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Abstract. For a connected graph G of order p ≥ 2 and a vertex x of G,

a set S ⊆ V(G) is an x-detour set of G if each vertex v ∈ V(G) lies on an
x − y detour for some element y in S. The minimum cardinality of an x-
detour set of G is defined as the x-detour number of G, denoted by dx(G).

An x-detour set of cardinality dx(G) is called a dx-set of G. A connected
x-detour set of G is an x-detour set S such that the subgraph G[S] induced
by S is connected. The minimum cardinality of a connected x-detour set
of G is defined as the connected x-detour number of G and is denoted by
cdx(G). A connected x-detour set of cardinality cdx(G) is called a cdx-
set of G. We determine bounds for the connected x-detour number and
find the same for some special classes of graphs. If a, b and c are positive
integers such that 3 ≤ a ≤ b+1 < c, then there exists a connected graph
G with detour number dn(G) = a, dx(G) = b and cdx(G) = c for some
vertex x in G. For positive integers R,D and n ≥ 3 with R < D ≤ 2R,

there exists a connected graph G with radDG = R, diamDG = D and
cdx(G) = n for some vertex x in G. Also, for each triple D,n and p of
integers with 4 ≤ D ≤ p − 1 and 3 ≤ n ≤ p, there is a connected graph
G of order p, detour diameter D and cdx(G) = n for some vertex x of G.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q
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respectively. For basic graph theoretic terminology we refer to Harary [6]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length of
a shortest x − y path in G. An x − y path of length d(x, y) is called an x − y

geodesic. For a cut-vertex v in a connected graph G and a component H of
G − v, the subgraph H and the vertex v together with all edges joining v and
V(H) is called a branch of G at v. The closed interval I[x, y] consists of all
vertices lying on some x − y geodesic of G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y].

A set S of vertices is a geodetic set if I[S] = V, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
g(G) is called a g-set. The geodetic number of a graph was introduced in [1,
7] and further studied in [3].

The concept of vertex geodomination number was introduced by Santhaku-
maran and Titus in [8] and further studied in [9]. Let x be a vertex of a
connected graph G. A set S of vertices of G is an x-geodominating set of G

if each vertex v of G lies on an x − y geodesic in G for some element y in S.

The minimum cardinality of an x-geodominating set of G is defined as the
x-geodomination number of G and is denoted by gx(G). An x-geodominating
set of cardinality gx(G) is called a gx-set. The connected vertex geodomina-
tion number was introduced and studied by Santhakumaran and Titus in [11].
A connected x-geodominating set of G is an x-geodominating set S such that
the subgraph G[S] induced by S is connected. The minimum cardinality of a
connected x-geodominating set of G is the connected x-geodomination number
of G and is denoted by cgx(G). A connected x-geodominating set of cardinality
cgx(G) is called a cgx-set of G.

For vertices x and y in a connected graph G, the detour distance D(x, y)

is the length of a longest x − y path in G. For any vertex u of G, the detour
eccentricity of u is eD(u) = max {D(u, v) : v ∈ V}. A vertex v of G such that
D(u, v) = eD(u) is called a detour eccentric vertex of u. The detour radius R

and detour diameter D of G are defined by R = radDG = min {eD(v) : v ∈ V}

and D = diamDG = max {eD(v) : v ∈ V} respectively. An x−y path of length
D(x, y) is called an x − y detour. The closed interval ID[x, y] consists of all
vertices lying on some x − y detour of G, while for ID[S] =

⋃

x,y∈S

ID[x, y]. A

set S of vertices is a detour set if ID[S] = V, and the minimum cardinality of a
detour set is the detour number dn(G). A detour set of cardinality dn(G) is
called a minimum detour set. The detour number of a graph was introduced
in [4] and further studied in [5].

The concept of vertex detour number was introduced by Santhakumaran
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and Titus in [10]. Let x be a vertex of a connected graph G. A set S of
vertices of G is an x-detour set if each vertex v of G lies on an x − y detour in
G for some element y in S. The minimum cardinality of an x-detour set of G

is defined as the x-detour number of G and is denoted by dx(G). An x-detour
set of cardinality dx(G) is called a dx-set of G.

Figure 1

For the graph G given in Figure 1, {a, y} and {a, z} are the minimum x-
detour sets of G and so dx(G) = 2. It was proved in [10] that for any vertex
x in G, 1 ≤ dx(G) ≤ p − 1. An elaborate study of results in vertex detour
number with several interesting applications is given in [10].

The following theorems will be used in the sequel.

Theorem 1 [6] Let v be a vertex of a connected graph G. The following state-
ments are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every
u − w path.

(iii) There exists a partition of the set of vertices V − {v} into subsets U and
W such that for any vertices u ∈ U and w ∈ W, the vertex v is on every u−w

path.

Theorem 2 [4] Every end-vertex of a nontrivial connected graph G belongs
to every detour set of G.

Theorem 3 [4] If T is a tree with k end-vertices, then dn(T) = k.

Theorem 4 [10] Let x be any vertex of a connected graph G. Then every end-
vertex of G other than the vertex x (whether x is end-vertex or not) belongs to
every dx-set.
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Theorem 5 [10] Let T be a tree with k end-vertices. Then dx(T) = k − 1 or
dx(T) = k according as x is an end-vertex or not.

Theorem 6 [10] For any vertex x in G, dn(G) ≤ dx(G) + 1.

Theorem 7 [10] If G is the complete graph Kp (p ≥ 2), the cycle Cp (p ≥ 3),

the complete bipartite graph Km,n (m, n ≥ 2), the n-cube Qn (n ≥ 2) or the
wheel Wn = K1 + Cn−1 (n ≥ 4), then dx(G) = 1 for every vertex x in G.

Throughout this paper G denotes a connected graph with at least two ver-
tices.

2 Connected vertex detour number

Definition 1 Let x be any vertex of a connected graph G. A connected x-
detour set of G is an x-detour set S such that the subgraph G[S] induced by S

is connected. The minimum cardinality of a connected x-detour set of G is the
connected x-detour number of G and is denoted by cdx(G). A connected
x-detour set of cardinality cdx(G) is called a cdx-set of G.

Example 1 For the graph G given in Figure 2, the minimum vertex detour
sets, the vertex detour numbers, the minimum connected vertex detour sets
and the connected vertex detour numbers are given in Table 1.

It is observed in [10] that x is not an element of any dx-set of G. However,
x may belong to a cdx-set of G. For the graph G given in Figure 2, the vertex
v is an element of a cdv-set and the vertex t is not an element of any cdt-set.

Figure 2
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Table 1

Vertex x dx-sets dx(G) cdx-sets cdx(G)

t {y, w}, {z, w}, {u, w} 2 {y, v, w}, {u, v, w} 3
y {w} 1 {w} 1
z {w} 1 {w} 1
u {w} 1 {w} 1
v {y, w}, {z, w}, {u, w} 2 {y, v, w}, {u, v, w} 3
w {y}, {z}, {u} 1 {y}, {z}, {u} 1

Theorem 8 Let x be any vertex of a connected graph G. If y 6= x is an end
vertex of G, then y belongs to every x-detour set of G.

Proof. Let x be any vertex of G and let y 6= x be an end-vertex of G. Then
y is the terminal vertex of an x − y detour and y is not an internal vertex of
any detour so that y belongs to every x-detour set of G. �

Theorem 9 Let G be a connected graph with cut vertices and let Sx be a
connected x-detour set of G. If v is a cut vertex of G, then every component
of G − {v} contains an element of Sx

⋃
{x}.

Proof. Suppose that there is a component B of G − {v} such that B contains
no vertex of Sx

⋃
{x}. Then clearly, x ∈ V − V(B). Let u ∈ V(B). Since Sx is

a connected x-detour set, there exists an element y ∈ Sx such that u lies in
some x − y detour P : x = u0, u1, . . . , u, . . . , un = y in G. By Theorem 1, the
x − u subpath of P and the u − y subpath of P both contain v, it follows that
P is not a path, contrary to assumption. �

Corollary 1 Let G be a connected graph with cut vertices and let Sx be a
connected x-detour set of G. Then every branch of G contains an element of
Sx

⋃
{x}.

Theorem 10 (i) If T is any tree, then cdx(T) = p for any cut vertex x of T.

(ii) If T is any tree which is not a path, then for an end vertex x, cdx(T) =

p − D(x, y), where y is the vertex of T with deg y ≥ 3 such that D(x, y) is
minimum.

(iii) If T is a path, then cdx(T) = 1 for any end vertex x of T.
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Proof. (i) Let x be a cut vertex of T and let S be any connected x-detour
set of T. By Theorem 8, every connected x-detour set of T contains all end
vertices. If S 6= V(T), there exists a cut vertex v of T such that v /∈ S. Let u

and w be two end vertices belonging to different components of T − {v}. Since
v lies on the unique path joining u and w, it follows that the subgraph G[S]

induced by S is disconnected, which is a contradiction. Hence cdx(T) = p.

(ii) Let T be a tree which is not a path and x an end vertex of T. Let
S = (V(T) − ID[x, y])

⋃
{y}. Clearly S is a connected x-detour set of T and so

cdx(T) ≤| S |= p − D(x, y). We claim that cdx(T) = p − D(x, y). Otherwise,
there is a connected x-detour set M of T with | M |< p−D(x, y). By Theorem
8, every connected x-detour set of T contains all end vertices except possibly
x and hence there exists a cut vertex v of T such that v ∈ S and v /∈ M. Let
B1, B2, . . . , Bm(m ≥ 3) be the components of T − {y}. Assume that x belongs
to B1.

Case 1. Suppose v = y. Let z ∈ B2 and w ∈ B3 be two end vertices of T.

By Theorem 1, v lies on the unique z − w detour. Since z and w belong to M

and v /∈ M, G[M] is not connected, which is a contradiction.
Case 2. Suppose v 6= y. Let v ∈ Bi(i 6= 1). Now, choose an end vertex u ∈ Bi

such that v lies on the y−u detour. Let a ∈ Bj(j 6= i, 1) be an end vertex of T.

By Theorem 1, y lies on the u − a detour. Hence it follows that v lies on the
u − a detour. Since u and a belong to M and v /∈ M, G[M] is not connected,
which is a contradiction.

(iii) Let T be a path. For an end vertex x in T, let y be the eccentric vertex
of x. Clearly every vertex of T lies on the x−y detour and so {y} is a connected
x-detour set of T so that cdx(T) = 1. �

Corollary 2 For any tree T, cdx(T) = p if and only if x is a cut vertex of T.

Proof. This follows from Theorem 10. �

Theorem 11 For any vertex x in a connected graph G,

1 ≤ dx(G) ≤ cdx(G) ≤ p.

Proof. It is clear from the definition of x-detour number that dx(G) ≥ 1.

Since every connected x-detour set is also an x-detour set, it follows that
dx(G) ≤ cdx(G). Also, since V(G) induces a connected x-detour set of G, it is
clear that cdx(G) ≤ p. �
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Remark 1 The bounds in Theorem 11 are sharp. For the cycle Cn, dx(Cn) =

1 for every vertex x in Cn. For any non-trivial tree T with p ≥ 3, cdx(T) = p

for any cut vertex x in T. For the graph G given in Figure 3, dx(G) = cdx(G) =

2 for the vertex x. Also, all the inequalities in the theorem are strict. For an
end vertex x in the star G = K1,n(n ≥ 3), dx(G) = n − 1, cdx(G) = n and
p = n + 1 so that 1 < dx(G) < cdx(G) < p.

Figure 3

Figure 4

The following theorem gives a characterization for cdx(G) = 1. For this,
we introduce the following definition. Let x be any vertex in G. A vertex
y in G is said to be an x-detour superior vertex if for any vertex z with
D(x, y) < D(x, z), z lies on an x − y detour. For the graph G given in Figure
4, x9 and x10 are the only x1-detour superior vertices.

Theorem 12 Let x be any vertex of a connected graph G. Then the following
are equivalent:
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(i) cdx(G) = 1

(ii) dx(G) = 1

(iii) There exists an x-detour superior vertex y in G such that every vertex
of G is on an x − y detour.

Proof.

(i) ⇒ (ii) Let cdx(G) = 1. Then it follows from Theorem 11 that dx(G) = 1.

(ii) ⇒ (iii) Let dx(G) = 1 and Sx = {y} be a dx-set of G. If y is not an
x-detour superior vertex, then there is a vertex z in G with D(x, y) < D(x, z)

and z does not lie on any x − y detour. Thus Sx is not a dx-set of G, which is
a contradiction.

(iii) ⇒ (i) Let y be an x-detour superior vertex of G such that every vertex
of G is on an x − y detour. Then {y} is a connected x-detour set of G so that
cdx(G) = 1. �

Corollary 3 (i) For the complete graph Kp, cdx(Kp) = 1 for any vertex x in
Kp.

(ii) For any cycle Cp, cdx(Cp) = 1 for any vertex x in Cp.

(iii) For the wheel Wp = K1 + Cp−1(p ≥ 5), cdx(Wp) = 1 for any vertex x

in Wp.

(iv) For any cube Qn, cdx(Qn) = 1 for any vertex x in Qn.

(v) For the complete bipartite graph Km,n(m, n ≥ 2), cdx(Km,n) = 1 for any
vertex x in Km,n.

Proof. This follows from Theorems 7 and 12. �

Theorem 13 For any vertex x in a connected graph G, dn(G) ≤ dx(G)+1 ≤

cdx(G) + 1.

Proof. This follows from Theorem 6 and Theorem 11. �

The following theorem gives a realization for the detour number, the vertex
detour number and the connected vertex detour number when

3 ≤ a ≤ b + 1 < c.

Theorem 14 For any three integers a, b and c with 3 ≤ a ≤ b + 1 < c, there
exists a connected graph G with dn(G) = a, dx(G) = b and cdx(G) = c for
some vertex x in G.
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Proof. We prove this theorem by considering two cases.
Case 1. 3 ≤ a = b + 1 < c. Let k > c be any integer and let Pk−a+2 :

u1, u2, . . . , uk−a+2 be a path of order k − a + 2. Add a − 2 new vertices
v1, v2, . . . , va−2 to Pk−a+2 and join these to uk−c+1, thereby producing the
graph G of Figure 5. Then G is a tree of order k with a end vertices. By
Theorem 3, dn(G) = a and it follows from Theorem 5 and Theorem 10 (ii)
that dx(G) = b and cdx(G) = c respectively, for the vertex x = u1.

Figure 5

Case 2. 3 ≤ a < b + 1 < c. Let F = (K3

⋃
P2

⋃
(b − a + 1)K1) + K2, where

U = V(K3) = {u1, u2, u3}, W = V(P2) = {w1, w2}, X = V((b − a + 1)K1) =

{x1, x2, . . . , xb−a+1} and V(K2) = {x, y}. Let Pc−b−1 : v1, v2, . . . , vc−b−1 be the
path of order c − b − 1. Let H be the graph obtained from Pc−b−1 by adding
a − 1 new vertices z1, z2, . . . , za−1 and joining each zi(1 ≤ i ≤ a − 1) to v1.

Now, let G be the graph obtained from F and H by identifying u1 in F and
vc−b−1 in H. The graph G is shown in Figure 6. Let Z = {z1, z2, . . . , za−1} be
the set of all end vertices of G.

First, we show that dn(G) = a. By Theorem 2, every detour set of G con-
tains Z. Since ID[Z] = Z

⋃
{v1} 6= V(G), it follows that Z is not a detour set of G

and so dn(G) >| Z |= a−1. On the other hand, let S = Z
⋃

{w1}. Then, for each
i with 1 ≤ i ≤ b − a + 1, the path P : z1, v1, v2, . . . , vc−b−2, u1, u2, u3, y, xi, x,

w2, w1 is a z1 − w1 detour in G of length c − b + 6. Hence S is a detour set of
G and so dn(G) ≤| S |= a. Therefore, dn(G) = a.

Next, we show that dx(G) = b for the vertex x. Let Sx be any x-detour set of
G. By Theorem 8, Z ⊆ Sx. It is clear that D(x, zi) = c−b+5 for 1 ≤ i ≤ a−1

and no xj(1 ≤ j ≤ b − a + 1) lies on an x − zi detour for any zi ∈ Z. Thus Z is
not an x-detour set of G. Now we claim that X ⊆ Sx. Assume, to the contrary,
X ⊃ Sx. Then there exists an xi ∈ X such that xi /∈ Sx(1 ≤ i ≤ b − a + 1).

Now, it is clear that this xi does not lie on any x − v detour for any v ∈ Sx,

which is a contradiction to Sx is an x-detour set. Hence X ⊆ Sx. Thus we see
that every x-detour set Sx contains X

⋃
Z. Now, since X

⋃
Z is an x-detour set
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Figure 6

of G, it follows that X
⋃

Z is the unique minimum x-detour set of G so that
dx(G) =| X

⋃
Z |= b.

Now, we show that cdx(G) = c. Let Tx be any connected x-detour set of
G. Since any connected x-detour set of G is also an x-detour set of G, it
follows that Tx contains X

⋃
Z as in the above paragraph. Now, since the

induced subgraph G[Tx] is connected, M = {v1, v2, . . . , vc−b−1} ⊆ Tx. Thus
M

⋃
X

⋃
Z ⊆ Tx. It is clear that M

⋃
X

⋃
Z is an x-detour set of G and the

induced subgraph G[M
⋃

X
⋃

Z] is not connected. Let T = M
⋃

X
⋃

Z
⋃

{x}. It
is clear that T is a minimum connected x-detour set of G and so cdx(G) = c.

�

For every connected graph G, radDG ≤ diamDG ≤ 2radDG. Chartrand,
Escuadro and Zhang [2] showed that every two positive integers a and b with
a ≤ b ≤ 2a are realizable as the detour radius and detour diameter, respec-
tively, of some connected graph. This theorem can also be extended so that
the connected vertex detour number can be prescribed when a < b ≤ 2a.

Theorem 15 For positive integers R, D and n ≥ 3 with R < D ≤ 2R, there
exists a connected graph G with radDG = R, diamDG = D and cdx(G) = n

for some vertex x in G.

Proof. If R = 1, then D = 2. Let G = K1,n. Then by Theorem 10 (ii),
cdx(G) = n for an end vertex x in G. Now, let R ≥ 2. We construct a graph
G with the desired properties as follows:

Let CR+1 : v1, v2, . . . , vR+1, v1 be a cycle of order R + 1 and let PD−R+1 :

u0, u1, . . . , uD−R be a path of order D − R + 1. Let H be the graph obtained
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from CR+1 and PD−R+1 by identifying v1 in CR+1 and u0 in PD−R+1. Now, add
n−2 new vertices w1, w2, . . . , wn−2 to H and join each vertex wi(1 ≤ i ≤ n−2)

to the vertex uD−R−1 to obtain the graph G of Figure 7.

Figure 7

Now radDG = R, diamDG = D and G has n − 1 end vertices. Let S =

{w1, w2, . . . , wn−2, uD−R} be the set of all end vertices of G. Then by Theorem
8, every connected x-detour set of G contains S for the vertex x = v2. It is clear
that S is an x-detour set of G and the induced subgraph G[S] is not connected
so that cdx(G) > n−1. Let S ′ = S

⋃
{uD−R−1}. Then S ′ is a connected x-detour

set of G and so cdx(G) = n. �

The graph G of Figure 7 is the smallest graph with the properties described
in Theorem 15. We leave the following problem as an open question.

Problem 1 For positive integers R and n ≥ 3, does there exist a connected
graph G with radDG = diamDG = R and cdx(G) = n for some vertex x of
G?

In the following, we construct a graph of prescribed order, detour diameter
and vertex detour number under suitable conditions.

Theorem 16 For each triple D, n and p of integers with 4 ≤ D ≤ p − 1 and
3 ≤ n ≤ p, there is a connected graph G of order p, detour diameter D and
cdx(G) = n for some vertex x of G.

Proof. We prove this theorem by considering three cases.
Case 1. Suppose 3 ≤ n ≤ p − D + 2. Let G be a graph obtained from

the cycle CD : u1, u2, . . . , uD, u1 of order D by (i) adding n − 2 new vertices
v1, v2, . . . , vn−2 and joining each vertex vi(1 ≤ i ≤ n−2) to u1 and (ii) adding
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p − D − n + 2 new vertices w1, w2, . . . , wp−D−n+2 and joining each vertex
wi(1 ≤ i ≤ p − D − n + 2) to both u1 and u3. The graph G has order p and
detour diameter D and is shown in Figure 8. Let S = {v1, v2, . . . , vn−2} be the
set of all end vertices of G. Then by Theorem 8, every connected x-detour set
of G contains S for the vertex x = u1. It is clear that S is not an x-detour
set of G. Also any connected x-detour set of G must contain S

⋃
{u1}. Since

S
⋃

{u1} is not an x-detour set of G, cdx(G) > n − 1. Let S ′ = S
⋃

{u1, uD}.

Then S ′ is a connected x-detour set of G and so cdx(G) = n.

Figure 8

Case 2. Suppose p − D + 3 ≤ n ≤ p − 1. Let PD+1 : u0, u1, u2, . . . , uD be
a path of length D. Add p − D − 1 new vertices v1, v2, . . . , vp−D−1 to PD+1

and join each vi(1 ≤ i ≤ p − D − 1) to up−n, so by producing the graph G of
Figure 9. The graph G has order p and detour diameter D. Then by Theorem
10 (ii), cdx(G) = p − (p − n) = n for the vertex x = u0.

Figure 9

Case 3. Suppose n = p. Let G be any tree of order p and detour diameter
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D. Then by Theorem 10 (i), cdx(G) = p for any cut vertex x in G. �

Theorem 17 For any two integers n and p with 3 ≤ n ≤ p, there exists a
connected graph G with order p and cdx(G) = n for some vertex x of G.

Proof. We prove this theorem by considering two cases.
Case 1. Let 3 ≤ n ≤ p − 2. Then p − n + 1 ≥ 3. Let G be the graph

obtained from the cycle Cp−n+1 : u1, u2, . . . , up−n+1, u1 by adding the n − 1

new vertices v1, v2, . . . , vn−1 and joining these to u1. The graph G has order
p and is shown in Figure 10. Let S = {v1, v2, . . . , vn−1} be the set of all end
vertices of G. Then by Theorem 8, every connected x-detour set of G contains S

for the vertex x = u2. It is clear that S is an x-detour set of G and the induced
subgraph G[S] is not connected so that cdx(G) > n − 1. Let S ′ = S

⋃
{u1}. It

is clear that S ′ is a connected x-detour set of G and so cdx(G) = n.

Case 2: Let n = p−1 or p. Let G = K1,p−1. Then by Theorem 10, cdx(G) =

p − 1 or p according as x is an end vertex or the cut vertex. �

Figure 10
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