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Abstract. The intuition according to which an infinite word is “com-
plicated” all the more as it has many distinct factors can be translated
into terms of “complexity function” of this word. In this paper, some
properties of a new notion of complexity called “window complexity”
are studied. A characterization of modulo-recurrent words via window
complexity is given.

1 Introduction

The study of factors of infinite words goes back at least to the work of Thue [13,
14]. Among questions which have been addressed, is the problem of computing
the complexity function P, where P(n) is the number of distinct factors of
length n; it was introduced in 1975 by Ehrenfeucht et al. [6]. And since then,
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it has been abundantly used to study infinite words; in particular it allowed the
classification of certain families of infinite words (see for instance [1, 4, 10]).

As is shown in [12], this classical definition of complexity does not always
show how complicated an infinite word is. That is why other notions of com-
plexity were introduced by many authors, such as arithmetic complexity [3]
and palindromic complexity [2].

Our aim in this paper is to give some properties of the window complexity.
This new complexity was introduced by two of the authors in [8].

2 Preliminaries

Let A∗ be the free monoid generated by a non-empty finite set A called al-
phabet. The elements of A are called letters and those of A∗, words. For any
word v in A∗, |v| denotes the length of v, namely the number of its letters.
The identity element of A∗ denoted by ε is the empty word; it is the word of
length 0.

An infinite word is a sequence of letters in A indexed by N. We denote by
Aω the set of infinite words in A and we set A∞ = A∗ ∪ Aω.

An infinite word u is said τ-periodic if τ is the least positive integer such
that ui+τ = ui for all i ≥ 0.

A finite word u of length n formed by repeating a single letter x is typically
denoted xn. We define the nth power of a finite word v as being the concate-
nation of n copies of v; we denote it vn. We say that an infinite word u is even-
tually periodic if there exist two finite words v and w such that u = wvvv · · · ;
then u is simply denoted wvω.

Let u ∈ A∞ and v ∈ A∗. The word v is said to be a factor of u if there exist
u1 ∈ A∗ and u2 ∈ A∞ such that u = u1vu2.

For any infinite word u in Aω, we shall write u = u0u1u2u3 · · · where
ui ∈ A for all i ≥ 0. Let u ∈ Aω. The language of length n of u, denoted by
Ln(u), is the set of factors of u of length n:

Ln(u) = {ukuk+1 · · ·uk+n−1 : k ≥ 0} .

The set of all the factors of u is simply denoted by L(u). A factor v of length n

of a word u = u0u1u2 · · · appears in u at position k if v = ukuk+1 · · ·uk+n−1.
A word u is said to be recurrent if every factor of u appears infinitely many
times in u.

The complexity function of the infinite word u is the map from N to N
∗

defined by P(u, n) = #Ln(u), where #Ln(u) is the number of elements in
Ln(u).
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A Sturmian word is an infinite word u such that P(u, n) = n + 1 for every
integer n ≥ 0. Sturmian words are non-eventually periodic infinite words of
minimal complexity, for more details see for instance [9, 11].

Let us recall the definition of window complexity, which was introduced
in [8].

Definition 1 Let u = u0u1u2 · · · be an infinite word. The window complexity
function of u is the map Pf(u, .) : N −→ N

∗ defined by1

Pf(u, n) = #
{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}
.

Factors of length n occurring in u at a position multiple of n, as above, will
be called “window factors of length n of u”. The decomposition of u into such
factors will be called the “window decomposition of size n of u” or simply
“n-window decomposition of u”.

3 Properties of the window complexity

3.1 Comparison of Pf(u, .) and P(u, .)

Let us first compare the window complexity function with the usual complexity
function.

Proposition 1 For any infinite word u, we have:

∀n ≥ 0, Pf(u, n) ≤ P(u, n) .

Proof. For any infinite word u, we have

{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}
⊆ Ln(u) .

Thus Pf(u, n) ≤ P(u, n). �

We shall see in the next section that this proposition is sharp, i.e., there
exist infinite words for which Pf(u, n) = P(u, n) for all n ∈ N.

Proposition 2 For any infinite word u, we have:

∀n ≥ 2, P(u, n) ≤ (n − 1) (Pf(u, n − 1))2
.

1f in Pf is from ”fenêtre”, window in French
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Proof. For all n ≥ 2, let v, w be two window factors of length n − 1 in u

such that vw appears in the n-decomposition of u. Then, there are at most
n − 1 factors of u of length n contained in vw, and all factors of length n are
obtained this way. The result follows. �

We deduce from this proposition that if Pf is bounded, then P is at most
linear. Such infinite words actually exist, as we shall see in Proposition 7.

3.2 Window complexity and modulo-recurrent words

Let us now study the window complexity of a particular class of infinite words,
introduced in [7]: modulo-recurrent words.

Definition 2 An infinite word u = u0u1u2 · · · is said to be modulo-recurrent
if, for any k ≥ 1, every factor w of u appears in u at every position modulo
k, i.e.,

∀i ∈ {0, 1, . . . , k − 1} , ∃li ∈ N : w = ukli+iukli+i+1 · · ·ukli+i+|w|−1 .

Note that all modulo-recurrent words are recurrent. The class of modulo-
recurrent words includes words of diverse complexity, for instance Sturmian
words or words with maximal complexity:

Proposition 3 [7] Sturmian words are modulo-recurrent.

Proposition 4 Let u ∈ Aω be an infinite word such that P(u, n) = (#A)n

for all n ∈ N. Then u is modulo-recurrent.

Proof. If P(u, n) = (#A)n for all n ∈ N, then L(u) = A∗. Let w ∈ A∗ and
k ≥ 1. Choose j ∈ N such that |w|+ j ≡ 1 (mod k), and a ∈ A. Then the word
(waj)k occurs at some position n in u. It follows that w occurs at positions
n + i(|w| + j) in u for i ∈ {0, 1, . . . , k − 1}, hence at every position modulo k.

�

A consequence of Proposition 4 is that almost every infinite word is modulo-
recurrent, in the following sense: choose an infinite word u in Aω at random,
each letter being independently chosen in A according to a uniform law; then,
with probability 1, the word u is modulo-recurrent. Indeed, it is known that
L(u) = A∗ for almost every u.

Modulo-recurrent words can be characterized in terms of window complex-
ity:
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Theorem 1 Let u be a recurrent infinite word. Then, the following assertions
are equivalent:

1. The word u is modulo-recurrent.

2. ∀n ≥ 0, Pf(u, n) = P(u, n).

Proof. Let u be a modulo-recurrent word. Since Pf(u, n) ≤ P(u, n) by
Proposition 1, we need only to check that P(u, n) ≤ Pf(u, n). Let w be a
factor of length n in u. Then, w appears in u at any position modulo n,
in particular at a position ≡ 0 (mod n). So, there exists k ∈ N such that
w = uknukn+1 · · ·u(k+1)n−1. Hence, we have the inclusion

Ln(u) ⊆
{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}

and thus
P(u, n) ≤ Pf(u, n).

Conversely, suppose that

∀n ≥ 0, Pf(u, n) = P(u, n).

Then, for every integer n, any factor of u of length n appears in u at least at
one position ≡ 0 (mod n). Let w be a factor of u of length n and k a positive
integer. Let us consider an integer i such that 0 ≤ i < k. We have to show
that w appears in u at a certain position ≡ i (mod k). As u is a recurrent
infinite word, we can find some words x and y such that xwy is a factor of u

of length |xwy| ≡ 0 (mod k), with |x| = i.
It follows that there exists an integer l such that xwy appears in u at

position l|xwy|, i.e., xwy = ul|xwy|ul|xwy|+1 · · ·u(l+1)|xwy|−1. Thus,

w = ul|xwy|+iul|xwy|+i+1 · · ·ul|xwy|+i+n−1.

Therefore, w appears at a position ≡ i (mod k). �

Note that Theorem 1 does not hold for non-recurrent words. Indeed, the
word u = abω satisfies Pf(u, n) = P(u, n) = 2 for all n ≥ 1 (and of course
Pf(u, 0) = P(u, 0) = 1), but it is not modulo-recurrent.

3.3 Window complexity and automatic words

One very interesting way to generate infinite words is to proceed by iterating
a substitution on a letter.
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A substitution is a map f : A −→ A∗. It can be naturally extended to a
morphism from A∗ to A∗, and to a map from A∞ to A∞ .

If there exists a constant σ such that |f(a)| = σ for all a ∈ A, then we
say that f is σ-uniform (or just uniform, if σ is clear from the context). A
1-uniform morphism is called a coding.

Let f be a substitution on A∗. A word w on the alphabet A such that
f(w) = w is said to be a fixed point of f. If f is a non-erasing morphism and
there exists a letter a ∈ A such that f(a) = am with |m| > 0, then we say that
f is prolongable on a. In this case, the sequence a, f(a), f2(a),... converges to
the infinite word

u = amf(m)f2(m) . . . fk(m) . . .

which is a fixed point of f.
An infinite word is said to be σ-automatic if it is the image under a coding

of a fixed point of a σ-uniform morphism, for σ ≥ 2. Indeed, such a word is
recognizable by a σ-automaton [5].

Proposition 5 Let u be a σ-automatic infinite word. Then the sequence of
integers (Pf(u, n))n∈N

is not strictly increasing.

Proof. Let u = g(v), where v is a fixed point of the σ-uniform morphism f

and g is a coding. Then, for all n ∈ N, we have Pf(u, σn) ≤ Pf(v, 1) since the
window factors of length σn of u are the words g(fn(a)) for a ∈ L1(v). Since
the sequence (Pf(u, n))n∈N

contains a bounded subsequence, it is not strictly
increasing. �

3.4 Bounded window complexity

We know that the complexity function of an eventually periodic word is
bounded. By Proposition 1, it follows that the window complexity of an even-
tually periodic word is also bounded. More precisely:

Proposition 6

1. If u is a τ-periodic word, then Pf(u, n) ≤
τ

gcd(n, τ)
.

2. If u is eventually τ-periodic, then for n large enough,

Pf(u, n) ≤ 1 +
τ

gcd(n, τ)
.
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Proof.

1. Let n ∈ N. A window factor of length n of u can be written as

uknukn+1 · · ·u(k+1)n−1,

and it is entirely determined by kn mod τ, which takes exactly
τ

gcd(n, τ)
different values.

2. If n is large enough, then u = wv where |w| = n and v is τ-periodic.
Then Pf(u, n) ≤ 1 + Pf(v, n).

�

Since the window complexity of any eventually periodic word is bounded,
a natural question is what happens for non-eventually periodic infinite words.
Contrarily to the situation with the usual complexity function, bounded win-
dow complexity does not imply eventual periodicity. We present below a non-
eventually periodic infinite word whose window complexity is bounded.

Consider the sequence (ni)i≥0 such that n0 = 0 and for all i ≥ 0, ni+1 =

ni! + ni; and let t = t0t1t2 · · · be the infinite word defined by tn = 1 if there
exists i ∈ N such that n = ni and tn = 0 otherwise.

The first few terms of (ni) and t are:

i 0 1 2 3 4 5 · · ·

ni 0 1 2 4 28 28! + 28 · · ·

t = 11101000000000000000000000001000 . . . .

Let us note that t is neither eventually periodic nor recurrent.

Proposition 7 The window complexity of the infinite word t defined above
satisfies Pf(t, 0) = 1, Pf(t, 1) = 2, and

∀n ≥ 2, Pf(t, n) = 3 .

Proof. Obviously, Pf(t, 0) = 1 and Pf(t, 1) = #A = 2.
We see from the first terms of t that 11, 10, 00 all occur in the 2-window

decomposition of t. Morever, since all ni are even except n1 = 1, we have
t2l+1 = 0 for l ≥ 1, therefore t2lt2l+1 cannot be equal to 01. So Pf(t, 2) = 3.

More generally, let n ≥ 2, let i be the smallest integer such that n ≤ ni, and
let r = ni mod n. Then ni−1 < n ≤ ni and i ≥ 2. We first prove by induction
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on j that nj ≡ r (mod n) for all j ≥ i. This obviously holds for j = i. Assume
that nj ≡ r (mod n) for some j ≥ i. Then nj+1 − r = nj! + (nj − r), which is
a multiple of n since nj ≥ n.

There are at least 3 window factors of length n: t0t1 · · · tn−1, with 11 as a
prefix, occurring at position 0; 0n, occurring at position ni+1 + n − r (since
ni+1 < ni+1 + n − r < ni+1 + n − r + n − 1 < ni+2); and 0r10n−r−1, occurring
at position ni − r.

Assume now that w = tlntln+1 · · · t(l+1)n−1 is a window factor of length n of
t. If it starts with 11, then it must be the prefix of length n, since 11 does not
occur in t after position 1. Otherwise, l ≥ 1. For 0 ≤ k ≤ n − 1, ln + k = nj is
only possible if k = r, since nj ≡ r (mod n) if j ≥ i, and nj < n if j < i. Hence
w is either 0n or 0r10n−r−1. We have shown that there is not other window
factor of length n, i.e., Pf(t, n) = 3. �

By Proposition 2, and since the word t is non-eventually periodic, we have
n + 1 ≤ P(t, n) ≤ 9(n − 1) for n ≥ 2. Actually, one can prove that P(t, n) =

n + o(log n).

4 Some questions

We conclude with a few open questions.

• By Proposition 6, we know that if u is an eventually periodic infinite
word then its window complexity function Pf(u, ·) is bounded. Also, we
have presented (Proposition 7) an infinite word, non-eventually periodic
and non-recurrent, such that its window complexity function is bounded.
Does there exist some infinite recurrent and non-eventually periodic word
for which the window complexity function is bounded?

• Among infinite words with bounded window complexity, a subclass of
particular interest is that of words with eventually constant window
complexity, i.e., verifying the following property:

∃n0, c ∈ N : ∀n ≥ n0, Pf(u, n) = c. (1)

Eventually constant words have eventually constant window complex-
ity. The example constructed in Proposition 7 shows that even non-
eventually periodic words may have eventually constant window com-
plexity.

It would be interesting to see if there exist recurrent words, or better
automatic words, that possess Property (1).
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• We know by Proposition 5 that the window complexity function of an
automatic word is not strictly increasing, and even contains a bounded
subsequence. On the other hand, by Theorem 1, modulo-recurrent words
have strictly increasing window complexity. Do there exist non-modulo-
recurrent words with strictly increasing window complexity?
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