left simple semigroups.

2) S is left regular and every left ideal of S is two-sided.

3) S is left regular and AB = BA for any left ideals A and B of S.

Theorem 17 [39] For a left regular semigroup S, the following conditions are
equivalent:

1) Every left ideal of S is a two-sided ideal of S.

2) Every SI-left ideal of S is an SI-ideal of S.

Theorem 18 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left simple semigroups.
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2) S is left regular and every SI-left ideal of S is an SI-ideal of S.

3) fS ◦ gS = fS∩̃gS for every SI-left ideals of S.

4) The set of all SI-left ideals of S is a semilattice under the soft int-product.

5) The set of all left ideals of S is a semilattice under the multiplication of
subsets.

Proof. The equivalence of (1) and (2) follows from Theorem 16 and Theorem
17. Assume that (2) holds. Let fS and gS be any SI-left ideals of S and a be
any element of S. Then, since S is left regular, there exists an element x ∈ S

such that a = xa2. By assumption, fS is also an SI-right ideal of S. So,

(fS ◦ gS)(a) =
⋃
a=yz

(fS(y) ∩ gS(z))

⊇ (fS(xa) ∩ gS(a))

⊇ (fS(a) ∩ gS(a))

= (fS∩̃gS)(a)

Thus, fS ◦ gS⊇̃fS∩̃gS. On the other hand, by assumption, gS is SI-right ideal
of S, and so

(fS ◦ gS)(a) =
⋃
a=yz

(fS(y) ∩ gS(z))

⊆ (fS(yz) ∩ gS(yz))

= fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

Thus, fS ◦ gS⊆̃fS∩̃gS. Thus, fS ◦ gS = fS∩̃gS and so (2) implies (3).
(3) implies (4) is clear. Assume that (4) holds. Let A and B be any left

ideals of S and a be any element of BA. Since the soft characteristic function
SA and SB are SI-left ideals of S,

SAB(a) = (SA ◦ SB)(a) = (SB ◦ SA)(a) = SBA(a) = U

which implies that a ∈ AB. Thus, BA ⊆ AB. Similarly, AB ⊆ BA. Thus,
AB = BA.

In order to see that any left ideal A of S is idempotent, let a be any element
of A. Since SA is an SI-left ideal of S,

SA2(a) = (SA ◦ SA)(a) = SA = U
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and so a ∈ A2. Thus, A ⊆ A2 and so A = A2. Therefore (4) implies (5).
Finally, assume that (5) holds. Let A be any left ideal of S and a be any

element of S. Then, since S itself is a left ideal, by assumption

AS = SA ⊆ A

Thus, A is a right ideal of S, and so A is a two-sided ideal of S.
Let a be any element of S. Then, since the left ideal L[a] of S is idempotent

by assumption and since a ∈ L[a],

a ∈ L[a]L[a] = ({a} ∪ Sa)({a} ∪ Sa) = {a2} ∪ aSa ∪ Sa2 ∪ SaSa ⊆
{a2} ∪ (aS)aSa ∪ Sa2 ∪ SaSa ⊆ {a2} ∪ SaSa ∪ Sa2 ⊆ {a2} ∪ Sa2

which implies that S is left-regular. Thus, it follows by Theorem 16-(2) that
S is a semilattice of left simple groups. That is to say (5) implies (1). This
completes the proof. �

The left-right dual of Theorem 18 reads as follows:

Theorem 19 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right simple semigroups.

2) S is right regular and every SI-right ideal of S is an SI-ideal of S.

3) fS ◦ gS = fS∩̃gS for every SI-right ideals of S.

4) The set of all SI-right ideals of S is a semilattice under the soft int-product.

5) The set of all right ideals of S is a semilattice under the multiplication of
subsets.

Theorem 20 [39] For a semigroup S, the following conditions are equivalent:

1) S is left regular.

2) For every SI-left ideal fS of S, fS(a) = fS(a
2) for all a ∈ S.

Theorem 21 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left simple semigroups.

2) For every SI-left ideal fS of S, fS(a) = fS(a
2) and fS(ab) = fS(ba) for all

a, b ∈ S.
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Proof. Assume that S is a semilattice of left simple semigroups. Let fS be
any SI-left ideal of S. Then, by Theorem 16-(2), S is left regular and fS is an
SI-ideal of S. Let a be any element of S. Thus, by Theorem 20,

fS(ab) = fS((ab)
2) = fS(a(ba)b) ⊇ fS(ba).

Similarly, fS(ba) ⊇ fS(ab). Hence,

fS(ab) = fS(ba).

Thus, (1) implies (2).
Conversely, assume that (2) holds. Let fS be any SI-ideal of S. Since fS(a) =

fS(a
2) for all a ∈ S, it follows from Theorem 20 that S is left regular. Let A

and B be any left ideal of S and ab be any element of AB. Since the soft
characteristic function SL[ba] of the the left ideal L[ba] is an SI-left ideal of S
and since ba ∈ L[ba],

SL[ba](ab) = SL[ba](ba) = U

This implies that

ab ∈ L[ba] = {ba} ∪ Sba ⊆ BA ∪ SBA ⊆ BA

and so AB ⊆ BA. Similarly, it can be seen that the converse inclusion holds.
Thus,

AB = BA

Then, it follows by Theorem 16-(3) that S is a semilattice of left simple semi-
groups. Therefore (3) implies (1). This completes the proof. �

The right dual of Theorem 21 is as following:

Theorem 22 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right simple semigroups.

2) For every SI-right ideal fS of S, fS(a) = fS(a
2) and fS(ab) = fS(ba) for all

a, b ∈ S.

8 A semilattice of left (right) groups

In this section, a semigroup that is a semilattice of left (right) simple groups is
characterized by SI-ideals. An element a of S is said to be left (right) cancellable
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if, for any x, y ∈ S ax = ay (xa = ya) implies x = y. A semigroup S is
called left (right) cancellative if every element of S is left (right) cancellative.
A semigroup S is called a left group if it is left simple and right cancellable
([17]), that is, for all a ∈ S, there exists a unique element x ∈ S such that
xa2 = a ([33]). Dually, a semigroup S is called a right group if it is right simple
and left cancellable.

Theorem 23 [33] For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left groups.

2) S is regular and aS ⊆ Sa for every a ∈ S.

Theorem 24 Let S be a semigroup that is a semilattice of left groups. Then,
every SI-(generalized) bi-ideal of S is an SI-right ideal of S.

Proof. Let fS be any SI-bi-ideal of S, and a and b any elements of S. Then,
it follows from Theorem 23 that there exist elements x, y ∈ S such that

a = axa and ab = ya.

Thus,

ab = (axa)b = (ax)(ab) = (ax)(ya) = a(xy)a.

Since fS is an SI-bi-ideal of S,

fS(ab) = fS(a(xy)a) ⊇ fS(a) ∩ fS(a) = fS(a).

Hence, fS is an SI-right ideal of S. �

Corollary 2 Let S be a semigroup that is a semilattice of left groups. Then,
every SI-left ideal of S is an SI-right ideal of S, that is to say, S is soft left
duo.

Theorem 25 Let S be a semigroup that is a semilattice of left groups. Then,
every SI-interior ideal of S is an SI-left ideal of S.

Proof. Let fS be any SI-interior ideal of S, and a and b any elements of S.
Then, it follows from Theorem 23 that there exist element z ∈ S such that

b = bzb.
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Thus,
ab = (axa)b = (ax)(ab) = (ax)(ya) = a(xy)a.

Since fS is an SI-bi-ideal of S,

fS(ab) = fS(a(bzb)) = fS((a)b(zb)) ⊇ fS(b).

Hence, fS is an SI-left ideal of S. �

Theorem 26 [40] For a semigroup S the following conditions are equivalent:

1) S is regular.

2) fS∩̃gS = fS ◦ gS ◦ fS for every SI-quasi-ideal fS of S and SI-ideal gS of S

over U.

Theorem 27 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left groups.

2) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-left ideal gS of S.

3) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-ideal gS of S.

4) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-interior ideal gS of S.

5) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-left ideal gS of S.

6) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-ideal gS of S.

7) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-interior ideal gS of S.

8) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-left ideal gS of S.

9) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-left ideal gS of
S.

10) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-ideal gS of S.

11) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-interior ideal gS
of S.

12) fS∩̃gS = fS ◦ gS for every SI-one-sided ideal fS and SI-ideal gS of S.

13) fS∩̃gS = fS ◦ gS for every SI-one-sided ideal fS and SI-interior ideal gS of
S.
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14) is regular left duo.

Proof. First assume that (1) holds. Let fS and gS be any SI-generalize bi-ideal
of S and SI-interior ideal of S, respectively and a be any element of S. Then,
since S is regular by Theorem 23, there exists an element x ∈ S such that

a = axa(= axaxa).

Since gS is an SI-interior ideal of S, gS((x)a(xa)) ⊇ gS(a). Thus,

(fS ◦ gS)(a) =
⋃

a=pq

(fS(p) ∩ gS(q))

⊇ fS(a) ∩ gS((x)a(xa))

⊇ fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

and so fS◦gS⊇̃fS∩̃gS. Moreover, it follows by Theorem 24 that fS is an SI-right
ideal of S. Thus,

(fS ◦ gS)(a) =
⋃

a=pq

(fS(p) ∩ gS(q))

⊆
⋃

a=pq

(fS(pq) ∩ gS(pq))

=
⋃

a=pq

(fS(a) ∩ gS(a))

= fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

and so fS ◦ gS⊆̃fS∩̃gS. Therefore, fS ◦ gS = fS∩̃gS and that (1) implies (10). It
is clear that (10) implies (9), (9) implies (8), (8) implies (5), (5) implies (2),
(10) implies (7), (7) implies (6), (6) implies (5), (5) implies (2), (7) implies
(4), (4) implies (3), (3) implies (2) and (4) implies (12), (12) implies (11).

Assume that (2) holds. Then, it follows by Theorem 26 that S is regular.
Let Q be any quasi-ideal of S. Then, the soft characteristic function SQ is an

SI-quasi-ideal of S. Since S̃ itself is an SI-left ideal of S and so by assumption,

SQ = SQ∩̃S̃ = SQ ◦ S̃.

Thus, SQ is an SI-right ideal of S, and so Q is a right ideal of S. Thus, any
quasi-ideal of S is a right ideal of S. Let a ∈ S. Then, the quasi-ideal Sa is a
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right ideal of S. Since S is regular,

aS ⊆ (aSa)S = ((aS)a)S ⊆ (Sa)S ⊆ Sa.

Thus, aS ⊆ Sa and since S is regular, S is a semilattice of left groups by
Theorem 23. Thus, (2) implies (1).

Assume that (11) holds. Let fS and gS be any SI-right ideal and any SI-
left ideal of S, respectively. Then, since S̃ itself is an SI-ideal of S and so by
assumption,

gS = gS∩̃S̃ = gS ◦ S̃

Thus, gS is an SI-right ideal of S, that is, gS is an SI-ideal of S. Thus, by
assumption, fS ◦ gS = fS∩̃gS for every SI-right ideal fS of S over U and SI-left
ideal gS of S over U. It follows by Theorem 3 that S is regular. As is proved in
(2) implies (1), aS ⊆ Sa. Thus, S is a semilattice of left groups, so (11) implies
(1).

Assume that (1) holds. Then, it follows by Theorem 23 that S is regular.
Moreover, it follows by Corollary 2 that S is soft left duo and so by Theorem
8, S is left duo. Thus (1) implies (13).

Conversely assume that (13) holds. Then, it follows by Theorem 8 that S

is left duo, that is, every left ideal of S is a right ideal of S. In order to prove
that S is semilattice of left groups, by Theorem 23, it suffices to show that
aS ⊆ Sa for all a ∈ S. As is proved in (2) implies (1), aS ⊆ Sa. Thus, S is a
semilattice of left groups, so (13) implies (1). This completes the proof. �

The left-right dual of Theorem 27 is as following:

Theorem 28 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right groups.

2) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-right ideal gS of S.

3) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-ideal gS of S.

4) fS∩̃gS = fS ◦ gS for every SI-quasi-ideal fS and SI-interior ideal gS of S.

5) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-right ideal gS of S.

6) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-ideal gS of S.

7) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-interior ideal gS of S.

8) fS∩̃gS = fS ◦ gS for every SI-bi-ideal fS and SI-right ideal gS of S.
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9) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-right ideal gS of
S.

10) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-ideal gS of S.

11) fS∩̃gS = fS ◦ gS for every SI-generalized bi-ideal fS and SI-interior ideal gS
of S.

12) fS∩̃gS = fS ◦ gS for every SI-one-sided ideal fS and SI-ideal gS of S.

13) fS∩̃gS = fS ◦ gS for every SI-one-sided ideal fS and SI-interior ideal gS of
S.

14) S is regular right duo.

Theorem 29 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left groups.

2) fS∩̃gS = fS ◦ gS ◦ fS for every SI-quasi-ideal fS and SI-left ideal gS of S.

3) fS∩̃gS = fS ◦ gS ◦ fS for every SI-bi-ideal fS and SI-left ideal gS of S.

4) fS∩̃gS = fS ◦ gS ◦ fS for every SI-generalized bi-ideal fS and SI-left ideal gS
of S.

Proof. First assume that (1) holds. Let fS and gS be any SI-generalized bi-
ideal of S. Then,

fS ◦ gS ◦ fS⊆̃fS ◦ S̃ ◦ fS⊆̃fS
On the other hand, since the SI-left ideal gS is an SI-bi-ideal of S,

fS ◦ gS ◦ fS⊆̃(S̃ ◦ gS) ◦ S̃⊆̃gS ◦ S̃⊆̃gS

Therefore,
fS ◦ gS ◦ fS⊆̃fS∩̃gS.

Let a be any element of S. Then, it follows by Theorem 23 that there exist
elements x, y ∈ S such that a = axa and ax = ya. Hence,

ax = axaxax = axax(ya) = (axa)(xya).

Thus,

(fS ◦ gS ◦ fS)(a) = [(fS ◦ gS) ◦ fS](a)
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=
⋃

a=pq

[(fS ◦ gS)(p) ◦ fS(q)]

⊇ (fS ◦ gS)(ax) ∩ fS(a)

= {
⋃

ax=pq

(fS(p) ∩ gS(q)) ∩ fS(a)

⊇ (fS(axa) ∩ gS(xya)) ∩ fS(a)

⊇ (fS(a) ∩ gS(a)) ∩ fS(a)

= (fS∩̃gS)(a)

and so, fS ◦ gS ◦ fS⊇̃fS∩̃gS. Thus, fS ◦ gS ◦ fS = fS∩̃gS and (1) implies (4). It
is clear that (4) implies (3) and (3) implies (2).

Assume that (2) holds. Let fS be any SI-quasi ideal of S. Then, S̃ is an
SI-left ideal of S and so by assumption,

fS = fS∩̃S̃ = fS ◦ S̃ ◦ fS

Thus,it follows by Theorem 4 that S is regular. On the other hand, let gS be
any SI-left ideal of S. then, by assumption,

gS = S̃∩̃gS = S̃ ◦ gS ◦ S̃

Thus, gS is an SI-interior ideal of S. Since S is regular, gS is an SI-ideal of S
by Theorem 5. Therefore, every SI-left ideal of S is an ideal of S. It follows by
Theorem 6 that every SI-left ideal of S is an SI-ideal of S. Let a ∈ S. Since S

is regular, the left ideal Sa is an ideal of S. Thus,

aS ⊆ (aSa)S ⊆ a((Sa)S) ⊆ a(Sa) = (aS)a ⊆ Sa.

Thus, aS ⊆ Sa and since S is regular, S is a semilattice of left groups by
Theorem 23. Thus (2) implies (1). �

The left-right dual of Theorem 29 is as following:

Theorem 30 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right groups.

2) fS∩̃gS = fS ◦ gS ◦ fS for every SI-quasi-ideal fS and SI-right ideal gS of S.

3) fS∩̃gS = fS ◦ gS ◦ fS for every SI-bi-ideal fS and SI-right ideal gS of S.

4) fS∩̃gS = fS ◦ gS ◦ fS for every SI-generalized bi-ideal fS and SI-right ideal
gS of S.
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Theorem 31 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left groups.

2) fS∩̃gS = fS ◦ S̃ ◦ gS for every SI-quasi-ideal fS and SI-left ideal gS of S.

3) fS∩̃gS = fS ◦ S̃ ◦ gS for every SI-bi-ideal fS and SI-left ideal gS of S.

4) fS∩̃gS = fS ◦ S̃ ◦ gS for every SI-generalized bi-ideal fS and SI-left ideal gS
of S.

Proof. First assume that (1) holds. Let fS and gS be any SI-generalized bi-
ideal and SI-left ideal of S, respectively. Then,

fS ◦ S̃ ◦ gS = fS ◦ (S̃ ◦ gS)⊆̃fS ◦ gS⊆̃S̃ ◦ gS⊆̃gS.

Moreover, by Theorem 24 that fS is an SI-right ideal of S. Thus,

fS ◦ S̃ ◦ gS = (fS ◦ S̃) ◦ gS⊆̃fS ◦ gS⊆̃fS ◦ S̃⊆̃fS.

Thus, fS ◦ S̃ ◦ gS⊆̃fS∩̃gS.
Let a be any element of S. Then, it follows by Theorem 23 that there exist

elements x, y ∈ S such that a = axa and ax = ya. Hence,

ax = axaxax = axax(ya) = (axa)(xya).

Thus,

(fS ◦ S̃ ◦ gS)(a) = [(fS ◦ S̃) ◦ gS](a)
= [

⋃
a=pq

(fS ◦ S̃)(p)] ◦ gS(q)

⊇ (fS ◦ S̃)(ax) ∩ gS(a)

= {
⋃

ax=pq

(fS(p) ∩ S̃(q))} ∩ gS(a)

⊇ (fS(axa) ∩ S̃(aya)) ∩ gS(a)

= (fS(a) ∩U) ∩ gS(a)

⊇ fS(a) ∩ gS(a)

= (fS∩̃gS)(a)

and so, fS ◦ S̃ ◦ gS⊇̃fS∩̃gS. And so, fS ◦ S̃ ◦ gS = fS∩̃gS. Thus, (1) implies (4).
It is clear that (4) implies (3) and (3) implies (2).
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Assume that (2) holds. Let fS and gS be any SI-quasi-ideal and SI-left ideal
of S, respectively. Then, by assumption,

fS∩̃gS = fS ◦ S̃ ◦ gS = fS ◦ (S̃ ◦ gS)⊆̃fS◦̃gS.

Hence, it follows by Theorem 3 that S is regular. Let gS be any SI-left ideal of
S. Then, since gS is an SI-quasi-ideal of S and since S̃ itself is an SI-left ideal
of S,

gS = gS∩̃S̃ = gS ◦ S̃ ◦ S̃.

Let L be any left ideal of S and a ∈ L. Then, the soft characteristic function
SL is an SI-left ideal of S. Thus,

SLSS(a) = (SL ◦ SS ◦ SS)(a) = SL(a) = U

which means that a ∈ LSS. Thus, L ⊆ LSS. Moreover, let a ∈ LSS. Then,

SL(a) = (SL ◦ SS ◦ SS)(a) = SLSS(a) = U

and so a ∈ L. Thus, LSS ⊆ L, and so LSS = L. Since Sa is a left ideal of S,
(Sa)SS = Sa and so,

aS ⊆ (aSa)S = a(Sa)S = a((Sa)SS)S ⊆ a((Sa)SS) ⊆ a(Sa) = (aS)a ⊆ Sa.

It follows by Theorem 23 that S is a semilattice of left groups and so (2) implies
(1). �

The left-right dual of Theorem 31 is as following:

Theorem 32 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right groups.

2) fS∩̃gS = fS ◦ S̃ ◦ gS for every SI-quasi-ideal fS and SI-right ideal gS of S.

3) fS∩̃gS = fS ◦ S̃ ◦ gS for every SI-bi-ideal fS and SI-right ideal gS of S.

4) fS∩̃gS = fS ◦ S̃ ◦gS for every SI-generalized bi-ideal fS and SI-right ideal gS
of S.

Theorem 33 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of left groups.

2) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-quasi-ideal fS, for every SI-ideal hS

and every SI-left ideal gS of S.
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3) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-bi-ideal fS, for every SI-ideal hS and
every SI-left ideal gS of S.

4) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-generalized bi-ideal fS, for every SI-
ideal hS and every SI-left ideal gS of S.

Proof. First assume that (1) holds. Let fS be any SI-generalized bi-ideal of S,
hS be any SI-ideal of S and gS be any SI-left ideal of S. Then,

fS ◦ hS ◦ gS⊆̃S̃ ◦ (S̃ ◦ gS)⊆̃S̃ ◦ gS⊆̃gS

and

fS ◦ hS ◦ gS⊆̃S̃ ◦ hS ◦ S̃⊆̃hS.

Moreover, by Theorem 24, since SI-generalized bi-ideal fS of S is an SI-right
ideal of S,

fS ◦ hS ◦ gS⊆̃(fS ◦ S̃) ◦ S̃⊆̃fS ◦ S̃⊆̃fS.

Hence,

fS ◦ hS ◦ gS⊆̃fS∩̃hS∩̃gS.

Let a ∈ S. Then, by Theorem 23, a = axa and ax = ya for some x, y ∈ S.
Then,

ax = axaxax = axax(ya) = (axa)(xya).

Hence,

(fS ◦ hS ◦ gS)(a) = [(fS ◦ hS) ◦ gS](a)
= [

⋃
a=pq

(fS ◦ hS)(p)] ◦ gS(q)

⊇ (fS ◦ hS)(ax) ∩ gS(a)

= {
⋃

ax=pq

(fS(p) ∩ hS(q))} ∩ gS(a)

⊇ (fS(axa) ∩ hS(xya)) ∩ gS(a)

⊇ (fS(a) ∩ hS(a)) ∩ gS(a)

= (fS∩̃hS∩̃gS)(a)

and so, fS ◦hS ◦ gS⊇̃fS∩̃hS∩̃gS. Thus, fS ◦hS ◦ gS = fS∩̃hS∩̃gS and (1) implies
(4).

It is clear that (4) implies (3) and (3) implies (2).
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Conversely, assume that (2) holds. Let fS be any SI-quasi-ideal and gS be
any SI-left ideal of S. Then, since S̃ itself is an SI-ideal of S, by assumption
that

fS∩̃gS = fS∩̃S̃∩̃gS = fS ◦ S̃ ◦ gS = fS ◦ (S̃ ◦ gS)⊆̃fS ◦ gS.

It follows by Theorem 3 that S is regular. As in the above Theorem, one can
easily show that aS ⊆ Sa. Thus, S is a semilattice of left groups. Thus, (2)
implies (1). This completes the proof. �

The left-right dual of Theorem 33 is as following:

Theorem 34 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of right groups.

2) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-quasi-ideal fS, for every SI-ideal hS

and every SI-right ideal gS of S.

3) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-bi-ideal fS, for every SI-ideal hS and
every SI-right ideal gS of S.

4) fS∩̃hS∩̃gS = fS ◦ hS ◦ gS for every SI-generalized bi-ideal fS, for every SI-
ideal hS and every SI-right ideal gS of S.

9 A semilattice of groups

Let S be a semigroup. We shall say that S is a semilattice of groups if it is the
set-theoretical union of a family of mutually disjoint subgroups Gi (i ∈ M)
such that, for any pair i, j in M, the products GiGj and GjGi are both contained
in the same subgroups Gk (k ∈M). The following is due to [17, 28, 33].

Proposition 10 [17, 28, 33] For a semigroup S, the following conditions are
equivalent:

1) S is a semilattice of groups.

2) S is regular and aS = Sa for all a ∈ S.

3) LR = L ∩ R for every left ideal L and every right ideal R of S.

4) LB = L ∩ B for every left ideal L and every bi-ideal B of S.

5) BR = B ∩ R for every bi-ideal B and every right ideal R of S.
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6) S is regular and every one-sided ideal of S is two-sided.

Proposition 11 Let S be a semigroup that is a semilattice of groups. Then,
every SI-(generalized) bi-ideal of S is an SI-ideal of S.

Proof. Let fS be any SI-bi-ideal of S and a and b be any elements of S. Then,
it follows by Proposition 10 that

ab ∈ (aSa)S = (aS)(aS) = (aS)(Sa) = a(SS)a ⊆ aSa

Thus, there exists an element x ∈ S such that ab = axa. Hence,

fS(ab) = fS(axa) ⊇ fS(a) ∩ fS(a) = fS(a).

Hence, fS is an SI-right ideal of S. Similarly,

ab ∈ S(bSb) = (Sb)(Sb) = (bS)(Sb) = b(SS)b ⊆ bSb

Thus, there exists an element x ∈ S such that ab = bxb. Hence,

fS(ab) = fS(bxb) ⊇ fS(b) ∩ fS(a) = fS(b).

Therefore, fS is an SI-left ideal of S. That is to say, fS is an SI-ideal of S. �

Proposition 12 [28] For a semigroup S, the following conditions are equiva-
lent:

1) S is a semilattice of groups.

2) The set of all (generalized) bi-ideals of S is a semilattice under the multi-
plication of subsets.

Now, see the characterization of a semigroup which s a semilattice of groups
in terms of SI-ideals of semigroups.

Theorem 35 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of groups.

2) fS ◦ gS = fS∩̃gS for every SI-left ideal fS and every SI-right ideal gS of S.

3) fS ◦ gS = fS∩̃gS for every SI-left ideal fS and every SI-quasi ideal gS of S.

4) fS ◦ gS = fS∩̃gS for every SI-left ideal fS and every SI-bi-ideal gS of S.
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5) fS ◦ gS = fS∩̃gS for every SI-left ideal fS and every SI-generalized bi-ideal
gS of S.

6) fS ◦gS = fS∩̃gS for every SI-quasi-ideal fS and every SI-right ideal gS of S.

7) fS ◦ gS = fS∩̃gS for all SI-quasi-ideals fS and gS of S.

8) fS ◦ gS = fS∩̃gS for every SI-quasi-ideal fS and every SI-bi-ideal gS of S.

9) fS ◦gS = fS∩̃gS for every SI-quasi-ideal fS and every SI-generalized bi-ideal
gS of S.

10) fS ◦ gS = fS∩̃gS for every SI-bi-ideal fS and every SI-right ideal gS of S.

11) fS ◦ gS = fS∩̃gS for every SI-bi-ideal fS and every SI-quasi-ideal gS of S.

12) fS ◦ gS = fS∩̃gS for all SI-bi-ideals fS and gS of S.

13) fS ◦gS = fS∩̃gS for every SI-bi-ideal fS and every SI-generalized bi-ideal gS
of S.

14) fS ◦ gS = fS∩̃gS for every SI-generalized bi-ideal fS and every SI-right ideal
gS of S.

15) fS ◦gS = fS∩̃gS for every SI-generalized bi-ideal fS and every SI-quasi-ideal
gS of S.

16) fS ◦gS = fS∩̃gS for every SI-generalized bi-ideal fS and every SI-bi-ideal gS
of S.

17) fS ◦ gS = fS∩̃gS for all SI-generalized bi-ideals fS and gS of S.

18) S is regular and every SI-one-sided ideal of S is an SI-ideal of S.

19) The set of all SI-quasi-ideals of S is a semilattice under the multiplication
of soft int-product.

20) The set of all SI-bi-ideals of S is a semilattice under the multiplication of
soft int-product.

21) The set of all SI-generalized-bi-ideals of S is a semilattice under the multi-
plication of soft int-product.
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Proof. First assume that (1) holds. In order to prove that (17) holds, let fS
and gS be any SI-generalized bi-ideals of S. Then, it follows by Proposition
11 that fS and gS are SI-ideals of S. Since S is regular by Proposition 10, it
follows from Theorem 3 that fS ◦ gS = fS∩̃gS. Hence, it is obtained that (1)
implies (17). It is clear that (17) implies (16), (16) implies (15), (15) implies
(14), (14) implies (10), (10) implies (6), (6) implies (2), (17) implies (13), (13)
implies (12), (12) implies (11), (11) implies (10), (13) implies (9), (9) implies
(8), (8) implies (7), (7) implies (6) and (9) implies (5), (5) implies (4), (4)
implies (3) and (3) implies (2).

Assume that (2) holds. Let L and R be any left and right ideal of S, re-
spectively. Then, the soft characteristic functions SL and SR are SI-left and
SI-right ideal of S, respectively. Let a be any element of L ∩ R. Then,

SLR(a) = (SL ◦ SR)(a) = (SL∩̃SR)(a) = (SL∩R)(a) = U

and so a ∈ LR. Thus, L ∩ R ⊆ LR.
Conversely, let a be any element of LR. Then,

(SL∩R)(a) = (SL∩̃SR)(a) = (SL ◦ SR)(a) = SLR(a) = U,

and so a ∈ L∩R. Thus, LR ⊆ L∩R, hence LR = L∩R. It follows by Proposition
10 that S is a semilattice of groups and so (2) implies (1).

Assume that (1) holds. Then, as shown above, (17) holds and (21) holds.
It is obvious that (21) implies (20) and (20) implies (19). Assume that (19)
holds. Then, since every SI-quasi-ideal of S is idempotent, it follows that S is
regular ([40]. Let L and R be any left and right ideal of S, respectively. Then,
since L and R are quasi-ideal of S, soft characteristic functions SL and SR are
SI-quasi-ideal of S. Thus,

SLR = (SL ◦ SR) = SR ◦ SL) = SRL.

This implies that LR = L ∩ R. Then, since S is regular,

R ∩ L = RL = LR.

It follows by Proposition 12 that S is a semilattice of groups. Thus (19) im-
plies (1).

Now assume that (2) holds. To see that (18) holds, let fS be any SI-left ideal
of S. Since S̃ is an SI-right ideal of S,

fS = fS∩̃S̃ = fS ◦ S̃
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Thus, fS is an SI-right ideal of S. One can similarly show that every SI-right
ideal of S is an SI-left ideal of S. As shown above, S is regular. Thus, (2)
implies (18). Assume that (17) holds. In order to show that (1) holds, let A

and B be any generalized bi-ideals of S and a be any element of AB. Then,
the soft characteristic functions SA and SB are SI-generalized bi-ideals of S.
Thus, by assumption,

(SB ◦ SA)(a) = (SA ◦ SB)(a) = SAB(a) = U

implying that a ∈ BA. Thus, AB ⊆ BA. It can be seen in a similar way
that the converse inclusion holds. Thus, AB = BA. Now, let prove that any
generalized bi-ideal of S is idempotent. Let B be any generalized bi-ideal of S
and a ∈ B. Then, since the soft characteristic function SB is an SI-generalized
bi-ideal of S, by assumption

SBB(a) = (SB ◦ SB)(a) = SB(a) = U

implying that a ∈ BB. Thus, B ⊆ BB. Similarly, one can show that BB ⊆ B.
Hence, B = BB. This means that the set of all generalized bi-ideals of S is a
semilattice under the multiplication of subsets. It follows by Proposition 12
that S is a semilattice of groups. Thus (2) implies (1). This completes the
proof. �

Theorem 36 [39] For a semigroup S the following conditions are equivalent:

1) S is completely regular.

2) Every bi-ideal of S is semiprime.

3) Every SI-bi-ideal of S is soft semiprime.

4) fS(a) = fS(a
2) for every SI-bi-ideal fS of S and for all a ∈ S.

Theorem 37 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of groups.

2) For every SI-quasi-ideal fS of S, fS(a) = fS(a
2) and fS(ab) = fS(ba) for

all a, b ∈ S.

3) For every SI-bi-ideal fS of S, fS(a) = fS(a
2) and fS(ab) = fS(ba) for all

a, b ∈ S.
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4) For every SI-generalized bi-ideal fS of S, fS(a) = fS(a
2) and fS(ab) =

fS(ba) for all a, b ∈ S.

Proof. First assume that (1) holds. Let fS be any SI-generalized bi-ideal of
S and a and b be any elements of S. Then, since S is regular by Proposition
10, there exists an element x in S such that a = axa = axaxaxa. Since
aS ⊆ Sa by Proposition 10, there exist elements y, z ∈ S such that xa = ya

and ax = za. Thus,

a = axa = a(xaxaxa) = a(xa)x(ax)a = a(ya)x(za)a = a2(yxz)a2.

Hence, since fS is an SI-generalized bi-ideal of S,

fS(a) = fS(a
2(yxz)a2) ⊇ fS(a

2) ∩ fS(a
2) = fS(a

2) = fS(a(axa)) =
fS(a(ax)a) ⊇ fS(a) ∩ fS(a) = fS(a)

and so fS(a) = fS(a
2). Moreover, by Proposition 10,

(ab)4 = a(ba)ba(ba)b ∈ (Sba)S(baS) = (baS)S(Sba).

Hence, there exists an element u ∈ S such that (ab)4 = bauba. Thus,

fS(ab) = fS((ab)
2) = fS((ab)

4) = fS((ba)u(ba)) ⊇ fS(ba) ∩ fS(ba) = fS(ba).

Similarly, fS(ba) ⊇ fS(ab) and so fS(ab) = fS(ba). Thus, (1) implies (4).
It is clear that (4) implies (3) and (3) implies (2).
Conversely, assume that (2) holds. Then, it follows by Theorem 36 that S

is completely regular and so regular. Let a be any element of S. To see that
aS = Sa, let ax be any element of aS. Since the soft characteristic function
SB[xa] of the principal bi-ideal B[xa] is an SI-bi-ideal of S, by assumption,

SB[xa](ax) = SB[xa](xa) = U

and so ax ∈ B[xa] = {xa}∪ (xa)2 ∪ (xa)S(xa). If ax = xa, then ax = xa ∈ Sa,
and so aS ⊆ Sa. If ax = (xa)2, then ax = (xax)a ∈ Sa. Hence, aS ⊆ Sa. If
ax ∈ (xa)S(xa), then

ax ∈ (xa)S(xa) = (xaSx)a ∈ Sa

and so aS ⊆ Sa. In any case, aS ⊆ Sa. Similarly, Sa ⊆ aS. Thus, aS = Sa.
Hence, it follows by Proposition 10 that S is a semilattice of groups. Thus, (2)
implies (1). This completes the proof. �
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Theorem 38 For a semigroup S, the following conditions are equivalent:

1) S is a semilattice of groups.

2) fS∩̃gS = gS ◦ fS ◦ gS for every SI-quasi-ideal fS of S and for all SI-ideal gS
of S.

3) fS∩̃gS = gS ◦ fS ◦ gS for every SI-quasi-ideal fS of S and for all SI-interior
ideal gS of S.

4) fS∩̃gS = gS ◦ fS ◦ gS for every SI-bi-ideal fS of S and for all SI-ideal gS of
S.

5) fS∩̃gS = gS ◦fS ◦gS for every SI-bi-ideal fS of S and for all SI-interior ideal
gS of S.

6) fS∩̃gS = gS ◦ fS ◦ gS for every SI-generalized bi-ideal fS of S and for all
SI-ideal gS of S.

7) fS∩̃gS = gS ◦ fS ◦ gS for every SI-generalized bi-ideal fS of S and for all
SI-interior ideal gS of S.

Proof. First assume that (1) holds. Let fS be any SI-generalized bi-ideal and
gS be any SI-interior ideal of S. It follows by Proposition 11 that fS is an
SI-ideal of S. Thus,

gS ◦ fS ◦ gS⊆̃S̃ ◦ fS ◦ S̃⊆̃fS.

Moreover, gS ◦ fS ◦ gS⊆̃gS ◦ (S̃ ◦ gS)⊆̃gS ◦ gS⊆̃gS ◦ S̃⊆̃gS. Therefore,

gS ◦ fS ◦ gS⊆̃fS∩̃gS.

Now, let a be any element of S. Since S is regular by Proposition 10, there
exists an element x ∈ S such that a = axa. Hence

(gS ◦ fS ◦ gS)(a) = [(gS ◦ fS) ◦ gS](a)
= [

⋃
a=pq

(gS ◦ fS)(p)] ◦ gS(q)

⊇ (gS ◦ fS)(a) ∩ gS(xa)

= {
⋃
a=uv

(gS(u) ∩ fS(v))} ∩ gS(a)

⊇ (gS(ax) ∩ fS(a)) ∩ gS(a)

⊇ fS(a) ∩ gS(a)
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= (fS∩̃gS)(a)

and so, gS ◦ fS ◦gS⊇̃fS∩̃gS. Thus, gS ◦ fS ◦gS = fS∩̃gS, so, (1) implies (7). It is
clear that (7) implies (6), (6) implies (4), (4) implies (2) and (7) implies (5),
(5) implies (3) and (3) implies (2).

Assume that (2) holds. Let Q and J be any quasi-ideal and ideal of S,
respectively. Thus, the soft characteristic function SQ and SJ are SI-quasi-
ideal and SI-ideal of S, respectively. Hence, by assumption,

SJQJ(a) = (SJ ◦ SQ ◦ SJ)(a) = (SJ ∩ SQ)(a) = SJ∩Q(a) = U

which implies that a ∈ JQJ. Thus, J ∩Q ⊆ JQJ.
Now, let a be any element of JQJ. Then,

SJ∩Q(a) = (SJ ∩ SQ)(a) = (SJ ◦ SQ ◦ SJ)(a) = SJQJ(a) = U

which implies that a ∈ J∩Q. Thus, JQJ ⊆ J∩Q. Therefore, that JQJ = J∩Q
for every quasi-ideal Q and ideal J of S, which implies that S is regular and
(2) implies (1). This completes the proof. �

10 Soft normal semigroups

In this section, the concepts of soft normality in a semigroup is introduced. It
is known that a semigroup S is called normal if aS = Sa for all a ∈ S.

Definition 14 An SI-quasi-ideal fS of S is called Q − normal if fS(ab) =
fS(ba) for all a, b ∈ S.

Definition 15 An SI-bi-ideal fS of S is called B−normal if fS(ab) = fS(ba)
for all a, b ∈ S.

Definition 16 A semigroup S is called soft B? − normal if every SI-bi ideal
of S is B− normal.

Definition 17 A semigroup S is called soft Q? − normal if every SI-quasi-
ideal of S is Q− normal.

Theorem 39 Any soft Q? − normal semigroup is normal.

Proof. Let fS be an SI-quasi-ideal of a soft Q?−normal semigroup of S. Let
a be any element of S. To see that aS = Sa, let ax be any element of aS.
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Since the soft characteristic function SQ[xa] of the principal bi-ideal Q[xa] is
an SI-quasi-ideal of S, by assumption,

SQ[xa](ax) = SQ[xa](xa) = U

which implies that

ax ∈ Q[xa] = {xa} ∪ (xaS ∩ Sxa) ⊆ Sa

Thus, aS ⊆ Sa. Similarly, Sa ⊆ aS holds. Thus, aS = Sa and S is normal.
This completes the proof. �

The following theorem shows that the converse of Theorem 39 holds for a
regular semigroup.

Theorem 40 For a regular semigroup S, the following conditions are equiva-
lent:

1) S is soft Q? − normal.

2) S is normal.

Proof. It suffices to prove that (2) implies (1). Assume that (2) holds. Let fS
be any SI-quasi-ideal of S and a and b be any elements of S. Since S is regular
and normal,

ab ∈ (aSa)(bSb) = (aS)(ab)(Sb) ⊆ (aS)(abSab)(Sb) = (aSa)b(Sa)(bSb) ⊆
(Sb)(Sa)S = (Sb)(aS)S = S(ba)SS = (ba)SSS ⊆ baS

This implies that there exists an element x ∈ S such that ab = bax. Thus,
since fS is an SI-bi-ideal of S,

(fS ◦ S̃)(ab) =
⋃

ab=pq

{(fS(p) ∩ S̃(q)} ⊇ fS(ba) ∩ S̃(x) = fS(ba).

One can similarly show that

(S̃ ◦ fS)(ab) ⊇ fS(ba)

Since, fS is an SI-quasi-ideal of S,

fS(ab) ⊇ ((fS ◦ S̃)∩̃(S̃ ◦ fS))(ab) = (fS ◦ S̃)(ab) ∩ (S̃ ◦ fS)(ab) ⊇
fS(ba) ∩ fS(ba) = fS(ba)
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Similarly, it can be proved that fS(ba) ⊇ fS(ab). Thus, fS(ba) = fS(ab), and
so S is soft Q?−normal and that (2) implies (1). This completes the proof. �

Theorem 41 Any soft B? − normal semigroup is normal.

Proof. Let fS be an SI-bi-ideal of a soft B? − normal semigroup of S. Let
a be any element of S and ax be any element of aS. Since the soft charac-
teristic function SB[xa] of the principal bi-ideal B[xa] is an SI-bi-ideal of S, by
assumption,

SB[xa](ax) = SB[xa](xa) = U

which implies that

ax ∈ B[xa] = {xa} ∪ {xaxa} ∪ (xa)S(xa) ⊆ Sa

Thus, aS ⊆ Sa. Similarly, Sa ⊆ aS holds. Thus, aS = Sa and S is normal.
This completes the proof. �

The following theorem shows that the converse of Theorem 41 holds for a
regular semigroup.

Theorem 42 For a regular semigroup S, the following conditions are equiva-
lent:

1) S is soft B? − normal.

2) S is normal.

Proof. It suffices to prove that (2) implies (1). Assume that (2) holds. Let fS
be any SI-bi-ideal of S and a and b be any elements of S. Since S is regular,

ab ∈ (aSa)(bSb) = (aS)(ab)(Sb) ⊆ (aS)(abSab)(Sb) = (aSa)b(Sa)(bSb) ⊆
(Sb)(aS)S = S(ba)SS = (ba)SSS ⊆ baS = (baSba)S = (baS)(Sba) =

ba(SS)ba ⊆ baSba.

This implies that there exists an element x ∈ S such that a = baxba. Thus,
since fS is an SI-bi-ideal of S,

fS(ab) = fS((ba)x(ba)) ⊇ fS(ba) ∩ fS(ba) = fS(ba).

One can similarly show that fS(ba) ⊇ fS(ab). Hence fS(ab) = fS(ba) which
implies that S is soft B? − normal and that (2) implies (1). This completes
the proof. �
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Proposition 13 For an idempotent semigroup S, the following conditions are
equivalent:

1) S is commutative.

2) S is soft Q? − normal.

3) S is soft B? − normal.

Proof. (1) implies (3) and (3) implies (2) is obvious. Assume that (2) holds.
Then, S is normal. Let a, b ∈ S. Then, ab ∈ Sb = bS. Thus, there exists an
element x in S such that ab = bx. Similarly, ba = yb for some b ∈ S. Hence,
since S is idempotent,

ab = bx = (bb)x = b(bx) = b(ab) = (ba)b = (yb)b = yb = ba

which implies that S is commutative. Hence (2) implies (1). �

Definition 18 [33] A semigroup S is called Archimedean if for all a, b ∈ S,
there exists a positive integer n such that an ∈ SbS.

Definition 19 [33] A semigroup S is called weakly commutative if for all
a, b ∈ S, there exists a positive integer n such that (ab)n ∈ bSa.

Proposition 14 [33] Every weakly commutative semigroup is a semilattice of
archimedean semigroups.

Proposition 15 Any soft B?−normal semigroup is a semilattice of Archime-
dean semigroups.

Proof. Let S be any soft B?−normal semigroup. Let a and b be any elements
of S, and fS be any SI-bi-ideal of S. Since the soft characteristic function SB[ba]
of the principal bi-ideal B[ba] is an SI-bi-ideal of S, by assumption,

SB[ba](ab) = SB[ba](ba) = U

and so
ab ∈ B[ba] = {ba} ∪ {baba} ∪ (baSba) ⊆ Sa

Thus, (ab)2 ∈ baSba ⊆ bSa. Therefore, S is weakly commutative. Hence by
Proposition 14, S is a semilattice of Archimedean semigroups. �

One can similarly prove the following proposition.
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Proposition 16 Any soft Q?−normal semigroup is a semilattice of Archime-
dean semigroups.

Theorem 43 For a completely regular semigroup S, the following conditions
are equivalent:

1) S is soft Q? − normal.

2) S is soft B? − normal.

3) For each elements a and b of S, there exists a positive integer n such that
(ab)n ∈ baSba.

Proof. It is obvious that (2) implies (1). Assume that (1) holds. Then, S is
normal. Let a and b be any elements of S. Thus,

(ab)3 = ababab = a(ba)bab ⊆ (Sba)(baS) = (baS)(Sba)

= (ba)SS(ba) ⊆ baSba

which shows that (1) implies (3).
Conversely, assume that (3) holds. To see that (2) holds, l et fS be any SI-

bi-ideal of S and a and b be any elements of S. Then, by assumption, there
exists a positive integer n such that (ab)n = baxba. Since S is completely
regular, for this positive integer, there exists an element y ∈ S such that
ab = (ab)ny(ab)n. Then, since fS is an SI-bi-ideal of S,

fS(ab) = fS((ab)
ny(ab)n) ⊇ fS((ab)

n) ∩ fS((ab)
n) = fS((ab)

n)) =
fS(baxba) ⊇ fS(ba) ∩ fS(ba) = fS(ba).

One can similarly show that fS(ba) ⊇ fS(ab). Hence, fS(ab) = fS(ba) which
implies that fS is soft B? − normal. Thus, (3) implies (2). �

11 Conclusion

In this paper, certain classes of semigroups are characterized with regards to
different soft intersection ideals of semigroups and soft normal semigroups are
defined and the relation of this concept are studied with semigroups. Based
on these results, some further work can be done on the properties of soft
intersection semigroups and different classes of soft union ideals, which may
be useful to characterize the classical semigroups.
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[39] A. Sezgin Sezer, N. Çağman, A.O. Atagün, E. Türkmen, M.I. Ali, Soft
intersection semigroups, ideals and bi-ideals; a new approach to semigroup
theory I, Filomat, 29 (5) (2015), 917–946.
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